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Abstract: The magnitude of highly dynamic spatial data is expanding rapidly due to the instantaneous 

evolution of mobile technology, resulting in challenges for continuous queries. We propose a novel indexing 

approach model, namely, the Velocity SpatioTemporal indexing approach (VeST), for continuous queries, 

mainly Continuous K-nearest Neighbor (CKNN) and continuous range queries using Apache Spark. The 

proposed structure is based on a selective velocity partitioning method, i.e., since different objects have 

varying speeds, we divide the objects into two sets according to the actual mean speed we calculate before 

building the index and accessing data. Then the adopted indexing structure base unit comprises a 

nonoverlapping R-tree and a two dimension grid. The tree divides the space into nonoverlapping minimum 

bounding regions that point to the grids. Then, the uniform grid stores the object data of leaf nodes. This 

access method reduces the update cost and improves response time and query precision. In order to enhance 

performances for large-scale processing, we design a compact multilayer index structure on a distributed 

setting and propose a CKNN search algorithm for accurate results using a candidate cell identification process. 

We provide a comprehensive vision of our indexing model and the adopted query technique. The simulation 

results show that for query intervals of 100, the proposed approach is 13.59 times faster than the traditional 

approach, and the average time of the VeST approach is less than 0.005 for all query intervals. This proposed 

method improves response time and query precision. The precision of the VeST algorithm is almost equal to 

100% regardless of the length of the query interval. 

Keywords: continuous KNN query; moving object monitoring and management; distributed spatiotemporal 

indices; geospatial data systems; parallel processing 

 

1. Introduction 

The widespread use of built-in global positioning system (GPS) devices has been directed to 

the expansion of location-based services (LBS) [1] and subsequently toward an exponential growth 

in the real-time LBS market [2,3]. Recent advancements concentrating on big spatiotemporal data 

and spatial computing such as smart cities [4], environmental monitoring and evaluation [5], 

location-based services [6–8], and the Internet of Things (IoT) rely on effective georeferenced data 

management. Geospatial data comprise information that are collected across both time and 

space; this information includes location, time, and eventually velocity information [9]. Different 

sensors transmit large scales of data at very high frequencies, resulting in large-scale dynamic data 

processing in real time, introducing the concept of continuous indexing and query. The continuous 

spatial query approaches should support a variety of complex searches using advanced indexing 

techniques. A series of time extensions with the dual representation of object-based, field-based, 

and geographic data was proposed in the early GIS modeling methods [10]. Hence, efficient 

continuous querying over moving objects has evolved as an essential process for numerous spatial 

computing applications due to the advent of mobile and ubiquitous computing. Spatiotemporal 

queries are helpful in different scenarios such as traffic control approaches, 

 

  

geographic information systems (GIS), and location-aware objects [11]. In this paper, we study 

the continuous K-nearest neighbor query (CKNN), an essential class of spatiotemporal queries 

that explores the K-nearest neighbors (KNNs) among a set of moving objects at each timestamp. 

An example of a CKNN query is to find two nearby pedestrian taxis based on the provided 
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velocity and location of pedestrian traffic. In the past decade, most CKNN query approaches 

were integrated into a spatial indexing structure and discrete-time intervals, which returned the 

kNN set based on their location at the querying generation time. This instant search based on 

distance static computing might return an outdated resultset because the objects might be 

moving in the meantime. However, their locations were not updated along with the query 

evaluation, which reduced the accuracy of the query results. Therefore, a new continuous query 

processing algorithm is required to process CKNNs, taking into account the continuous updates 

[12]. 

Because location-aware devices and services are distributed across a time-aware spatial 

system, many CKNN queries are likely to be processed simultaneously. Reducing server 

performance is easy, and answering queries is long. Due to the real-time nature of locationaware 

applications, significant delays make answering queries useless. Therefore, new query processing 

algorithms that handle performance and scalability must include another set of CKNN queries. 

Many existing solutions to the KNN query object transfer problem were not developed to handle 

the large amount of data.Therefore, the indexing construction costs are expensive and impact the 

queries’ response time subsequently, as it certainly follows a centralized setting where both query 

update maintenance and processing take place [13,14]. Continuous queries for data streams in 

spatial contexts analyzed by existing works were mainly based on Boolean bypass or approximate 

techniques, giving a random number or approximate result [15]. The CKNN query processing 

technology in database research is a concern that many researchers emphasize. It has many real-

time applications, such as traffic distribution control, digital battlefield, personal navigation 

services, and other systems connecting mobile phone users. Therefore, the access to spatial 

information and spatial objects is limited to querying objects over a road network [16], which 

involves many challenges mainly related to the complexity of the spatial network features such as 

node identification and object pruning for query evaluation. 

The primary purpose of this study is to enhance the efficiency and precision of a CKNN query 

over moving objects using distributed spatial indices. In addition, this work aims to effectively 

extract object information from distributed indices based on practical algorithms and efficient 

pruning technology to manage continuous query challenges. This paper will investigate and 

optimize CKNN query performances to avoid the limitations of the previous work mentioned 

above. For the experimental study, we considered different scenarios, the distance between two 

objects is defined as the shortest path between them in the network. The CKNNs set of a query 

point for a time stamp must be fully defined. In order to significantly reduce the iterative search 

and computation cost, we designed a method that uses the relative velocity information of the 

moving object and sets a number of iterations limited to two. The distance between two moving 

objects in every timestamp is presented only as a timeline operation and is easy to calculate using 

this approach. Our work expiates the significant deficiencies of the past related works and 

provides a more accurate and efficient method for the CKNN problem. The outline of this paper is 

as follows: 

• We propose a novel indexing approach, namely the Velocity SpatioTemporal indexing 

approach (VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN) 

and continuous range queries. 

• We design a compact multilayer index structure on a distributed setting and propose a CKNN 

search algorithm for accurate results using a candidate cell identification process. 

• We provide a comprehensive vision of our indexing model and the adopted querying 

technique. 

• We conducted a comprehensive set of experiments, compared our results with existing 

approaches, and employed different distribution techniques. 

The rest of this paper is organized as follows. We review the related work for continuous KNN 

queries and moving objects in road networks in Section 2. Section 3 describes the preliminaries 

and the proposed approach. Section 4 presents the velocity spatiotemporal indexing approach, 

including the architecture, the index building phase, and the distributed query processing. Section 

5 covers the dataset and simulation results on the performance of our method. In Section 6, we 

conclude the paper with directions for future work. 



 

2. Literature Review 

Indexing and querying paradigms of moving objects (MO) can be categorized into various 

classes according to the index structure base unit, such as grid-based indices, tree-like indices, and 

hybridized indices [17]. The intricacy of location-related approaches, in general, and continuous 

MO processing is affiliated with various factors such as data and variability. The indexed data are 

more volatile continuously, and there is a significant amount of data. Data autocorrelation 

transformations in the spatiotemporal element of moving objects transpire smoothly over time, 

excluding the constraints of the work related to CKNN, including the velocity uncertainty that is 

present in many of the works on moving objects’ uncertain velocity, which concentrate solely on 

Euclidean spaces [18,19]. However, wheb assessing objects over a road network, the accuracy of 

location [20] concerns additional repetitive query re-evaluation. A fuzzy amount of CKNN search 

iterations occurs, and a significant amount of search algorithms are based on an unspecified 

number of iterations to find the area of the KNN, which results in an additional communication 

cost [18] in a distributed environment. The skewed distribution of data over nodes lessens the 

executions due to the nonuniform distribution over space. 

A continuous K-nearest neighbor (k-NN) query supports multiple location-based services and 

continuously returns K-nearest object data to the query surroundings. Many of the current 

approaches to this issue have concentrated on centralized settings that indicate less scalability to 

address significant and scattered datasets. In [21], the authors proposed an efficient and 

distributed solution to kNN queries, so that objects could be moved to process more extensive 

data. The proposed solution included a new networkbased index called the Block Grid Index (BGI), 

and a BGI-based distributed KNN query method. BGI is a distributed layered grid-based in-memory 

index for KNN queries built within STORM. It starts from the assumption that moving objects 

belong to a region of interest that is partitioned in equal-sized cells without overlap, and each cell 

indexes its moving objects. There is no predefined pattern for the movement of objects. There are 

a minimum and maximum predefined number of objects per block; each block has a number N. 

There are a few advantages to their approach. BGI is easy to set up and maintain in a distributed 

environment. The querying algorithm can return the results after two search iterations, improving 

k-NN query performance. The effectiveness of their solution has been proven through extensive 

trials on millions of nodes. 

The focus of many applications with dynamic objects is the processing of k-NN queries. Most 

current approaches are designed for centralized settings where queries are processed on the same 

server to address this issue. It is challenging, if not inconceivable, to scale the distributed setup to 

handle the large amount of data and synchronization queries that are increasingly found in such 

applications. To address this issue, Ziqiang et al. [22] proposed a set of explanations that could 

sustain scalable distributed processing of k-NN queries. 

Foremost, they introduced a novel hybrid index structure called the Dynamic Stripe Index 

(DSI) that better adjusted to various data distributions. The structure was divided into clusters, 

making it suitable for distributed processing. They also recommended the DSIbased K-NN Search 

Algorithm (DKNN). DKNN is more efficient and predictable than traditional methods, as it avoids 

the uncertain number of potentially expensive repetitions. DSI and DKNN were executed on top 

of the Apache S4, an open-source distributed streaming medium. In order to study the features of 

DSI and DKNN, they performed a comprehensive empirical study to examine the framework and 

compare it with three fundamental indexing and querying approaches. The experimental results 

showed that their proposal was highly scalable and outperformed competing methods. 

Sensor networks produce a large scale of highly dynamic constantly updated data sent as 

packets in the data flow. The data stream’s high frequency and continuous nature make it difficult 

to learn from basic observations. The article by Bolelang et al. [23] provided an upto-date overview 

of the visual analysis of geographic and global flow data and suggested a framework established 

by the gaps specified in the review. The framework consisted of a data prototype that featured 

sensor monitoring data, a user model that handled user queries and organized domain knowledge, 

a design prototype for discovered patterns and their corresponding visualizations, as well as a 

visual model to process rendering data. The conceptual model concluded that the flow of sensor 

feedback required tools that could handle multivariate multiscale time-series displays. Design 

models showed that the numerous valuable models combined proportions, deviations, and data. 



 

The user model emphasized the necessity of handling missing data, high-frequency inconstancies, 

and review changes. 

Many objects and many constant questions characterize the space-aware environment. Both 

things and constant questions can change position over time. In the article by Xiaoping et al. [24], 

they investigated the issue of reviewing queries from the Convolutional 

Neural Network (CNN) in the space-time database. To maintain the performance of CNN query 

answers, a Shared Execution Algorithm (SEA-CNN) was introduced. SEA-CNN combines additional 

assessments with joint implementation to reduce the cost of updating answers to questions. In 

incremental assessment, only questions affected by the movement of objects are reconsidered. 

Each query is associated with the search area based on the answers to the previous query to 

reduce evaluation time. Compatibility queries are grouped into a standard search table in the 

shared implementation model. Therefore, the issue of reviewing numerous queries is resolved by 

the local connection between the lookup table and the object table. SEA-CNN is also a generally 

usable framework. Foremost, SEA-CNN does not make any inferences regarding the motion of an 

object (e.g., speed, orbit). They offered a theoretical analysis of SEA-CNN regarding 

implementation costs, memory requirements, and the consequences of tunable parameters. 

Extensive experience showed that SE-CNN was more scalable and efficient than R-tree-based CNN 

technology regarding I-O number and CPU cost. 

Wireless sensor networks have been widely used in numerous applications, such as 

environmental monitoring, manufacturing management, business asset management, transport 

automation, and the medical industry. In the article by Hua et al. [25], they examine an interesting 

issue. Continuous monitoring of k-mean assembly of sensor readings in large sensor networks. 

Given a set of sensors whose measurements evolve, they want to keep the average k of 

measurement constant. The optimization aims to reduce network reporting costs. The goal is to 

inform the data center of current readings while maintaining as many sensors as possible. They 

recommend a reading report tree, a classification framework for data collection, and analysis to 

address this issue. They are also developing several economic reporting methods by continuously 

monitoring k sources by reading the reporting tree. First, a standard method of sampling using a 

report-reading tree can provide a good quality perspective. Second, they suggested a method for 

setting boundaries that can almost guarantee quality. Finally, they tested a slow approach that 

could significantly reduce intermediate computation. To investigate the features of the proposed 

method, they evaluated systematic simulation using artificial datasets. 

The continuous K nearest neighbor search process (CKNN) captures the nearest k objects for 

the provided set of moving objects. It gives consistent results in real time with objects and query 

points for monitoring the transfer. Current CKNN query processes typically have index 

maintenance, real-time result updates, and query costs that may not completely resolve the issue. 

To address this issue, Yu et al. [26] recommended an additional search algorithm. It uses the 

Random Estimation (RE) method to process CKNN queries for large quantities of moving objects. 

Combined with an incremental search algorithm for processing CKNN indexing and querying over 

a massive volume of moving objects, the RE approach could rapidly determine a suitable search 

area for a continuous query established on the prior outcomes of the query. Compared to other 

approaches targeting continuous querying in a two-dimensional area of interest, this strategy 

achieved a higher estimations accuracy for identifying the number of items in a specific area, 

significantly improving the continuous kNN query processing efficiency. 

The most critical part of an emergency response system is time. Therefore, it is essential to 

immediately store new accurate data in the database, retrieve data quickly, maintain the 

chronological order and strengthen the system, all processed in real time. One more critical 

element of environmental threat monitoring is enabling real-time queries founded on modern 

features. We also need the fastest access to the latest data. In addition, real-time data collected 

from sensors requires swift and efficient control to detour central memory saturation. Servigne et 

al. [27] proposed indexing methods supporting queries that targeted contemporary data. The 

proposed indexing solution was for real-time data of fixed sensors. The second was real-time and 

space data collected through active sensors. Finally, they offered a general solution for managing 

memory saturation in real time according to the importance of the data. 



 

The portion of available spatiotemporal data is proliferating because of the advancements in 

mobile data acquisition technology and location-aware devices. Real-time processing of big spatial 

data has evolved into one of the examination frontiers in Geographic Information Systems (GIS). 

It aims to reduce the complexity of updating data by employing specific distributed spatial indexing 

structures that handle highly dynamic data. In order to process continuous querying over spatial 

data streams, Zhang et al. [17] proposed an extension to Apache Storm, which is an open-source 

distributed real-time computation system. They employed a strategy of spatial joins between 

moving datasets with a secondary static distributed spatial index to process continuous queries. 

However, the proposed grid-based partitioning techniques focused only on 2-dimensional point 

data. In addition, such indexing techniques were ineffective in spatial applications because of their 

dynamic data and query distributions. We have proposed a novel indexing approach mode for 

range queries to address these issues. We design a compact multilayer index structure on a 

distributed setting and propose a CKNN search algorithm for accurate and efficient results. 

3. Preliminaries 

We illustrate some definitions and symbols utilized in this paper. Table 1 lists the main 

notations that are used throughout this paper. We assumed a setting where N objects in a two-

dimensional space move with different velocities where X_Vel and Y_Vel are the velocity according 

to the X-axis and Y-axis, respectively. Moving objects were modeled as point objects, and the space 

in which they move was modeled as a two-dimensional Euclidean space. The objects frequently 

sent updates about their location to the indexing primary node. Updates were sent as a triplet 

(obj_ID, x_loc, y_loc), where obj_ID is the object’s unique identification number, x_loc represents 

the longitude position, and y_loc represents the latitude position of the object. 

Definition 1. Moving Objects, MO : a moving object is represented by a discrete sequence of tuples 

in the form {obj_id,(x_loc , y_loc), (x_vel, y_vel), t)}, where obj_id is the object identifier, (x_loc, 

y_loc ) represents the current location, (x_vel, y_vel) is the object movement velocity, and t is the 

current time. 

Definition 2. Updates: In a dynamic spatial data processing context, moving objects continuously 

send their new location updates to keep them reflected in the indexing structure. In order to ensure 

accuracy, the index must be able to process large volumes of updates rapidly to provide high-

precision responses, also with varying query interval lengths. 

Definition 3. Spatial Queries: Spatial queries are mostly generated and used in a dynamic number 

of objects applications. Such requests by users are expected to be responded to based on real-time 

or near real-time data analysis. There are different types of spatial queries; in this work, we focus 

on continuous spatial kNN queries. 

(a) Query Point: A query point is defined by a user (query issuer) ID. The user must be located inthe 

index to determine its region and the kNN set. 

(b) K-nearest Neighbor Query, kNN query: Given a query point in the space, a kNN query 

mustretrieve the k-th closest objects to the query point. 

(c) Continuous K-nearest neighbor queries, CKNN query: Given a query point in the space, aCKNN 

query must continuously track the k objects that are the closest ones to the query point. The objects 

of interest, also called candidate objects, and/or the query point might be moving during the query 

evaluation, which means the locations are updated continuously. 

Table 1. Notation Definitions. 

Notation Definitions 

N Number (Count) of moving objects in the space 

MO Moving object 

obj_id A moving object identifier 

x_loc Longitude position of an object 



 

y_loc Latitude position of an object 

x_vel Velocity according to X axis 

y_vel Velocity according to Y axis 

t Time 

4. Proposed Methodology 

This paper proposes a velocity-dependent indexing method for moving object data based on 

similar velocity classification using the standard deviation equation on the velocities distribution, 

resulting in two separate subspatial perspectives to avoid data skewness and unuseful search 

iterations. We designed a region-based index for constantly moving objects in each scene in a 

distributed environment. We proposed an algorithm to select dynamic query candidates in CKNN 

[28].VeST was customized by combining time–space indexing with speed. When a new query was 

generated, it was first evaluated using various phases through the index [24] in order to find the 

best search volume for the queries to reduce the cost of updating the index. The Velocity 

SpatioTemporal (VeST) index obtained a query result similar to the mapped spatial nodes. It used 

the custom input method to enter the list of objects and the corresponding tree. This approach 

further improved the index structure building performances, including the index construction time 

as well as the size, and reduced index update costs. Figure 1 represents the Sequence diagram of 

query processing. Where a CKNN query was generated, the Velocity classifier analyzed the objects’ 

actual velocities to compute the standards deviation and define the threshold to launch a velocity-

dependent partitioning. Then the query manager started processing the query over the global 

index structure first. The query was evaluated and updated accordingly over the distributed nodes 

of the index to generate the query response. 

 

Figure 1. Sequence diagram of CKNN query processing. 

5. Velocity Spatiotemporal Indexing Model 

We have proposed a spatial index model for continuous querying. The proposed model is 

organized by combining spatiotemporal indexing with velocity. Figure 2 represents the 

architecture of the proposed velocity spatiotemporal index (VeST) for the moving object CKNN 

querying. 



 

 

Figure 2. Architecture of velocity spatiotemporal index for moving objects. 

5.1. Vest Architecture 

Our velocity spatiotemporal index consisted of space–time and velocity data. It analyzed 

moving objects’ velocity and then indexed their data across a hybrid distributed structure. VeST 

was designed to have two main parts, primary and secondary. A primary/secondary paradigm 

signifies that one server was configured to operate as the primary node. It was then directed to 

acquire all of the written queries. The primary node then performed and logged the queries, which 

were then dispatched to the secondary nodes to conduct and keep the identical data across all 

counterpart components. In the primary/secondary structure, the write functions were executed 

at the primary level and read functions at the secondary level [29]. Therefore, all search requests 

initially reached the primary node, a queue of submissions was preserved, and the read function 

was accomplished solely behind the fulfillment of the write operation. There is a common problem 

in a primary/secondary configuration, which is also witnessed when the primary node’s queue 

becomes too large to be maintained. This architecture collapses, and the secondary nodes start 

behaving as the primary one. 

5.2. Velocity-Based Partitioning Phase 

The velocity-based portioning phase helps to reduce time costs and make the system more 

efficient as we presented and proved in our previous study [28]. The system evaluates the speed 

of objects for categorizing entities into different classes. 

The velocity-based classification generated two classes, one was for the fast objects class, 

and the other was for a slow objects class. The selection was made according to a predetermined 

equation that estimated the velocity deviation of a real-time object established on the 

distribution of the objects. Total velocity (Vt) is calculated using Equation (1), where n is the total 

number of objects at a given time, and vk is the velocity of the object. Vt is used to determine 

speed SP, which is specified in Equation (2). Finally, the SP is used to obtain σ using Equation (3), 

which is the threshold between fast and slow objects. This partition saves excessive access to 

entities in one place; in addition, it reduces the search period and splitting or merging costs. 

n 

Vt = ∑ vk 

k=1 

(1) 

SP(2) 

n 

√ 

σ = SP (3) 



 

Figure 3 illustrates the structure of the indexing model, its objects, their behavior, and 

operations. The “DataAnalysis” class contained the spatial attributes of the query and the velocity 

deviation, which were generated by the “VelocityClassifer” object in order to partition objects 

based on their velocities. The k parameter of a CKNN query was used to process iterative search 

operations over the index structure’s partitions after the region’s spatial split. 

 

Figure 3. Conception of the indexing model. 

5.3. Index Building Phases 

The large scale of spatial data is continuously generated over time, and users can be of 

various types, such as taxis, people, or buses. Hence a hash map to store a key-value structure was 

integrated. Hash maps are appropriate for diminutive quantities of data and sustaining recurring 

transformations. It accumulates records of the territories that the user has visited and additional 

characteristics that establish corresponding data such as user type: (id, [trajectory], type). The 

hash map devotes an unrestrained search technique, a linear scan; hence, the time complexity of 

a query is O(m). 

5.4. Distributed Query Processing 

We proposed using a multilayer structure for distributed processing platform, as illustrated 

in Figure 4. Distributed processing modules consist of three layers, a first one for the primary 

indexing node, a second layer for the set of the secondary indexing set, and a spatial data 

partitioning layer. Individual nodes created their index for all locally reserved records in the 

secondary indexing layer. Therefore, each node had a shortlist of objects data. A query was initially 

broadcasted to every node, and then the derivatives were integrated. Therefore, each node had a 

more diminutive number of prolonged lists. Under the standard query evaluation procedure, a 

query was first routed to the node maintaining the list for a more concise list, which then 

dispatched its entire list to the node containing the main list [30]. 

 

Figure 4. Multilayer structure of distributed processing platform. 

6. Experimental Settings and Results 

This section explains the proposed approach’s simulation settings, exploratory data 

analysis, and evaluation results. We used an open-source taxi GPS tracking dataset [7]. The 

dataset contained more than 100,000 taxis’ data within Shenzhen city with different records. The 



 

dataset contained an object ID, location on the x-axis, location on the y axis, velocity on the x-

axis, velocity on the y-axis, and time when the update was issued. 

6.1. Simulation Environment 

The experiments were conducted on a cluster of nodes with a processing unit of Intel Core 

i7-8500y @ 3.00GHz and a Random Access Memory of 16 GB. The simulation setting employed 

during the exploratory period is outlined in Table 2. 

Table 2. Configuration of simulation settings. 

Component Description 

 1 Processing Unit Intel Core i5-8500 @ 3.00GHz 

 2 RAM 16 GB 

 3 Operating System Window 10 

 4 Integrated Development Environment Jupyter notebook 

 5 Programming Language Python 

 6 Python v 3.6 

 7 Mathematical Functions Module math V 3.9.1 

 8 Array Library NumPy v 1.17.5 

 9 Data Analysis Library pandas V 0.25.3 

 10 Plots Library plotly V 4.4.1 

6.2. Exploratory Data Analysis 

Figure 5 shows the sampled locations of moving objects in the city. The location of taxis also 

sketched the outline of the city’s road network. Figure 6 illustrates the objects after classifying 

them according to their velocities with regard to the actual velocity deviation. Figure 6a shows the 

visual representation of slow-moving objects with red dots, whereas Figure 6b shows the fast-

moving objects with green dots. 

 

Figure 5. Sampled locations of moving objects in Shenzhen City road network. 



 

 

 (a) Slow-moving objects (b) Fast-moving objects 

Figure 6. Sampled objects classified according to their velocity. 

The total size of the data set used was 46.9 MB. The data were generated through 

OpenSourceMap with the space domain of 10,000 × 10,000 for Shenzhen City [31]. Table 3 shows 

the summary of the dataset. The dataset contained six columns and 1,025,486 rows, with only one 

row containing null values. The first column represented the ID of each object, where the 

minimum object ID was 0, and the maximum ID was 10928. The second and third columns were 

for the location X_loc and Y_Loc according to the X and Y axes, respectively, representing longitude 

and latitude; whereas, X_Vel and Y_Vel represented the velocity on the X and Y axes. The 

maximum velocity on the X-axis recorded was 33.25 and on the Y-axis was 33.19. The last column, 

“time”, contained the tracking timestamps. 
Table 3. Summary of Dataset. 

 object_ID X_loc Y_loc X_Vel Y_Vel Time 

Mean / 5631.91 3718.73 0.06 −0.04 / 

STD / 2326.78 2377.48 4.85 4.040 / 

Min 0 0 2.23 −33.2 −32.97 0 

Max 10,928 9991.1 9999.73 33.25 33.19 7199 

Figure 7 shows the distribution of different features of the dataset. Figure 7b shows the 

velocity distribution across the X and Y-axis. Most of the points lay between −30 and 30 m/s. Figure 

7b shows the count of objects per time slot from 0 to 7199. It can be observed that the time 

between 0 to 1000 contained the highest number of objects and 6000 to 7000 contained the 

lowest number of objects. Figure 7c shows the count of objects according to the velocity on the X-

axis. Figure 7d shows the count of objects according to the velocity on the Y-axis. In both the X and 

Y-axis velocity distribution, the maximum count was between −10 to 10. 

 

 (a) Velocity distribution (b) Count of objects per time slot 



 

 

 (c) Count according to velocity on X-axis (d) Count according to velocity on Y-axis 

Figure 7. Distribution of different features of the dataset. 

6.3. Experimental Results 

We conducted extensive experiments on the dataset presented in the previous section. We 

performed simulations and plotted various graphs to represent the proposed approach’s 

performance from the perspective of the working hypotheses. Intending to investigate by how 

much the proposed approach was faster than the conventional approaches in terms of processing 

time, we compared the querying time for various query intervals for a CKNN search where k was 

set to 7. We compared the time when using the proposed approach and the Apache Spark to 

enhance the performances further and used the conventional approach. As can be seen in Figure 

8 for query intervals of 100 (i.e., the number of queries we simulated in parallel was equal to 100), 

the proposed approach was 13.59 times faster than the competing approach. The effect of query 

interval length over the average time is depicted in Figure 8. The average time of the VeST 

approach was less than 0.005 s, as we can see, for all query intervals. 

 

Figure 8. Effect of query interval length over query processing time. 

We simulated three different data distribution patterns from the same dataset for our 

experimentation. In the foremost distribution pattern (Gaussian), 70% of the objects pursued the 

Gaussian distribution [32] across the network. We used Equation (4) to generate a Gaussian 

distribution for 70% of objects. The remaining objects were distributed uniformly. The second 

distribution pattern (Uniform) consisted of the objects that followed a uniform distribution across 

the network. In the third distribution pattern, objects followed the Zipf distribution. All the objects 

were normalized to a unit square. 

 gd(x, µ,  (4) 

Figure 9 demonstrates the time of building the VeST as we altered the number of objects and 

their distribution pattern. If further parameters did not vary, the index construction time rose 



 

almost linearly with the increasing number of objects. As we made a better concentrated Gaussian 

pattern, there were additional split and merge processes in the R-tee layer for this one. As a result, 

the construction time was the highest among the three distribution patterns in most cases. 

Figure 10 analyzes the impact of the query interval size on the CPU time of VeST and 

competing approaches. The proposal was compared with the IMA approach suggested by 

Mouratidis et al. [33] and with the CKNN approach proposed in [34]. The IMA method is based 

on iterative snapshot kNN search evaluations, unlike the VeST approach, where we avoid the 

unknown number of iterations. When objects’ location updates occur, the IMA algorithm again 

evaluated the snapshot KNN query. In our experiments, the IMA update interval (UI) was set 

once to 5 time units and then to 10 time units to examine both cases and compare it with the 

VeST algorithm. The IMA algorithm with update intervals of 5 and 

10 time units is termed IMA(UI = 5) and IMA(UI = 10), respectively. On the other hand, the CKNN 

algorithm divided the time interval into disjoint subintervals. These subintervals were evaluated 

successively in locating the KNNs of the query entity. The experiments showed that the CPU cost 

rises with the expanded query interval size for all the algorithms. This is because a significant query 

size derives additional objects to be considered for the continuous KNN search approach and 

assembles better discrete place updates of objects. Consequently, the IMA algorithm required 

more snapshot KNN queries (for both UI = 5 and UI = 10); therefore, the CPU time was higher in 

both cases UI = 5 and UI = 10. The KNN algorithm showed better performances compared to IMA 

because it divided the time into sequential timestamps; yet, it required more time for a complete 

KNN search and assumed that objects were moving at constant speeds, which was unrealistic. The 

simulation outcomes showed that the presented algorithm surpassed its competitors in all cases 

while continuously considering the dynamic speed feature. 

 

Figure 9. The construction time of VeST. 

 



 

Figure 10. Effect of query interval length on CPU time. 

Figure 11 illustrates the effect of the query interval size on the precision of the different 

approaches. The preciseness is the ratio of time units at which the retrieved continuous KNN query 

result is correct, as determined using Equation (5) where kNNreal is the number of the obtained 

resultset records number, and kNNreal is the actual number of the k nearest neighbors to the query 

point. In order to define the optimum k parameter value to avoid noise or underfitting problems, 

in this experimental scenario, we set k equal to 7 based on the standard deviation of objects to 

create an illustrative example. 

#(kNNget ∩ kNNreal) 

 Precision = ∗ 100% (5) 

#kNNreal 

Due to the continuous location updates of objects, the precision was below 60% and 90% 

for IMA and kNN, respectively. It even reached 20% when the query interval was larger (UI = 10) 

because the object location updates in these approaches were supposed to be discrete. 

Therefore, two successive update time instances would obtain imprecise query outcomes. In 

contrast, the precision of the VeST algorithm was almost equal to 100% regardless of the length 

of the query interval. 

 

Figure 11. Effect of query interval length on precision. 

7. Discussion 

This paper explored challenges related to continuous queries over moving objects. The 

contributions of this paper are fourfold; first, presenting a novel approach for continuous 

querying; second, explaining the multilayer index structure; and third, the querying technique 

and the final step employed different distribution techniques to examine the effect of the 

proposed approach. This section discusses how the proposed framework addressed the 

identified gaps. 

The first gap related to presenting a novel approach for continuous querying was addressed 

by proposing a novel indexing approach, namely the Velocity SpatioTemporal indexing approach 

(VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN) and continuous 

range queries. The second gap related to explaining the multilayer index structure was addressed 

by designing a compact multilayer index structure on a distributed setting and proposing a CKNN 

search algorithm for accurate results using a candidate cell identification process. The third gap 

related to the querying technique was addressed by providing a comprehensive vision of our 

indexing model and the adopted querying technique. The fourth and final gap related to 

employing different distribution techniques to examine the effect of the proposed approach. We 

conducted a comprehensive set of experiments, compared our results with existing approaches, 

and employed different distribution techniques. This proposed method reduced the update cost 

and improved the response time and query precision. The dataset was the same one in all figures 

but with different representations, which was a real-world dataset that was a taxi GPS tracking 



 

system recorded in Shenzhen City. We illustrated data features to provide a comprehensive data 

description. We have also represented the results of our proposal experiments on the dataset. We 

simulated three different data distribution models out of the same dataset to investigate the 

performances of the proposed approach for different data distributions with a varying number of 

objects. 

Various factors can affect the performance of the proposed VeST approach. One factor is the 

number of nearest neighbors. The other major factor affecting the performance is the velocity of 

moving objects. The proposed approach is based on a velocity partitioning of the objects before 

the spatial indexing. Since the velocity feature is essential in our proposal and impacts the conduct 

of the indexing and the querying performance, we illustrated the dispersion of this information 

from different perspectives to show how it varies, which should be considered. In the future, 

analytical methods can be used to estimate the velocity distribution and hierarchical grids. 

8. Conclusions 

We proposed a novel indexing approach model, namely the Velocity SpatioTemporal 

indexing approach (VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN) 

and continuous range queries. We designed a compact multilayer index structure on a distributed 

setting and proposed a CKNN search algorithm for accurate results using a candidate cell 

identification process. We provided a comprehensive vision of our indexing model and the 

adopted querying technique. We conducted a comprehensive set of experiments, compared our 

results with existing approaches, and employed different distribution techniques to investigate 

the index structure building time in different scenarios. For query intervals equal to 100, the 

proposed approach was 13.59 times faster than the traditional approach. In addition, the average 

time of the VeST approach was less than 0.005 for all query intervals. This proposed method 

improved response time and query precision. The precision of the VeST algorithm was almost 

equal to 100% regardless of the length of the query interval. The simulation outcomes showed 

that the presented algorithm surpassed its competitors in all cases while continuously considering 

the dynamic speed feature. The effect of using analytical methods and hierarchical grids can be 

explored in the future to enhance the results. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
LBS Location-Based Services 
GPS Global Positioning System 
MO Moving Objects 
KNN K-nearest Neighbors 
CKNN Continuous KNN 
IoT Internet of Things (IoT) 
GIS Geographic Information System 
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BGI Block Grid Index 
DSI Dynamic Stripe Index 
DKNN DSI-based K-NN 
CNN Convolutional Neural Network 
SEA Shared Execution Algorithm 
RE Random Estimation 
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