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Abstract: In this paper we consider the correspondence between the tachyon dark energy 

model and the Tsallis holographic dark energy scenario in an FRW universe. We demonstrate 

the Tsallis holographic description of tachyon dark energy in an FRW universe and 

reconstruct the potential and basic results of the dynamics of the scalar field which describe 

the tachyon cosmology. In a flat universe, in the tachyon model of Tsallis holographic dark 

energy, independently of the existence of interaction between dark energy and matter or 

not, T˙2 must always be zero. Therefore, the equation of state ωD is always −1 in such a flat 

universe. For a non-flat universe, T˙2 cannot be zero so that ωD 6= −1 which cannot be used 

to explain the origin of the cosmological constant. T˙2 monotonically decreases with the 

increasing of cos(Rh/a) and cosh(Rh/a) for different δs. In particular, for an open universe, 

T˙2 is always larger than zero while for a closed universe, T˙2 is always smaller than zero 

which is physically invalid. In addition, we conclude that with the increasing of cos(Rh/a) and 

cosh(Rh/a), T˙2 always decreases monotonically for irrespective of the value of b2. 
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1 Introduction 

Observations from type Ia supernovae [1,2,3] in association with Large Scale Structure [4,5] 

and Cosmic Microwave Background anisotropies [6], have provided the main evidence that 

the universe is experiencing an accelerated expansion. To explain the reason for this 

expansion of the universe, many theories have been proposed. The most widely-accepted 

explanation is dark energy since dark energy has a negative pressure. However, the nature 

and cosmological origin of dark energy has still not been determined. 

The most obvious candidate for dark energy is the cosmological constant [7,8] for which p = 

−ρ, but this explanation also suffers from “fine-tuning problems”. In view of this a series of 

alternative proposals for dark energy have been put forward. In particular, various scalar-

field dark energy models, such as quintessence [9], K-essence [10], phantom [11], tachyon 

[12], ghost condensate [13,14], quintom [15], interacting dark energy models [16], 

braneworld models [17], and Chaplygin gas models [18], have been studied. 

One attempt at accounting for the nature of dark energy is termed “holographic dark energy” 

which is derived from the framework of quantum gravity. The proposal is based on the 

holographic principle which states that the number of degrees of freedom related to entropy 

scales directly with the enclosing area of the system [19,20]. ’t Hooft [21] and Susskind [22] 

have shown that effective local quantum field theories significantly over-count the number 

of degrees of freedom since entropy scales extensively for an effective quantum field theory 

in a box of size L with UV cut-off Λ. To solve this problem, Cohen et.al [23] have pointed out 

that the total energy of a system with size L should not exceed a black hole of the same size, 

that is to say, L3ρΛ ≤ LMp2. Here Mp denotes the Planck mass (Mp2 = 8πG1 ) and ρΛ is the quantum 

zero-point energy density caused by UV cutoff Λ. The largest value of L is required to define 

the limit of this inequality. Taking this approach we can obtain the holographic dark energy 

density is , where the coefficient 3 is used merely for convenience and the 

parameter c is dimensionless. As an application of the holographic principle in cosmology, 

the authors of reference [24] investigated the consequences of excluding from the system 

those degrees of freedom which will never be observed by the effective field theory giving 

rise to an IR cut-off L at the future event horizon. Thus in a universe dominated by DE, the 

future event horizon will tend towards a constant of the order  , i.e. the present Hubble 

radius [25]. The problem of taking the apparent (Hubble) horizon - the outermost surface 

defined by the null rays which are instantaneously not expanding, RA = 1/H- as the IR cut-off 

in the flat universe was discussed by Hsu [25,26]. According to Hsu’s argument, employing 
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the Friedmann equation ρ = 3MP2H2 where ρ is the total energy density and taking L = H−1 we 

will obtain ρm = 3(1 − c2)MP2H2 [25,26]. 

Recently, using Tsallis generalized entropy [27] and by considering the Hubble horizon as 

the IR cutoff, in agreement with the thermodynamics considerations [28,29], a new HDE 

model, termed “Tsallis holographic dark energy” (THDE), has been developed and studied in 

the standard cosmology framework [30,31]. At first glance, it appears to be an appropriate 

model for the current universe in the standard cosmology framework [30,32,33]. However, 

like the primary HDE based on the Bekenstein entropy [34], THDE is also unstable 

[30,32,33]. More studies concerning the various cosmological features of Tsallis generalized 

statistical mechanics can be found in ref.[35]. It is also useful to note here that an interaction 

between the cosmos sectors which does not involve a change of sign also cannot produce 

stability for this model [33]. 

The tachyon which is unstable field has become important in string theory through its role 

in the Dirac-Born-Infeld (DBI) action which is used to describe the D-brane action [12,36,37]. 

The cosmological model based on the effective Lagrangian of tachyonic matter 

 L(T) = −V (T)p1 − T,µT,µ (1.1) 

√  

with the potential V (T) = A coincides exactly with the Chaplygin gas model [38,39]. In section 

2, we review the basics of Tsallis holographic dark energy scenario. In this paper, we propose 

a correspondence between the tachyon dark energy model and the Tsallis holographic dark 

energy scenario. In section 3 and 4, we demonstrate this holographic description of tachyon 

dark energy and reconstruct the potential and basic results of the dynamics of the scalar field 

which describe the tachyon cosmology in a flat and non-flat universe, respectively. In section 

5, we discuss and summarize the results. 

2 The Basics 

Following ref.[30], let us review the Tsallis holographic dark energy model briefly. We 

consider the Friedmann-Robertson-Walker (FRW) universe metric 

  (2.1) 

where k denotes the curvature of space whereby k = 0,1,−1 for flat, closed and open universe 

respectively [25]. 

The holographic energy density (HDE) in standard cosmology is defined by 

  (2.2) 

where c is a dimensionless parameter and radius L is defined as  

L = ar(t) (2.3) 

Here, a is scale factor and r(t) is relevant to the future event horizon of the universe. 

In general, r(t) and L can be determined by the following relations [25]: 
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 ) (2.4) 

In particular, 

  (2.5) 

. 

And one can derive that [25] 

 , (2.6) 

where Rh(t) is the future event horizon in flat universe, i.e. [25], 

  (2.7) 

However, this definition of HDE can be modified to take account of quantum considerations 

[40]. Tsallis and Cirto have shown that the horizon entropy of a black hole may be modified 

as [27]: 

 Sδ = γAδ (2.8) 

where γ is an unknown constant and δ denotes the non-additivity parameter. If we take γ = 

1/4G and δ = 1, then the Bekenstein entropy can be recovered (where ~ = c = kB = 1). The 

holographic principle states that the number of degrees of freedom of a physical system 

should firstly scale with its bounding area rather than with its volume and secondly should 

be constrained by an infrared cutoff [21,22]. In ref.[23], Cohen et al. proposed that the 

inequality between the system entropy (S) and the IR (L) and UV (Λ) cutoffs should be 

defined as  

L3Λ3 ≤ S3/4 

Combining with eq.(2.8), we then have 

(2.9) 

Λ4 ≤ γ(4π)δL2δ−4 (2.10) 

where Λ4 is the vacuum energy density. Based on the above inequality, the Tsallis 

holographic dark energy density (THDE) can be derived to be [30] 

 ρD = BL2δ−4 (2.11) 

where B is an unknown parameter. If  and δ = 1, then the energy density of 

holographic dark energy can be recovered. 

We define the critical energy density ρcr and the curvature energy density ρk as usual as: 

  (2.12) 
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  (2.13) 

We also introduce three fractional energy densities Ωm, ΩD and Ωk: 

  (2.14) 

  (2.15) 

  (2.16) 

Considering L = H−1, we have 

  (2.17) 

Now using eqs. (2.3), (2.4) and (2.5), we obtain 

 ) (2.18) 

In particular, 

  (2.19) 

. 

In flat space, if there is no interaction between Tsallis holographic dark energy and matter, 

i.e., 

ρ˙D + 3HρD(1 + ωD) = 0 (2.20) 

ρ˙m + 3Hρm = 0 (2.21) 

then the equation of state for the Tsallis holographic energy density can be obtained as 

[41]: 

  (2.22) 

For δ < 1, we have 2 − δ > 1 meaning that there is a divergence in the behavior of ωD occuring 

at the red-shift for which ΩD = 1/(2−δ). Therefore, the δ < 1 case is not suitable in our setup 

[30]. 

In flat space, if there is an interaction between the Tsallis holographic dark energy and 

matter, i.e., 

ρ˙D + 3HρD(1 + ωD) = −Q (2.23) 

ρ˙m + 3Hρm = Q (2.24) 

where Q = 3b2H(ρm + ρD) is the interaction term [41], the Tsallis holographic energy equation 

of state is then [41]: 
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  (2.25) 

3 The tachyon field as Tsallis holographic dark energy in a flat FRW universe 

3.1 The non-interacting case 

Let us consider a four-dimensional, spacially-flat FRW universe, so that the Friedmann 

equations are 

  (3.1) 

  (3.2) 

where ρ = ρT + ρNR + ρR is the energy density for, tachyon matter, non-relativistic and 

relativistic matter, respectively, and P is the corresponding pressure. In this subsection we 

shall restrict ourselves to considering a description of the present situation where we 

assume that tachyon field largely dominates the universe and therefore the energy density 

and pressure of non-relativistic and relativistic matter can be disregarded. Therefore, the 

first Friedmann equation eq.(3.1) is then 

  (3.3) 

The energy density and pressure for the tachyon field are given by the following relations 

[25]: 

  (3.4) 

 p ˙2 (3.5) 

 PT = −V (T) 1 − T 

where V (T) is the potential energy of tachyon field. Combining eq.(3.4) and (3.5), we can 

obtain the equation of state: 

 ωT = T˙2 − 1 (3.6) 

We now propose a correspondence between the tachyon dark energy model and the Tsallis 

holographic dark energy scenario. In a flat universe, the density of Tsallis holographic dark 

energy is 

 ρD = BRh2δ−4 (3.7) 

where Rh is given by eq.(2.6) and 

  (3.8) 

which is given by eq.(2.20). 

If we establish a correspondence between the Tsallis holographic dark energy and the 

tachyon energy density, then using eq.(3.4) and (3.7), we have, 
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  (3.9) 

Also using eq.(3.6) and (3.8), we can write 

 1 (3.10) 

so that 

 (3.11) Then we can reconstruct the function V (T) and the 

variable PD 

  (3.12) 

 (3.13) If there is no interaction 

between holographic dark energy and matter, we have 

 ρ˙D + 3HρD(1 + ωD) = 0 (3.14) 

Using eq.(2.17), in flat space, we have 

 L˙ = 1 − 1 = 0 (3.15) 

Then we obtain that 

 ρ˙D = B(2δ − 4)L2δ−5L˙ = 0 (3.16) 

Inserting this result in eq.(3.14), we have ωD = −1. Therefore, T˙2 = 0. 

Inserting T˙2 = 0 into eq.(3.11), we obtain that 

 (2 − δ)ΩD + δ − 2 = 0 (3.17) 

For which two possible solutions exist. One is δ = 2. The other one is ΩD = 1, if δ 6= 2. If δ = 2, 

based on eq.(3.7), the energy density of dark energy is 

 ρD = B (3.18) 

which is a constant. Then according to eq.(3.12) and (3.13), we have 

 V (T) = B (3.19) 

 PD = −B (3.20) 
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In this case B is the value of cosmological constant Λ, which is commonly regarded as vacuum 

energy [42]. 

If ΩD = 1 and δ 6= 2, then we obtain that 

V (T) = BRh2δ−4 (3.21) 

PD = −BRh2δ−4 (3.22) 

In both of the above two scenarios, we have ωD = −1, which is consistent with the result of 

the cosmological constant Λ. However, we prefer the latter case since the former case cannot 

recover the Bekenstein entropy and since we have assumed that tachyon field dominates the 

universe. 

3.2 The interacting case 

In this subsection we consider the interacting case for the model. As we have pointed out in 

section 2, in flat space, if there exists an interaction between the Tsallis dark energy and 

matter, we have 

ρ˙D + 3HρD(1 + ωD) = −Q (3.23) 

ρ˙m + 3Hρm = Q (3.24) 

where Q = 3b2H(ρm + ρD) is the interaction term and b2 is a coupling parameter [41]. 

In the same manner as in the non-interacting case, we have 

ρ˙D = 0 

Then combining eq.(3.23) and Q = 3b2H(ρm + ρD), we derive that 

(3.25) 

 1 (3.26) 

Equating eq.(3.26) with eq.(3.6), we derive that 

  (3.27) 

Therefore, if we require T˙2 to be real, then b2 must be zero in flat space. Therefore, we can 

conclude that in flat space, in a tachyon model of Tsallis holographic dark energy, 

irrespective of whether or not there exists an interaction between dark energy and matter, 

T˙2 must always be zero. In addition, we can derive that 

 V (T) = ρD (3.28) 

 PD = −ρD (3.29) 

and then we conclude that in flat space, the equation of state ωD is always 1. 

4 The tachyon field as Tsallis holographic dark energy in a non-flat FRW 
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universe 

In this section we extend the calculations of the previous section to the non-flat FRW 

universe. In this case, the first Friedmann equation is given by 

 ) (4.1) 

where k denotes the curvature of space so that k = −1,0,1 for closed, flat and open universe 

respectively. 

Combining eq.(2.17) and (3.7), we obtain that 

 )) (4.2) 

where x = Rh/a(t). Inserting eq.(3.23), we obtain that 

 ) (4.3) 

namely, 

 ) (4.4) 

where 1 +  and ΩD and Ωk have been defined in eq.(2.14) and (2.15). 

For the k = 1 case, ). Then eq.(4.4) becomes 

 ) (4.5) 

When T˙2 = 0, we have 

  (4.6) 

Eq.(4.6) requires 0 ≤ cos(Rh/a) ≤ 1. In order to avoid divergence and recover the Bekenstein 

entropy, it is necessary to require that 1 ≤ δ < 2. However, according to eq.(4.6), we have

, which is contradictory to our requirement. 

Similarly, we can obtain the above equations for the k = −1 case whereby cos(x) should be 

replaced by cosh(x), namely, 

 ) (4.7) 

In particular, for the k = −1 case, when T˙2 = 0, 

  (4.8) 
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Since the value of cosh(x) is always larger than 1, we can derive that b2 < 0, which is 

impossible. To conclude, in curved space, T˙2 cannot be zero, i.e., ωD cannot be −1. In other 

words, this model cannot explain the origin of the cosmological constant Λ. 

Figures 1, 2, 3 and 4 below are the evolution trajectories of T˙2 for different values of δ and 

b2 for an open and a closed FRW universe, respectively. From figure 1, we observed that for 

an open universe, with the increasing of cos(Rh/a), T˙2s always decreases monotonically for 

different δs and are always larger than zero. While from figure 2, we know that for closed 

universe, with the increasing of cosh(Rh/a), T˙2 always decreases monotonically for the 

different values of δs and is always smaller than zero which is not a physically valid situation. 

From figures 3 and 4, we observe that with the increasing of cos(Rh/a) and cosh(Rh/a), T˙2 

always decreases monotonically for the different values of b2. 

 

Figure 1. Evolution trajectories of T˙2 for different values of δ for an open FRW universe. Here we set 

u = 0.04. The red line corresponds to δ = 1, the green line to δ = 1.3, the blue line to δ = 1.6 and the 

black line to δ = 1.9. 

 

Figure 2. Evolution trajectories of T˙2 for different values of δ for a closed FRW universe. Here we set 

u = 0.04. The red line corresponds to δ = 1, the green line to δ = 1.3, the blue line to δ = 1.6 and the 

black line to δ = 1.9. 
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Figure 3. Evolution trajectories of T˙2 for different values of b2 for an open FRW universe. Here we set 

u = 0.04. The red line corresponds to b2 = 0.01, the green line to b2 = 0.10, the blue line to b2 = 0.20 and 

the black line to b2 = 0.30. 

 

Figure 4. Evolution trajectories of T˙2 for different values of b2 for a closed FRW universe. Here we set 

u = 0.04. The red line corresponds to b2 = 0.01, the green line to b2 = 0.10, the blue line to b2 = 0.20 and 

the black line to b2 = 0.30. 

5 Summary and Discussion 

To address the problem of accounting for the accelerating expansion of the universe and due 

to an absence of knowledge in this domain, theoretical cosmologists have considered a 

variety of dark matter candidates to explain this phenomenon. The holographic dark matter 

(HDE) model which was proposed by Fischler and Susskind [43] has been widely studied 

[44]. In recent years one of the main research directions has involved the use of the Tsallis 

holographic dark energy model [30,45,46,47]. At first glance, it appears to be an 

appropriated model for the current universe in the standard cosmology framework 

[30,32,33]. However, in the same way as the primary HDE based on the Bekenstein entropy 

is unstable (see [34]), THDE is also unstable [30,32,33]. More studies on the various 
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cosmological features of the Tsallis generalized statistical mechanics can be found in ref.[35]. 

Most past papers considered the effects of HDE in different real scalar field theory models, 

such as quintessence [9], K-essence [10], tachyon [12] etc. For example, in ref.[25], the 

authors considered the possibility of using the tachyon model as a holographic dark energy 

model. In the present article, we consider the further possibility of the tachyon field model 

as a Tsallis holographic dark energy model. Most past papers considered the effects of HDE 

in different real scalar field theory, such as quintessence [9], K-essence [10], tachyon [12] 

etc. For example, in ref.[25], the authors considered the possibility of tachyon model as 

holographic dark energy model. In this article, we further consider the possibility of tachyon 

field model as Tsallis holographic dark energy model. 

We have proposed a correspondence between the Tsallis holographic dark energy scenario 

and the tachyon field model in a flat and in a non-flat FRW universe, respectively. We then 

reconstructed the potential V (T) and considered the dynamics of the tachyon field which 

describes cosmology. We find that in the case of a flat universe, in a tachyon model of Tsallis 

holographic dark energy, irrespective of whether there exists an interaction between dark 

energy and matter or not, T˙2 must always be zero. Therefore, the equation of state ωD is 

always −1 in flat universe. In the case of a non-flat universe, T˙2 cannot be zero so that ωD 6= 

−1, which cannot be used to explain the origin of the cosmological constant. T˙2 

monotonically decreases with the increasing of cos(Rh/a) and cosh(Rh/a) for different values 

of δ. In particular, for an open universe, T˙2 is always larger than zero whereas for a closed 

universe, T˙2 is always smaller than zero which is not a physically valid situation. In addition, 

we conclude that, with the increasing of cos(Rh/a) and cosh(Rh/a), T˙2 always decreases 

monotonically for different b2s. 

Future work can develop this research along the following directions. Firstly, we can 

establish the correspondence between the tachyon field and other dark energy scenarios, in 

particular for a stable dark energy model and compare the results with observational data. 

Secondly, we can expand the possibility of using a real scalar field as the dark energy model 

considered in this article to explore the possibilities of using complex scalar fields as the dark 

energy model. In fact, in ref.[48], we have already considered the possibility of ghost dark 

energy as a complex quintessence field. We intend to explore further complex scalar field 

possibilities as dark energy candidates and form a framework of these candidates. Finally, 

we also need to consider how to ensure compatibility of these results with fundamental 

theories, such as string theory and loop quantum gravity. There is therefore great potential 

for development of this work in the future. 
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