

Article

A Distributed Hybrid Indexing for Continuous KNN Query

Processing over Moving Objects

Imene Bareche * and Ying Xia

Citation: Bareche, I.; Xia, Y. A
Distributed Hybrid Indexing for

Continuous KNN Query Processing over

Moving Objects. https://

doi.org/10.3390/ijgi11040264

Publisher’s Note

Copyright: © 2022 by the authors. This

article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/
4.0/).

School of Computer Science and

Technology, Chongqing University

of Posts and Telecommunications,

Chongqing 400065, China;

xiaying@cqupt.edu.cn
* Correspondence:

l201610003@stu.cqupt.edu.cn

Abstract: The magnitude of highly dynamic spatial data is expanding rapidly due to the instantaneous

evolution of mobile technology, resulting in challenges for continuous queries. We propose a novel indexing

approach model, namely, the Velocity SpatioTemporal indexing approach (VeST), for continuous queries,

mainly Continuous K-nearest Neighbor (CKNN) and continuous range queries using Apache Spark. The

proposed structure is based on a selective velocity partitioning method, i.e., since different objects have

varying speeds, we divide the objects into two sets according to the actual mean speed we calculate before

building the index and accessing data. Then the adopted indexing structure base unit comprises a

nonoverlapping R-tree and a two dimension grid. The tree divides the space into nonoverlapping minimum

bounding regions that point to the grids. Then, the uniform grid stores the object data of leaf nodes. This

access method reduces the update cost and improves response time and query precision. In order to enhance

performances for large-scale processing, we design a compact multilayer index structure on a distributed

setting and propose a CKNN search algorithm for accurate results using a candidate cell identification process.

We provide a comprehensive vision of our indexing model and the adopted query technique. The simulation

results show that for query intervals of 100, the proposed approach is 13.59 times faster than the traditional

approach, and the average time of the VeST approach is less than 0.005 for all query intervals. This proposed

method improves response time and query precision. The precision of the VeST algorithm is almost equal to

100% regardless of the length of the query interval.

Keywords: continuous KNN query; moving object monitoring and management; distributed spatiotemporal

indices; geospatial data systems; parallel processing

1. Introduction

The widespread use of built-in global positioning system (GPS) devices has been directed to

the expansion of location-based services (LBS) [1] and subsequently toward an exponential growth

in the real-time LBS market [2,3]. Recent advancements concentrating on big spatiotemporal data

and spatial computing such as smart cities [4], environmental monitoring and evaluation [5],

location-based services [6–8], and the Internet of Things (IoT) rely on effective georeferenced data

management. Geospatial data comprise information that are collected across both time and

space; this information includes location, time, and eventually velocity information [9]. Different

sensors transmit large scales of data at very high frequencies, resulting in large-scale dynamic data

processing in real time, introducing the concept of continuous indexing and query. The continuous

spatial query approaches should support a variety of complex searches using advanced indexing

techniques. A series of time extensions with the dual representation of object-based, field-based,

and geographic data was proposed in the early GIS modeling methods [10]. Hence, efficient

continuous querying over moving objects has evolved as an essential process for numerous spatial

computing applications due to the advent of mobile and ubiquitous computing. Spatiotemporal

queries are helpful in different scenarios such as traffic control approaches,

geographic information systems (GIS), and location-aware objects [11]. In this paper, we study

the continuous K-nearest neighbor query (CKNN), an essential class of spatiotemporal queries

that explores the K-nearest neighbors (KNNs) among a set of moving objects at each timestamp.

An example of a CKNN query is to find two nearby pedestrian taxis based on the provided

https://doi.org/10.3390/ijgi11040264
https://doi.org/10.3390/ijgi11040264
https://doi.org/10.3390/ijgi11040264
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

velocity and location of pedestrian traffic. In the past decade, most CKNN query approaches

were integrated into a spatial indexing structure and discrete-time intervals, which returned the

kNN set based on their location at the querying generation time. This instant search based on

distance static computing might return an outdated resultset because the objects might be

moving in the meantime. However, their locations were not updated along with the query

evaluation, which reduced the accuracy of the query results. Therefore, a new continuous query

processing algorithm is required to process CKNNs, taking into account the continuous updates

[12].

Because location-aware devices and services are distributed across a time-aware spatial

system, many CKNN queries are likely to be processed simultaneously. Reducing server

performance is easy, and answering queries is long. Due to the real-time nature of locationaware

applications, significant delays make answering queries useless. Therefore, new query processing

algorithms that handle performance and scalability must include another set of CKNN queries.

Many existing solutions to the KNN query object transfer problem were not developed to handle

the large amount of data.Therefore, the indexing construction costs are expensive and impact the

queries’ response time subsequently, as it certainly follows a centralized setting where both query

update maintenance and processing take place [13,14]. Continuous queries for data streams in

spatial contexts analyzed by existing works were mainly based on Boolean bypass or approximate

techniques, giving a random number or approximate result [15]. The CKNN query processing

technology in database research is a concern that many researchers emphasize. It has many real-

time applications, such as traffic distribution control, digital battlefield, personal navigation

services, and other systems connecting mobile phone users. Therefore, the access to spatial

information and spatial objects is limited to querying objects over a road network [16], which

involves many challenges mainly related to the complexity of the spatial network features such as

node identification and object pruning for query evaluation.

The primary purpose of this study is to enhance the efficiency and precision of a CKNN query

over moving objects using distributed spatial indices. In addition, this work aims to effectively

extract object information from distributed indices based on practical algorithms and efficient

pruning technology to manage continuous query challenges. This paper will investigate and

optimize CKNN query performances to avoid the limitations of the previous work mentioned

above. For the experimental study, we considered different scenarios, the distance between two

objects is defined as the shortest path between them in the network. The CKNNs set of a query

point for a time stamp must be fully defined. In order to significantly reduce the iterative search

and computation cost, we designed a method that uses the relative velocity information of the

moving object and sets a number of iterations limited to two. The distance between two moving

objects in every timestamp is presented only as a timeline operation and is easy to calculate using

this approach. Our work expiates the significant deficiencies of the past related works and

provides a more accurate and efficient method for the CKNN problem. The outline of this paper is

as follows:

• We propose a novel indexing approach, namely the Velocity SpatioTemporal indexing

approach (VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN)

and continuous range queries.

• We design a compact multilayer index structure on a distributed setting and propose a CKNN

search algorithm for accurate results using a candidate cell identification process.

• We provide a comprehensive vision of our indexing model and the adopted querying

technique.

• We conducted a comprehensive set of experiments, compared our results with existing

approaches, and employed different distribution techniques.

The rest of this paper is organized as follows. We review the related work for continuous KNN

queries and moving objects in road networks in Section 2. Section 3 describes the preliminaries

and the proposed approach. Section 4 presents the velocity spatiotemporal indexing approach,

including the architecture, the index building phase, and the distributed query processing. Section

5 covers the dataset and simulation results on the performance of our method. In Section 6, we

conclude the paper with directions for future work.

2. Literature Review

Indexing and querying paradigms of moving objects (MO) can be categorized into various

classes according to the index structure base unit, such as grid-based indices, tree-like indices, and

hybridized indices [17]. The intricacy of location-related approaches, in general, and continuous

MO processing is affiliated with various factors such as data and variability. The indexed data are

more volatile continuously, and there is a significant amount of data. Data autocorrelation

transformations in the spatiotemporal element of moving objects transpire smoothly over time,

excluding the constraints of the work related to CKNN, including the velocity uncertainty that is

present in many of the works on moving objects’ uncertain velocity, which concentrate solely on

Euclidean spaces [18,19]. However, wheb assessing objects over a road network, the accuracy of

location [20] concerns additional repetitive query re-evaluation. A fuzzy amount of CKNN search

iterations occurs, and a significant amount of search algorithms are based on an unspecified

number of iterations to find the area of the KNN, which results in an additional communication

cost [18] in a distributed environment. The skewed distribution of data over nodes lessens the

executions due to the nonuniform distribution over space.

A continuous K-nearest neighbor (k-NN) query supports multiple location-based services and

continuously returns K-nearest object data to the query surroundings. Many of the current

approaches to this issue have concentrated on centralized settings that indicate less scalability to

address significant and scattered datasets. In [21], the authors proposed an efficient and

distributed solution to kNN queries, so that objects could be moved to process more extensive

data. The proposed solution included a new networkbased index called the Block Grid Index (BGI),

and a BGI-based distributed KNN query method. BGI is a distributed layered grid-based in-memory

index for KNN queries built within STORM. It starts from the assumption that moving objects

belong to a region of interest that is partitioned in equal-sized cells without overlap, and each cell

indexes its moving objects. There is no predefined pattern for the movement of objects. There are

a minimum and maximum predefined number of objects per block; each block has a number N.

There are a few advantages to their approach. BGI is easy to set up and maintain in a distributed

environment. The querying algorithm can return the results after two search iterations, improving

k-NN query performance. The effectiveness of their solution has been proven through extensive

trials on millions of nodes.

The focus of many applications with dynamic objects is the processing of k-NN queries. Most

current approaches are designed for centralized settings where queries are processed on the same

server to address this issue. It is challenging, if not inconceivable, to scale the distributed setup to

handle the large amount of data and synchronization queries that are increasingly found in such

applications. To address this issue, Ziqiang et al. [22] proposed a set of explanations that could

sustain scalable distributed processing of k-NN queries.

Foremost, they introduced a novel hybrid index structure called the Dynamic Stripe Index

(DSI) that better adjusted to various data distributions. The structure was divided into clusters,

making it suitable for distributed processing. They also recommended the DSIbased K-NN Search

Algorithm (DKNN). DKNN is more efficient and predictable than traditional methods, as it avoids

the uncertain number of potentially expensive repetitions. DSI and DKNN were executed on top

of the Apache S4, an open-source distributed streaming medium. In order to study the features of

DSI and DKNN, they performed a comprehensive empirical study to examine the framework and

compare it with three fundamental indexing and querying approaches. The experimental results

showed that their proposal was highly scalable and outperformed competing methods.

Sensor networks produce a large scale of highly dynamic constantly updated data sent as

packets in the data flow. The data stream’s high frequency and continuous nature make it difficult

to learn from basic observations. The article by Bolelang et al. [23] provided an upto-date overview

of the visual analysis of geographic and global flow data and suggested a framework established

by the gaps specified in the review. The framework consisted of a data prototype that featured

sensor monitoring data, a user model that handled user queries and organized domain knowledge,

a design prototype for discovered patterns and their corresponding visualizations, as well as a

visual model to process rendering data. The conceptual model concluded that the flow of sensor

feedback required tools that could handle multivariate multiscale time-series displays. Design

models showed that the numerous valuable models combined proportions, deviations, and data.

The user model emphasized the necessity of handling missing data, high-frequency inconstancies,

and review changes.

Many objects and many constant questions characterize the space-aware environment. Both

things and constant questions can change position over time. In the article by Xiaoping et al. [24],

they investigated the issue of reviewing queries from the Convolutional

Neural Network (CNN) in the space-time database. To maintain the performance of CNN query

answers, a Shared Execution Algorithm (SEA-CNN) was introduced. SEA-CNN combines additional

assessments with joint implementation to reduce the cost of updating answers to questions. In

incremental assessment, only questions affected by the movement of objects are reconsidered.

Each query is associated with the search area based on the answers to the previous query to

reduce evaluation time. Compatibility queries are grouped into a standard search table in the

shared implementation model. Therefore, the issue of reviewing numerous queries is resolved by

the local connection between the lookup table and the object table. SEA-CNN is also a generally

usable framework. Foremost, SEA-CNN does not make any inferences regarding the motion of an

object (e.g., speed, orbit). They offered a theoretical analysis of SEA-CNN regarding

implementation costs, memory requirements, and the consequences of tunable parameters.

Extensive experience showed that SE-CNN was more scalable and efficient than R-tree-based CNN

technology regarding I-O number and CPU cost.

Wireless sensor networks have been widely used in numerous applications, such as

environmental monitoring, manufacturing management, business asset management, transport

automation, and the medical industry. In the article by Hua et al. [25], they examine an interesting

issue. Continuous monitoring of k-mean assembly of sensor readings in large sensor networks.

Given a set of sensors whose measurements evolve, they want to keep the average k of

measurement constant. The optimization aims to reduce network reporting costs. The goal is to

inform the data center of current readings while maintaining as many sensors as possible. They

recommend a reading report tree, a classification framework for data collection, and analysis to

address this issue. They are also developing several economic reporting methods by continuously

monitoring k sources by reading the reporting tree. First, a standard method of sampling using a

report-reading tree can provide a good quality perspective. Second, they suggested a method for

setting boundaries that can almost guarantee quality. Finally, they tested a slow approach that

could significantly reduce intermediate computation. To investigate the features of the proposed

method, they evaluated systematic simulation using artificial datasets.

The continuous K nearest neighbor search process (CKNN) captures the nearest k objects for

the provided set of moving objects. It gives consistent results in real time with objects and query

points for monitoring the transfer. Current CKNN query processes typically have index

maintenance, real-time result updates, and query costs that may not completely resolve the issue.

To address this issue, Yu et al. [26] recommended an additional search algorithm. It uses the

Random Estimation (RE) method to process CKNN queries for large quantities of moving objects.

Combined with an incremental search algorithm for processing CKNN indexing and querying over

a massive volume of moving objects, the RE approach could rapidly determine a suitable search

area for a continuous query established on the prior outcomes of the query. Compared to other

approaches targeting continuous querying in a two-dimensional area of interest, this strategy

achieved a higher estimations accuracy for identifying the number of items in a specific area,

significantly improving the continuous kNN query processing efficiency.

The most critical part of an emergency response system is time. Therefore, it is essential to

immediately store new accurate data in the database, retrieve data quickly, maintain the

chronological order and strengthen the system, all processed in real time. One more critical

element of environmental threat monitoring is enabling real-time queries founded on modern

features. We also need the fastest access to the latest data. In addition, real-time data collected

from sensors requires swift and efficient control to detour central memory saturation. Servigne et

al. [27] proposed indexing methods supporting queries that targeted contemporary data. The

proposed indexing solution was for real-time data of fixed sensors. The second was real-time and

space data collected through active sensors. Finally, they offered a general solution for managing

memory saturation in real time according to the importance of the data.

The portion of available spatiotemporal data is proliferating because of the advancements in

mobile data acquisition technology and location-aware devices. Real-time processing of big spatial

data has evolved into one of the examination frontiers in Geographic Information Systems (GIS).

It aims to reduce the complexity of updating data by employing specific distributed spatial indexing

structures that handle highly dynamic data. In order to process continuous querying over spatial

data streams, Zhang et al. [17] proposed an extension to Apache Storm, which is an open-source

distributed real-time computation system. They employed a strategy of spatial joins between

moving datasets with a secondary static distributed spatial index to process continuous queries.

However, the proposed grid-based partitioning techniques focused only on 2-dimensional point

data. In addition, such indexing techniques were ineffective in spatial applications because of their

dynamic data and query distributions. We have proposed a novel indexing approach mode for

range queries to address these issues. We design a compact multilayer index structure on a

distributed setting and propose a CKNN search algorithm for accurate and efficient results.

3. Preliminaries

We illustrate some definitions and symbols utilized in this paper. Table 1 lists the main

notations that are used throughout this paper. We assumed a setting where N objects in a two-

dimensional space move with different velocities where X_Vel and Y_Vel are the velocity according

to the X-axis and Y-axis, respectively. Moving objects were modeled as point objects, and the space

in which they move was modeled as a two-dimensional Euclidean space. The objects frequently

sent updates about their location to the indexing primary node. Updates were sent as a triplet

(obj_ID, x_loc, y_loc), where obj_ID is the object’s unique identification number, x_loc represents

the longitude position, and y_loc represents the latitude position of the object.

Definition 1. Moving Objects, MO : a moving object is represented by a discrete sequence of tuples

in the form {obj_id,(x_loc , y_loc), (x_vel, y_vel), t)}, where obj_id is the object identifier, (x_loc,

y_loc) represents the current location, (x_vel, y_vel) is the object movement velocity, and t is the

current time.

Definition 2. Updates: In a dynamic spatial data processing context, moving objects continuously

send their new location updates to keep them reflected in the indexing structure. In order to ensure

accuracy, the index must be able to process large volumes of updates rapidly to provide high-

precision responses, also with varying query interval lengths.

Definition 3. Spatial Queries: Spatial queries are mostly generated and used in a dynamic number

of objects applications. Such requests by users are expected to be responded to based on real-time

or near real-time data analysis. There are different types of spatial queries; in this work, we focus

on continuous spatial kNN queries.

(a) Query Point: A query point is defined by a user (query issuer) ID. The user must be located inthe

index to determine its region and the kNN set.

(b) K-nearest Neighbor Query, kNN query: Given a query point in the space, a kNN query

mustretrieve the k-th closest objects to the query point.

(c) Continuous K-nearest neighbor queries, CKNN query: Given a query point in the space, aCKNN

query must continuously track the k objects that are the closest ones to the query point. The objects

of interest, also called candidate objects, and/or the query point might be moving during the query

evaluation, which means the locations are updated continuously.

Table 1. Notation Definitions.

Notation Definitions

N Number (Count) of moving objects in the space

MO Moving object

obj_id A moving object identifier

x_loc Longitude position of an object

y_loc Latitude position of an object

x_vel Velocity according to X axis

y_vel Velocity according to Y axis

t Time

4. Proposed Methodology

This paper proposes a velocity-dependent indexing method for moving object data based on

similar velocity classification using the standard deviation equation on the velocities distribution,

resulting in two separate subspatial perspectives to avoid data skewness and unuseful search

iterations. We designed a region-based index for constantly moving objects in each scene in a

distributed environment. We proposed an algorithm to select dynamic query candidates in CKNN

[28].VeST was customized by combining time–space indexing with speed. When a new query was

generated, it was first evaluated using various phases through the index [24] in order to find the

best search volume for the queries to reduce the cost of updating the index. The Velocity

SpatioTemporal (VeST) index obtained a query result similar to the mapped spatial nodes. It used

the custom input method to enter the list of objects and the corresponding tree. This approach

further improved the index structure building performances, including the index construction time

as well as the size, and reduced index update costs. Figure 1 represents the Sequence diagram of

query processing. Where a CKNN query was generated, the Velocity classifier analyzed the objects’

actual velocities to compute the standards deviation and define the threshold to launch a velocity-

dependent partitioning. Then the query manager started processing the query over the global

index structure first. The query was evaluated and updated accordingly over the distributed nodes

of the index to generate the query response.

Figure 1. Sequence diagram of CKNN query processing.

5. Velocity Spatiotemporal Indexing Model

We have proposed a spatial index model for continuous querying. The proposed model is

organized by combining spatiotemporal indexing with velocity. Figure 2 represents the

architecture of the proposed velocity spatiotemporal index (VeST) for the moving object CKNN

querying.

Figure 2. Architecture of velocity spatiotemporal index for moving objects.

5.1. Vest Architecture

Our velocity spatiotemporal index consisted of space–time and velocity data. It analyzed

moving objects’ velocity and then indexed their data across a hybrid distributed structure. VeST

was designed to have two main parts, primary and secondary. A primary/secondary paradigm

signifies that one server was configured to operate as the primary node. It was then directed to

acquire all of the written queries. The primary node then performed and logged the queries, which

were then dispatched to the secondary nodes to conduct and keep the identical data across all

counterpart components. In the primary/secondary structure, the write functions were executed

at the primary level and read functions at the secondary level [29]. Therefore, all search requests

initially reached the primary node, a queue of submissions was preserved, and the read function

was accomplished solely behind the fulfillment of the write operation. There is a common problem

in a primary/secondary configuration, which is also witnessed when the primary node’s queue

becomes too large to be maintained. This architecture collapses, and the secondary nodes start

behaving as the primary one.

5.2. Velocity-Based Partitioning Phase

The velocity-based portioning phase helps to reduce time costs and make the system more

efficient as we presented and proved in our previous study [28]. The system evaluates the speed

of objects for categorizing entities into different classes.

The velocity-based classification generated two classes, one was for the fast objects class,

and the other was for a slow objects class. The selection was made according to a predetermined

equation that estimated the velocity deviation of a real-time object established on the

distribution of the objects. Total velocity (Vt) is calculated using Equation (1), where n is the total

number of objects at a given time, and vk is the velocity of the object. Vt is used to determine

speed SP, which is specified in Equation (2). Finally, the SP is used to obtain σ using Equation (3),

which is the threshold between fast and slow objects. This partition saves excessive access to

entities in one place; in addition, it reduces the search period and splitting or merging costs.

n

Vt = ∑ vk

k=1

(1)

SP(2)

n

√

σ = SP (3)

Figure 3 illustrates the structure of the indexing model, its objects, their behavior, and

operations. The “DataAnalysis” class contained the spatial attributes of the query and the velocity

deviation, which were generated by the “VelocityClassifer” object in order to partition objects

based on their velocities. The k parameter of a CKNN query was used to process iterative search

operations over the index structure’s partitions after the region’s spatial split.

Figure 3. Conception of the indexing model.

5.3. Index Building Phases

The large scale of spatial data is continuously generated over time, and users can be of

various types, such as taxis, people, or buses. Hence a hash map to store a key-value structure was

integrated. Hash maps are appropriate for diminutive quantities of data and sustaining recurring

transformations. It accumulates records of the territories that the user has visited and additional

characteristics that establish corresponding data such as user type: (id, [trajectory], type). The

hash map devotes an unrestrained search technique, a linear scan; hence, the time complexity of

a query is O(m).

5.4. Distributed Query Processing

We proposed using a multilayer structure for distributed processing platform, as illustrated

in Figure 4. Distributed processing modules consist of three layers, a first one for the primary

indexing node, a second layer for the set of the secondary indexing set, and a spatial data

partitioning layer. Individual nodes created their index for all locally reserved records in the

secondary indexing layer. Therefore, each node had a shortlist of objects data. A query was initially

broadcasted to every node, and then the derivatives were integrated. Therefore, each node had a

more diminutive number of prolonged lists. Under the standard query evaluation procedure, a

query was first routed to the node maintaining the list for a more concise list, which then

dispatched its entire list to the node containing the main list [30].

Figure 4. Multilayer structure of distributed processing platform.

6. Experimental Settings and Results

This section explains the proposed approach’s simulation settings, exploratory data

analysis, and evaluation results. We used an open-source taxi GPS tracking dataset [7]. The

dataset contained more than 100,000 taxis’ data within Shenzhen city with different records. The

dataset contained an object ID, location on the x-axis, location on the y axis, velocity on the x-

axis, velocity on the y-axis, and time when the update was issued.

6.1. Simulation Environment

The experiments were conducted on a cluster of nodes with a processing unit of Intel Core

i7-8500y @ 3.00GHz and a Random Access Memory of 16 GB. The simulation setting employed

during the exploratory period is outlined in Table 2.

Table 2. Configuration of simulation settings.

Component Description

 1 Processing Unit Intel Core i5-8500 @ 3.00GHz

 2 RAM 16 GB

 3 Operating System Window 10

 4 Integrated Development Environment Jupyter notebook

 5 Programming Language Python

 6 Python v 3.6

 7 Mathematical Functions Module math V 3.9.1

 8 Array Library NumPy v 1.17.5

 9 Data Analysis Library pandas V 0.25.3

 10 Plots Library plotly V 4.4.1

6.2. Exploratory Data Analysis

Figure 5 shows the sampled locations of moving objects in the city. The location of taxis also

sketched the outline of the city’s road network. Figure 6 illustrates the objects after classifying

them according to their velocities with regard to the actual velocity deviation. Figure 6a shows the

visual representation of slow-moving objects with red dots, whereas Figure 6b shows the fast-

moving objects with green dots.

Figure 5. Sampled locations of moving objects in Shenzhen City road network.

 (a) Slow-moving objects (b) Fast-moving objects

Figure 6. Sampled objects classified according to their velocity.

The total size of the data set used was 46.9 MB. The data were generated through

OpenSourceMap with the space domain of 10,000 × 10,000 for Shenzhen City [31]. Table 3 shows

the summary of the dataset. The dataset contained six columns and 1,025,486 rows, with only one

row containing null values. The first column represented the ID of each object, where the

minimum object ID was 0, and the maximum ID was 10928. The second and third columns were

for the location X_loc and Y_Loc according to the X and Y axes, respectively, representing longitude

and latitude; whereas, X_Vel and Y_Vel represented the velocity on the X and Y axes. The

maximum velocity on the X-axis recorded was 33.25 and on the Y-axis was 33.19. The last column,

“time”, contained the tracking timestamps.
Table 3. Summary of Dataset.

 object_ID X_loc Y_loc X_Vel Y_Vel Time

Mean / 5631.91 3718.73 0.06 −0.04 /

STD / 2326.78 2377.48 4.85 4.040 /

Min 0 0 2.23 −33.2 −32.97 0

Max 10,928 9991.1 9999.73 33.25 33.19 7199

Figure 7 shows the distribution of different features of the dataset. Figure 7b shows the

velocity distribution across the X and Y-axis. Most of the points lay between −30 and 30 m/s. Figure

7b shows the count of objects per time slot from 0 to 7199. It can be observed that the time

between 0 to 1000 contained the highest number of objects and 6000 to 7000 contained the

lowest number of objects. Figure 7c shows the count of objects according to the velocity on the X-

axis. Figure 7d shows the count of objects according to the velocity on the Y-axis. In both the X and

Y-axis velocity distribution, the maximum count was between −10 to 10.

 (a) Velocity distribution (b) Count of objects per time slot

 (c) Count according to velocity on X-axis (d) Count according to velocity on Y-axis

Figure 7. Distribution of different features of the dataset.

6.3. Experimental Results

We conducted extensive experiments on the dataset presented in the previous section. We

performed simulations and plotted various graphs to represent the proposed approach’s

performance from the perspective of the working hypotheses. Intending to investigate by how

much the proposed approach was faster than the conventional approaches in terms of processing

time, we compared the querying time for various query intervals for a CKNN search where k was

set to 7. We compared the time when using the proposed approach and the Apache Spark to

enhance the performances further and used the conventional approach. As can be seen in Figure

8 for query intervals of 100 (i.e., the number of queries we simulated in parallel was equal to 100),

the proposed approach was 13.59 times faster than the competing approach. The effect of query

interval length over the average time is depicted in Figure 8. The average time of the VeST

approach was less than 0.005 s, as we can see, for all query intervals.

Figure 8. Effect of query interval length over query processing time.

We simulated three different data distribution patterns from the same dataset for our

experimentation. In the foremost distribution pattern (Gaussian), 70% of the objects pursued the

Gaussian distribution [32] across the network. We used Equation (4) to generate a Gaussian

distribution for 70% of objects. The remaining objects were distributed uniformly. The second

distribution pattern (Uniform) consisted of the objects that followed a uniform distribution across

the network. In the third distribution pattern, objects followed the Zipf distribution. All the objects

were normalized to a unit square.

 gd(x, µ, (4)

Figure 9 demonstrates the time of building the VeST as we altered the number of objects and

their distribution pattern. If further parameters did not vary, the index construction time rose

almost linearly with the increasing number of objects. As we made a better concentrated Gaussian

pattern, there were additional split and merge processes in the R-tee layer for this one. As a result,

the construction time was the highest among the three distribution patterns in most cases.

Figure 10 analyzes the impact of the query interval size on the CPU time of VeST and

competing approaches. The proposal was compared with the IMA approach suggested by

Mouratidis et al. [33] and with the CKNN approach proposed in [34]. The IMA method is based

on iterative snapshot kNN search evaluations, unlike the VeST approach, where we avoid the

unknown number of iterations. When objects’ location updates occur, the IMA algorithm again

evaluated the snapshot KNN query. In our experiments, the IMA update interval (UI) was set

once to 5 time units and then to 10 time units to examine both cases and compare it with the

VeST algorithm. The IMA algorithm with update intervals of 5 and

10 time units is termed IMA(UI = 5) and IMA(UI = 10), respectively. On the other hand, the CKNN

algorithm divided the time interval into disjoint subintervals. These subintervals were evaluated

successively in locating the KNNs of the query entity. The experiments showed that the CPU cost

rises with the expanded query interval size for all the algorithms. This is because a significant query

size derives additional objects to be considered for the continuous KNN search approach and

assembles better discrete place updates of objects. Consequently, the IMA algorithm required

more snapshot KNN queries (for both UI = 5 and UI = 10); therefore, the CPU time was higher in

both cases UI = 5 and UI = 10. The KNN algorithm showed better performances compared to IMA

because it divided the time into sequential timestamps; yet, it required more time for a complete

KNN search and assumed that objects were moving at constant speeds, which was unrealistic. The

simulation outcomes showed that the presented algorithm surpassed its competitors in all cases

while continuously considering the dynamic speed feature.

Figure 9. The construction time of VeST.

Figure 10. Effect of query interval length on CPU time.

Figure 11 illustrates the effect of the query interval size on the precision of the different

approaches. The preciseness is the ratio of time units at which the retrieved continuous KNN query

result is correct, as determined using Equation (5) where kNNreal is the number of the obtained

resultset records number, and kNNreal is the actual number of the k nearest neighbors to the query

point. In order to define the optimum k parameter value to avoid noise or underfitting problems,

in this experimental scenario, we set k equal to 7 based on the standard deviation of objects to

create an illustrative example.

#(kNNget ∩ kNNreal)

 Precision = ∗ 100% (5)

#kNNreal

Due to the continuous location updates of objects, the precision was below 60% and 90%

for IMA and kNN, respectively. It even reached 20% when the query interval was larger (UI = 10)

because the object location updates in these approaches were supposed to be discrete.

Therefore, two successive update time instances would obtain imprecise query outcomes. In

contrast, the precision of the VeST algorithm was almost equal to 100% regardless of the length

of the query interval.

Figure 11. Effect of query interval length on precision.

7. Discussion

This paper explored challenges related to continuous queries over moving objects. The

contributions of this paper are fourfold; first, presenting a novel approach for continuous

querying; second, explaining the multilayer index structure; and third, the querying technique

and the final step employed different distribution techniques to examine the effect of the

proposed approach. This section discusses how the proposed framework addressed the

identified gaps.

The first gap related to presenting a novel approach for continuous querying was addressed

by proposing a novel indexing approach, namely the Velocity SpatioTemporal indexing approach

(VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN) and continuous

range queries. The second gap related to explaining the multilayer index structure was addressed

by designing a compact multilayer index structure on a distributed setting and proposing a CKNN

search algorithm for accurate results using a candidate cell identification process. The third gap

related to the querying technique was addressed by providing a comprehensive vision of our

indexing model and the adopted querying technique. The fourth and final gap related to

employing different distribution techniques to examine the effect of the proposed approach. We

conducted a comprehensive set of experiments, compared our results with existing approaches,

and employed different distribution techniques. This proposed method reduced the update cost

and improved the response time and query precision. The dataset was the same one in all figures

but with different representations, which was a real-world dataset that was a taxi GPS tracking

system recorded in Shenzhen City. We illustrated data features to provide a comprehensive data

description. We have also represented the results of our proposal experiments on the dataset. We

simulated three different data distribution models out of the same dataset to investigate the

performances of the proposed approach for different data distributions with a varying number of

objects.

Various factors can affect the performance of the proposed VeST approach. One factor is the

number of nearest neighbors. The other major factor affecting the performance is the velocity of

moving objects. The proposed approach is based on a velocity partitioning of the objects before

the spatial indexing. Since the velocity feature is essential in our proposal and impacts the conduct

of the indexing and the querying performance, we illustrated the dispersion of this information

from different perspectives to show how it varies, which should be considered. In the future,

analytical methods can be used to estimate the velocity distribution and hierarchical grids.

8. Conclusions

We proposed a novel indexing approach model, namely the Velocity SpatioTemporal

indexing approach (VeST), for continuous querying, mainly Continuous K-nearest Neighbor (CKNN)

and continuous range queries. We designed a compact multilayer index structure on a distributed

setting and proposed a CKNN search algorithm for accurate results using a candidate cell

identification process. We provided a comprehensive vision of our indexing model and the

adopted querying technique. We conducted a comprehensive set of experiments, compared our

results with existing approaches, and employed different distribution techniques to investigate

the index structure building time in different scenarios. For query intervals equal to 100, the

proposed approach was 13.59 times faster than the traditional approach. In addition, the average

time of the VeST approach was less than 0.005 for all query intervals. This proposed method

improved response time and query precision. The precision of the VeST algorithm was almost

equal to 100% regardless of the length of the query interval. The simulation outcomes showed

that the presented algorithm surpassed its competitors in all cases while continuously considering

the dynamic speed feature. The effect of using analytical methods and hierarchical grids can be

explored in the future to enhance the results.

Author Contributions: Conceptualization, Imene Bareche; methodology, Imene Bareche; software, Imene

Bareche; validation, Ying Xia; formal analysis, Imene Bareche; investigation, Imene Bareche; resources, Ying

Xia; data curation, Imene Bareche; writing—original draft, Imene Bareche; writing— review and editing,

Imene Bareche and Ying Xia; visualization, Imene Bareche;validation, Imene Bareche and Ying Xia;

supervision, Ying Xia; project administration, Ying Xia; funding acquisition, Ying Xia; All authors have read

and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Natural Science Foundation of China (41971365) and the

key cooperation project of Chongqing municipal education commission of China (HZ2021008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are openly available in

[VPIndexer] at http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/

,referencenumber31 accessed on 20 November 2020.

Conflicts of Interest: The authors declare no conflict of interest regarding the design of this study, analyses,

and writing of this manuscript.

Abbreviations

The following abbreviations are used in this manuscript:
LBS Location-Based Services
GPS Global Positioning System
MO Moving Objects
KNN K-nearest Neighbors
CKNN Continuous KNN
IoT Internet of Things (IoT)
GIS Geographic Information System

http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/,%20reference%20number%2031
http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/,%20reference%20number%2031
http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/,%20reference%20number%2031

BGI Block Grid Index
DSI Dynamic Stripe Index
DKNN DSI-based K-NN
CNN Convolutional Neural Network
SEA Shared Execution Algorithm
RE Random Estimation

References

1. Afanador, J.J.C.; Rivero, A.J.L.; Gallego, J.Á.R. Analysis of geolocation accuracy by GPS: dedicated support signal integration and collaborative

network in location-based services. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI),

Seville, Spain, 24–27 June 2020; pp. 1–8.
2. Basiri, A.; Moore, T.; Hill, C.; Bhatia, P. Challenges of location-based services market analysis: current market description. In Progress in

Location-Based Services 2014; Springer: Berlin, Heidelberg, Germany, 2015; pp. 273–282.
3. Khan, P.W.; Byun, Y.C. Smart contract centric inference engine for intelligent electric vehicle transportation system. Sensors 2020, 20, 4252.

[CrossRef] [PubMed]
4. Arroyo Ohori, K.; Diakité, A.; Krijnen, T.; Ledoux, H.; Stoter, J. Processing BIM and GIS models in practice: experiences and recommendations

from a GeoBIM project in the Netherlands. Isprs Int. J. -Geo-Inf. 2018, 7, 311. [CrossRef]
5. Kim, H.S.; Sun, C.G.; Cho, H.I. Geospatial big data-based geostatistical zonation of seismic site effects in Seoul metropolitan area. Isprs Int.

J.-Geo-Inf. 2017, 6, 174. [CrossRef]
6. Hor, A.; Jadidi, A.; Sohn, G. BIM-GIS integrated geospatial information model using semantic web and RDF graphs. ISPRS Ann. Photogramm.

Remote Sens. Spat. Inf. Sci 2016, 3, 73–79. [CrossRef]
7. Xu, X.; Xiong, L.; Sunderam, V.; Liu, J.; Luo, J. Speed partitioning for indexing moving objects. In Proceedings of the International Symposium

on Spatial and Temporal Databases, Online, 23–25 August 2021; Springer: Berlin, Heidelberg, Germany, 2015, pp. 216–234.
8. Wu, C.; Zhu, Q.; Zhang, Y.; Du, Z.; Ye, X.; Qin, H.; Zhou, Y. A NOSQL–SQL hybrid organization and management approach for real-time

geospatial data: A case study of public security video surveillance. Isprs Int. J.-Geo-Inf. 2017, 6, 21. [CrossRef]
9. de Oliveira, T.H.M.; Painho, M. Open Geospatial Data Contribution Towards Sentiment Analysis Within the Human Dimension of Smart

Cities. In Open Source Geospatial Science for Urban Studies; Springer: Berlin, Heidelberg, Germany, 2021; pp. 75–95.
10. Dou, S.; Zhang, H.; Zhao, Y.; Wang, A.; Xiong, Y.; Zuo, J. Research on construction of spatio-temporal data visualization platform for gis and

bim fusion. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2020, 42, 555–563. [CrossRef]
11. Yuan, Z.; Liu, H.; Liu, Y.; Zhang, D.; Yi, F.; Zhu, N.; Xiong, H. Spatio-temporal dual graph attention network for query-poi matching. In

Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30

July 2020, pp. 629–638.
12. Zhu, H.; Yang, X.; Wang, B.; Lee, W.C.; Yin, J.; Xu, J. Processing Continuous k Nearest Neighbor Queries in Obstructed Space with Voronoi

Diagrams. Acm Trans. Spat. Algorithms Syst. (TSAS) 2020, 7, 1–27. [CrossRef]

13. Cho, H.J. A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks. J. Korea Soc. Comput. Inf.

2021, 26, 63–74.
14. Lixiang, S.; Ke, F. Research on K Nearest Neighbor Skyline Query in Time Dependent Road Network. J. Phys. Conf. Ser. 2021, 1848, 012140.

[CrossRef]
15. Yang, R.; Niu, B. Continuous k Nearest Neighbor Queries over Large-Scale Spatial–Textual Data Streams. Isprs Int. J.-Geo-Inf. 2020, 9, 694.

[CrossRef]
16. Jiang, W.; Li, G.; An, J.; Sun, Y.; Chen, H.; Li, X. Research on Indexing and KNN Query of Moving Objects in Road Network Environment. In

Proceedings of the International Conference in Communications, Signal Processing, and Systems, Changbaishan, China, 4–5 July 2020, pp.

1944–1950.
17. Zhang, F.; Zheng, Y.; Xu, D.; Du, Z.; Wang, Y.; Liu, R.; Ye, X. Real-time spatial queries for moving objects using storm topology. Isprs Int. J.-

Geo-Inf. 2016, 5, 178. [CrossRef]
18. Fan, P.; Li, G.; Yuan, L.; Li, Y. Vague continuous K-nearest neighbor queries over moving objects with uncertain velocity in road networks.

Inf. Syst. 2012, 37, 13–32. [CrossRef]
19. Mahmood, A.R.; Punni, S.; Aref, W.G. Spatio-temporal access methods: a survey (2010-2017). GeoInformatica 2019, 23, 1–36. [CrossRef]
20. Tao, Y.; Papadias, D.; Shen, Q. Continuous nearest neighbor search. In Proceedings of the VLDB’02: Proceedings of the 28th International

Conference on very Large Databases, Hong Kong, China, 20–23 August 2002; pp. 287–298.
21. Yang, M.; Ma, K.; Yu, X. An efficient index structure for distributed k-nearest neighbours query processing. Soft Comput. 2020, 24, 5539–

5550. [CrossRef]
22. Yu, Z.; Liu, Y.; Yu, X.; Pu, K.Q. Scalable distributed processing of K nearest neighbor queries over moving objects. IEEE Trans. Knowl. Data

Eng. 2014, 27, 1383–1396. [CrossRef]
23. Sibolla, B.H.; Coetzee, S.; Van Zyl, T.L. A framework for visual analytics of spatio-temporal sensor observations from data streams. Isprs Int.

J.-Geo-Inf. 2018, 7, 475. [CrossRef]
24. Xiong, X.; Mokbel, M.F.; Aref, W.G. Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In

Proceedings of the 21st International Conference on Data Engineering (ICDE’05), Tokyo, Japan, 5–8 April 2005; pp. 643–654.
25. Hua, M.; Lau, M.K.; Pei, J.; Wu, K. Continuous K-means monitoring with low reporting cost in sensor networks. IEEE Trans. Knowl. Data Eng.

2009, 21, 1679–1691.

http://doi.org/10.3390/s20154252
http://doi.org/10.3390/s20154252
http://www.ncbi.nlm.nih.gov/pubmed/32751626
http://www.ncbi.nlm.nih.gov/pubmed/32751626
http://www.ncbi.nlm.nih.gov/pubmed/32751626
http://dx.doi.org/10.3390/ijgi7080311
http://dx.doi.org/10.3390/ijgi7080311
http://dx.doi.org/10.3390/ijgi6060174
http://dx.doi.org/10.3390/ijgi6060174
http://dx.doi.org/10.5194/isprs-annals-III-4-73-2016
http://dx.doi.org/10.5194/isprs-annals-III-4-73-2016
http://dx.doi.org/10.3390/ijgi6010021
http://dx.doi.org/10.3390/ijgi6010021
http://dx.doi.org/10.5194/isprs-archives-XLII-3-W10-555-2020
http://dx.doi.org/10.5194/isprs-archives-XLII-3-W10-555-2020
http://dx.doi.org/10.1145/3425955
http://dx.doi.org/10.1145/3425955
http://dx.doi.org/10.1088/1742-6596/1848/1/012140
http://dx.doi.org/10.1088/1742-6596/1848/1/012140
http://dx.doi.org/10.3390/ijgi9110694
http://dx.doi.org/10.3390/ijgi9110694
http://dx.doi.org/10.3390/ijgi5100178
http://dx.doi.org/10.3390/ijgi5100178
http://dx.doi.org/10.1016/j.is.2011.08.002
http://dx.doi.org/10.1016/j.is.2011.08.002
http://dx.doi.org/10.1007/s10707-018-0329-2
http://dx.doi.org/10.1007/s10707-018-0329-2
http://dx.doi.org/10.1007/s10707-018-0329-2
http://dx.doi.org/10.1007/s00500-018-3548-4
http://dx.doi.org/10.1007/s00500-018-3548-4
http://dx.doi.org/10.1109/TKDE.2014.2364046
http://dx.doi.org/10.1109/TKDE.2014.2364046
http://dx.doi.org/10.3390/ijgi7120475
http://dx.doi.org/10.3390/ijgi7120475

26. Yu, Z.; Jiao, K. Incremental Processing of Continuous K Nearest Neighbor Queries Over Moving Objects. In Proceedings of the 2017

International Conference on Computer Systems, Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 1–4.
27. Servigne, S.; Noël, G. Real time and spatiotemporal data indexing for sensor based databases. In Geospatial Information Technology for

Emergency Response; CRC Press: Boca Raton, FL, USA, 2008; pp. 123–142.
28. Bareche, I.; Xia, Y. Selective Velocity Distributed Indexing for Continuously Moving Objects Model. In Proceedings of the International

Conference on Algorithms and Architectures for Parallel Processing, Melbourne, VIC, Australia, 9–11 December 2019, pp. 339–348.
29. Jayachandran, P.; Tunga, K.; Kamat, N.; Nandi, A. Combining user interaction, speculative query execution and sampling in the DICE system.

Proc. VLDB Endow. 2014, 7, 1697–1700. [CrossRef]
30. Suel, T.; Mathur, C.; Wu, J.W.; Zhang, J.; Delis, A.; Kharrazi, M.; Long, X.; Shanmugasundaram, K. ODISSEA: A Peer-to-Peer Architecture for

Scalable Web Search and Information Retrieval; WebDB: International Workshop on the Web and Databases, Dallas, TX, USA 2003, Volume

3, pp. 67–72.
31. Xu, X.; Xiong, L.; Sunderam, V.; Liu, J.; Luo, J. VPIndexer Dataset, 2022. Available online: http://www.mathcs.emory.edu/

~lxiong/aims/spindex/VPIndexer/data/sz/ (accessed on 20 November 2020).
32. Sinno, Z.; Bovik, A.C. Spatio-temporal measures of naturalness. In Proceedings of the 2019 IEEE International Conference on Image

Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1750–1754.
33. Mouratidis, K.; Yiu, M.L.; Papadias, D.; Mamoulis, N. Continuous nearest neighbor monitoring in road networks. In Proceedings of the VLDB

2006: Proceedings of the 32nd International Conference on very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 43–54.
34. Huang, Y.K.; Chen, Z.W.; Lee, C. Continuous k-nearest neighbor query over moving objects in road networks. In Advances in Data and Web

Management; Springer: Berlin, Heidelberg, Germany, 2009; pp. 27–38.

http://dx.doi.org/10.14778/2733004.2733064
http://dx.doi.org/10.14778/2733004.2733064
http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/
http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/
http://www.mathcs.emory.edu/~lxiong/aims/spindex/VPIndexer/data/sz/

