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Abstract 
The last decade saw a rapid increase in the number of studies where time–frequency 

changes of radiocarbon dates have been used as a proxy for inferring past population 

dynamics. Although its universal and straightforward premise is appealing and 

undoubtedly offers some unique opportunities for research on long-term comparative 

demography, practical applications are far from trivial and riddled with issues 

pertaining to the very nature of the proxy under examination. Here I review the most 

common criticisms concerning the nature of radiocarbon time–frequency data as a 

demographic proxy, focusing on key statistical and inferential challenges. I then 

examine and compare recent methodological advances in the field by grouping them 

into three approaches: reconstructive, null-hypothesis significance testing, and model 

fitting. I will then conclude with some general recommendations for applying these 

techniques in archaeological and paleo-demographic research. 

Keywords Prehistoric demography · Dates as data · Statistical inference · 

Radiocarbon dates 

Introduction 

Population time series have a narrative appeal that has long been the envy of many 

archaeologists. Sister disciplines, such as economy and ecology, have developed 

methods, theories, and models that link individual-level processes to these macroscale 

patterns and have inspired generations of archaeologists to find ways to borrow and 

extend these concepts to the study of the human past. The opportunity to generate 

something that visually resembles population time series is a source of major 

temptation—all those ideas and concepts can finally be applied to understand  
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the archaeological record. Thus, it comes as no surprise that the so-called dates as 

data (hereafter DAD) approach (Rick, 1987), which relies on the assumption that the 

changing frequency of radiocarbon dates related to anthropic events is a reliable 

proxy of relative past population change, is a low-hanging fruit that has been 

harvested extensively in the last decade. 

Inferring population trajectories from time–frequency data is hardly a novel 

concept and certainly not limited to radiocarbon dates. Archaeologists have long been 

and are still counting different things as a proxy of population size, ranging from 

classic examples such as sites, dwellings, or artefacts (Drennan et al., 2015 for a 

review) to less common applications like faecal stanols (White et al., 2018). What 

makes DAD different, and in many cases controversial, is the unspecified nature of 

the thing that is being counted. Sites, dwellings, potsherds, and faecal stanols 

represent unique categories of artefacts that can be more or less directly related to 

specific behavioural processes. On its own, radiocarbon dates are just numerical 

attributes of virtually anything carbon-based and relate to a highly diverse range of 

anthropic and non-anthropic processes. Population inference based on radiocarbon 

dates does not necessarily have to subscribe to the DAD assumption, and time 

frequencies can relate to specific types of events (e.g. use of residential features, cf. 

Oh et al., 2017). More broadly, radiocarbon frequency data have also been used to 

examine cultural phenomena such as changes in burial or subsistence practices (e.g. 

Stevens & Fuller, 2012; Gleeson and McLaughlin, 2021), and hence their analyses 

are not restricted to the reconstruction of past population dynamics either. These 

examples, where events associated with the radiocarbon record are well defined, 

should not be referred to as DAD. The main appeal and the primary issue with Rick’s 

approach stem from the tactical decision of prioritising larger sample sizes at the cost 

of being vaguer on the nature of the dates to be included in the analysis. 

There is, however, a separate and additional layer of complexity, issues, and 

challenges dictated by the statistical nature of the method proposed. Some of these 

are not specifically limited to radiocarbon dates and are relevant to other attempts in 

inferring population changes from archaeological frequency data (see Brown, 2015 

for discussion), namely, the (1) non-random and systematic nature of chronological 

uncertainty; (2) the problem of sampling error; and (3) and the substantially wide 

range of possible population curves that we are aiming to reconstruct. The intersection 

of these three broader issues makes any frequency analyses of radiocarbon dates 

challenging, even when issues about the nature of the proxy or the definition of the 

events associated with each date are addressed. More importantly, there are no readily 

available, off-the-shelf solutions to many of these analytical problems. Consequently, 

the last few years saw the proposal of a substantial wide range of new statistical 

approaches developed in prehistoric population studies. 

This paper aims to review and compare the current range of statistical methods 

designed to analyse time frequencies of radiocarbon dates. Over the last few years, 

several review papers have examined different aspects of radiocarbon based 

population inference, including the problematic nature of the proxy (Attenbrow & 



 

 

Hiscock, 2015); the misleading effects of the calibration process (Weninger et al., 

2015; Williams, 2012); the importance of growth rates (Brown, 2017) as well as their 

comparability to ethnographic scales (Tallavaara and Jørgensen, 2021); and the 

critical issue of radiocarbon sampling processing (Becerra-Valdivia et al., 2020). A 

systematic review of more recent methodological solutions does not exist, as most 

discussions on the statistical nature of the problem are either limited to small sections 

of papers arguing in favour of particular solutions (see, e.g., Brown, 2015; Crema et 

al., 2017; Bronk Ramsay 2017; Timpson et al., 2021; Carleton, 2021) or broader 

criticisms of particular methodology such as the summed probability distribution of 

calibrated radiocarbon dates (hereafter SPD, Carleton and Groucutt, 2021). The 

substantially wide range of statistical options available and the idiosyncrasies of 

contextual issues have made the whole research area harder to navigate. As a result, 

unwarranted criticisms are often raised without a clear understanding of what a 

particular method entails, while simultaneously, there is an increased risk of misuses, 

abuses, and misinterpretations of these novel solutions. The objective of this paper is 

also to focus the spotlight on neglected key details that are often hidden behind 

equations or lines of code or implicit in the description of particular techniques. In 

most cases, these details have no impact in qualitative terms, but there are 

circumstances where conclusions can be drastically different. 

From Dates as Data to Summed Probability Distributions 

Rick’s seminal paper first introduced the core assumption that “[a]ll things equal, 

more occupation produced more carbon dates” (Rick, 1987, 56), immediately 

acknowledging in the following sentence that such an equation will be affected by a 

variety of intervening factors, most notably creation, preservation, and investigation 

biases (Fig. 1 in ibid). The original approach simply consisted in creating histograms 

of uncalibrated 14C ages. Still, it was already coupled with more advanced techniques, 

such as bootstrap confidence intervals to consider potential spurious effects emerging 

from sampling error (Fig. 4 in ibid.). The approach had some discrete success already 

in the early 1990s when several authors have switched from histograms of 

uncalibrated 14C ages to curves generated using calibrated dates (e.g. Ames, 1991; 

Dye & Komori, 1992; Erlandson et al., 1992; Chatters, 1995). Some of these early 

applications have also led to the development of new statistical techniques, such as 

randomisation tests1 (Dye, 1995), or even attempts to combine historical census data 

and inferred growth rates to retrodict absolute (rather than relative) population sizes 

for the pre-census era (Dye & Komori, 1992). The transition from the summation of 

uncalibrated to calibrated 14C ages became problematic once the calibration process 

no longer made it possible to describe calibrated dates using symmetric errors. In 

response to an early work by Housley et al., 1997), who summed uncalibrated dates 

using Gaussian distributions and a moving sum, Blockley et al., 2000) stressed that 

 
1 While preparing this manuscript, I came across a paper by Tom Dye. He was the first to introduce 

randomisation tests to compare curves generated from the summation of calibrated radiocarbon dates. In 

2016, I have, together with my colleagues, effectively reinvented the wheel by introducing a similar 

technique to compare regional demographics in prehistoric Japan (Crema et al., 2016a, 2016b). 



 

 

uncalibrated dates would provide unreliable results as they are based on a different, 

non-linear timescale. They then argued that “[o]nce dates have been calibrated they 

can no longer be expressed as a point date with a Gaussian error because the 

probability distribution of the date is a function of the shape of the calibration curve 

[…] Because of this, a moving sum which gives no weight to the actual probability 

distributions of dates is unlikely to be a good assessment of their true distribution. It 

is more appropriate to look at the summed probability distributions of the calibrated 

dates […]” (emphasis added). As far as I am aware, this was one of the earliest 

applications of what is now undoubtedly the most common form of radiocarbon 

frequency analyses, often now simply referred to as SPD. 

The first significant criticisms against SPDs were raised a few years later by 

Blackwell & Buck (2003) in the context of reviewing previous works on the Late 

Glacial human occupation in north-western Europe (including both Housley et al., 

1997 and Blockley et al., 2000) and advocating for a model-based Bayesian solution 

as a more robust alternative. Their review stress two core issues: (1) the problematic 

nature of summing probabilities and (2) the fact that “since the calibrated dates being 

‘summed’ do not relate to the same event, it is not clear what interpretation can be 

placed on the probabilities produced by this method” (ibid, page 233). While 

Blackwell and Buck do not provide much detail for the first problem, it is reasonable 

to assume that this relates to the mathematical issue of how summed probabilities are 

no longer probabilities, and while representing in some way the density distribution 

of the phenomena of interest, they cannot be straightforwardly interpreted (see 

Carleton and Groucutt, 2021 for a recent exhaustive review on this issue) as they 

mask the uncertainties inherited from individual dates. For example, consider a 

scenario where two time intervals, t1 and t2, are both associated with a summed 

probability of 10. Now suppose that t1 contains ten radiocarbon dates, each with a 

probability of 1, while t2  has 100 radiocarbon dates, each with a probability of 0.1 

for that interval. In other words, we are sure that ten events are associated with t1, 

while we have much more uncertainty for t2. Summed probability cannot distinguish 

the two and simply conveys a message that there was no change in the number of 

events from t1 and t2 without providing a measure of uncertainty on such a claim. In 

this particular case, the probability that t2 has exactly ten events is only 0.13, with a 

probability of increase from t1 to t2 equal to 0.41 and a probability of decrease equal 

to 0.45.2 

The second issue raised by Blackwell and Buck concerns the core assumption of 

dates as data,i.e. what is being counted are simply dates, and the events they are 

associated with are ambiguously defined (e.g. “anthropic”), encompassing a wide 

range of behavioural processes. Rick’s gambit hinges on the assumption that the 

aggregate frequency of radiocarbon dates associated with different anthropic events 

correlates with population density, retaining a reliable signal by evening out its 

underlying heterogeneity. A relatively large number of papers have discussed how 

this assumption can be problematic (Attenbrow & Hiscock, 2015; Becerra-Valdivia 

et al., 2020; Torfing, 2015; Ward & Larcombe, 2021). While this is unquestionably 

an important issue, I will not add much more to the debate for two reasons. Firstly, 

the problem is context-dependent—demonstrating that the assumption that does or 

 
2 These probabilities can be computed using the binomial probability mass function. 



 

 

does not hold for a particular dataset does not allow its conclusion to be generalised 

to all DAD applications. Secondly, the problem arises prominently if events 

associated with the sample dates are not clearly identified. In other words, if one 

decides to limit their dataset to radiocarbon dates associated with particular types of 

events (e.g. the constructions of dwellings), much of the issue is reduced to the extent 

by which the correlation between the frequency of such events, and the population 

under investigation is stationary over time (and space). Of course, this does not 

necessarily solve all interpretative problems. Still, it is worth noting that time–

frequency analyses of radiocarbon dates represent a wider class of analyses, models, 

and issues than DAD. 

The Curse of Eyeballing 

The issues discussed in the previous section are just a fraction of a wider range of 

problems associated with the direct interpretation of SPDs discussed in the literature. 

While readers concerned with these problems should consult more detailed 

discussions for each, it is worth briefly revisiting some of the key matters raised, 

namely (1) sampling error; (2) heterogeneity in sampling intensity; (3) spatial 

averaging and nonstationarity; (4) taphonomic loss; and (5) systematic measurement 

errors associated with the calibration process. 

Sampling Error 

A trivial (but somewhat surprisingly too often disregarded) aspect of time frequencies 

of radiocarbon dates (or any other count-based population proxy) is the notion that 

the observed data are just samples and not the statistical population. A simple way to 

conceptualise this is to consider the observed sample of dates as random draws from 

a probability distribution spanning the time window of interest and characterised by 

an unknown shape that we aim to recover. This effectively formalises the assumption 

of any frequency-based proxy—we expect to find more “things” (e.g. sites, artefacts, 

radiocarbon dates) during intervals where there are more people; if we have twice as 

many people for a given time interval, we should expect twice as many “things” we 

are counting. In practice, however, this relationship is conditioned by the available 

number of dates, and observed data can deviate from this expectation. In other words, 

even if there is a perfect correlation between human population size and the frequency 

of radiocarbon dates, there will always be some deviations arising from sampling 

error, and observed peaks and troughs might not be a genuine signal of population 

change. As mentioned earlier, the problem was already raised in Rick’s original work 

and has since then been tackled in a variety of ways (e.g. Michczyńska & Pazdur, 

2004; Kelly et al., 2013; Shennan et al., 2013; Manning & Timpson, 2014; Brown, 

2015; Dye, 2016; Bronk Ramsey, 2017). Larger sample sizes can, of course, minimise 

the problem of sampling error, and as such, it is tempting to think whether there is a 

threshold above which the problem can be safely ignored. A widely cited work by 

Williams (2012) has, for example, provided a guideline figure of 500 dates, following 

previous simulation-based analyses by Michczyńska & Pazdur (2004) and by Geyh 

(1980). While a clear answer to the question “how many dates do I need for my SPD?” 



 

 

might sound reassuring, the reality is that this ultimately depends on the scale, the 

granularity, and the magnitude of the specific fluctuations we wish to identify (see 

Hinz, 2020 for a simulation-based study on this problem). To a large extent, this is 

akin to the issue of statistical power in null significance hypothesis testing (NSHT); 

sample size is only one side of the coin, and its required value depends on the effect 

size we wish to determine. Large trends can be detected from smaller sample sizes 

while identifying smaller fluctuations requires more data. The problem is exacerbated 

by the fact that we have much less clue about the shape of the target population 

compared to other kinds of data. For example, if we were to examine a small sample 

of femur lengths from a particular cemetery assemblage, we would expect, a priori, 

a normal distribution following the central limit theorem—if we plot a histogram and 

observe a small deviation from a bell curve, we would be inclined to dismiss this as 

the result of sampling error. The frequency distribution of radiocarbon dates has fewer 

and much less formalised general principles that can help us be sceptical about the 

peaks and troughs we observe. Aside from extreme fluctuations, we would regard 

many of the patterns we observe as plausible evidence of population change. In other 

words, we do not have a strong prior on the expected shape of the SPD, and having 

an epistemic stance prone to over-interpretation does not help. 

Heterogeneity in Sampling Intensity 

Adopting formal statistical inference (see next section) can address the problem of 

sampling error. However, this is ensured only if the two fundamental assumptions of 

statistical samples—randomness and independence—are met. Radiocarbon dates are 

clearly not randomly sampled from a population of possible dateable artefacts. In 

most cases (but see Porčić et al., 2021 for an exception), samples for demographic 

inference are based on the re-use of 14C dates collected for a wide range of purposes 

using various sampling strategies. The question is whether, with a sufficiently diverse 

set of sampling strategies and designs underlying a given dataset, we can treat the 

sample as if it were random. The answer is, once again, context-dependent, but there 

are a few typical cases where such an assumption does not hold. The most notable 

one is that the likelihood of employing radiocarbon dating declines when 

investigating historical periods where more accurate, precise, and cheaper dating 

methods become available. It follows that all radiocarbon-based time–frequency data 

suffer from an edge effect approaching the present day, with a magnitude and timing 

that vary geographically and limit opportunities for cross-regional studies for more 

recent periods. 

Systematic temporal variations in sampling intensity are harder to detect when they 

are likely to produce biases that do not contradict our expectations as bluntly as the 

case of the declining density towards the present day. For example, one could 

postulate that an increased interest in dating more accurately the earliest evidence of 

Neolithisation might promote a higher sampling intensity and consequently lead to a 

higher density of radiocarbon dates during the early stages of the Neolithic period. 

The problem here is that we also expect an increase in the population size during this 

period, and as such, we would hardly interpret a higher density of radiocarbon dates 

during this interval as an anomaly or the consequence of a research bias. 



 

 

Heterogeneous sampling intensity across time is perhaps the most concerning and 

simultaneously less understood bias that might affect the DAD approach. One 

possible way to mitigate its impact is to include statistical variables aimed to control 

the potential impact of the original purpose of dating, e.g. by discerning dates from 

specific research projects to those obtained in rescue excavations. While no attempts 

have been made in this direction yet, statistical analyses of different recovery 

practices do show specific signatures (Vander Linden, 2019) and might provide a 

baseline for accounting for these kinds of biases. 

The mixture of different objectives and dating practices is particularly evident 

when examining inter-site variations in sampling intensity. For example, in the 

EUROEVOL database (Manning & Timpson, 2014), the largest number of dates 

associated with an individual site is 184, while more than half of the sites (2,138 out 

of 4,213) contained only a single date. Several solutions have been proposed to tackle 

this problem. For example, dates that are known to be referring to the exact same 

event can be combined following Ward & Wilson’s method (1978; see, e.g. Ahn & 

Hwang, 2015). A similar procedure often referred to as “binning” (see Timpson et 

al., 2014), consists of generating a “local” SPD by summing the calibrated probability 

of dates from the same site that are “close” in time and normalising to sum to unity 

the area of the resulting curve. In both cases, the net result is to treat sets of multiple 

dates as one and effectively compensate for the unevenness in sampling intensity. 

There are, however, different implications between the two approaches. In the first 

case, the aggregation process does not alter the nature of what is being counted as it 

relies on the notion that sets of dates refer to the same event. Thus, for example, if 

dates are aggregated based on the construction of residential units (our target event), 

the resulting frequency data would still be a proxy of changes in the number of 

dwellings over time. The situation is slightly different in the case of the “binning” 

approach. Here the aggregation “ensures that each site-phase is equally weighted 

when generating the SPD” (Timpson et al., 2021, emphasis added), which implies 

that effectively we are defining the target as loosely defined “site occupation” counts. 

The problem becomes even more complex as the “binning” approach requires some 

temporal threshold for aggregating dates that are “close” in time. Modifying such a 

threshold could yield rather different results, and while one can carry out sensitivity 

analyses, the nature of what is being counted remains hostage to the value assigned 

to such parameter. Shifting the interpretation of the temporal frequencies of 

radiocarbon dates from “population size” to “number of occupied settlements” can 

help, but at the same time, this introduces interpretative consequences. Empirical 

estimates of growth rates obtained can no longer be assumed to be directly emerging 

from demographic events (i.e., birth, death, and migration) alone but rather as a joint 

outcome of these processes with episodes of settlement fission, fusion, and extinction. 

Shifts between nucleated and dispersed settlement patterns, changes in the duration 

of settlement occupation, or variations in intra- and interannual residential mobility 

patterns are just some examples of processes that can lead to signals without an actual 

change in the underlying human population (cf Bevan & Crema, 2021). This is a 

problem of interpretation, and while it does not on its own jeopardise the DAD 

approach, it further emphasises the issues of comparability between growth rates 

estimated from archaeological data to those observed in ethnographic and historical 

contexts (see Tallavaara & Jørgensen, 2021) or even how differences between 



 

 

different archaeological population proxies should be interpreted (see Palmisano et 

al., 2017; Crema & Kobayashi, 2020; Seidensticker et al., 2021). 

Spatial Averaging and Nonstationarity 

The ubiquity of radiocarbon data and the increasing availability of larger databases 

(e.g. Manning et al., 2016; Chaput & Gajewski, 2016; Lucarini et al., 2020; Martínez-

Grau et al., 2021; Bird et al., 2022) has pushed many to attempt reconstructing 

prehistoric population dynamics for larger windows of analyses, often at continental 

scales (Shennan et al., 2013; Wang et al., 2014; Williams, 2012). 

Summarising putative population dynamics of a vast geographic area with a single 

time series can undoubtedly be misleading, as it implicitly assumes that all subregions 

had similar demographic trajectories. The trade-off is between selecting a smaller 

window of analyses that accounts for spatial variation but is impacted by higher 

sampling error or opting for a wider region that benefits from a larger sample size but 

yields a “space-averaged” estimate (Porčić et al., 2021) that might not be 

representative of any of its subregions. The problem is further exacerbated by the fact 

that larger study areas are likely to be characterised by variations in sampling 

strategies and intensity, as different administrative and geopolitical units are often 

associated with substantial variation in wealth, sample design, and research interests 

(Crema, 2020). 

The use of spatial analyses that explicitly explores regional variation in 

demographic trajectories (Timpson et al., 2014; Chaput et al., 2015; Crema et al., 

2017; Riris & Arroyo-Kalin, 2019) can offer far more informative insights for larger 

regions than a single timer-series. However, as for frequency time-series, these 

spatiotemporal density maps cannot be based exclusively on visual assessment and 

needs explicitly account for variations in sampling intensity (e.g. using relative risk 

surfaces; see Chaput et al., 2015; Bevan et al., 2017) as well as the delicate balance 

between spatial resolution and sampling error (e.g. by using spatial permutation tests 

Crema et al., 2017; Riris & Arroyo-Kalin, 2019). 

Taphonomic Loss 

Taphonomic loss, and other post-depositional processes, are another key factor that 

can bias the raw and direct interpretation of the radiocarbon record and other types of 

time–frequency data. As for many of the other biases discussed above, the issue was 

already raised in Rick’s seminal paper, which, amongst other things, highlights the 

implication of older dates being less likely to survive and included in the sample. A 

model-based assessment of the potential magnitude of taphonomic loss has been 

explored by Surovell and Brantingham (2007), who showed how under extreme 

conditions, an exponentially declining population could even yield an exponential 

growing frequency curve. Adjusting frequency data for taphonomic loss is 

straightforward but requires a loss function derived from independent estimates. 

Surovell and colleagues have (Surovell et al., 2009, see also Bluhm & Surovell, 2019 

for an updated version) used radiocarbon ages from volcanic deposits to empirically 

estimate the impact of taphonomic loss. Their analyses revealed that the rate of 

taphonomic loss is not constant, but declines as the age of the site grow and propose 



 

 

a global “correction formula” that accounts for this factor for time–frequency data 

between 40,000 and 1,000 cal BP. The implication of this correction can vary between 

datasets and is generally expected to have a greater impact when dealing with 

multimillennial scales. Still, several studies have also reported negligible effects (see 

for example Zahid et al., 2016; Tremayne & Winterhalder, 2017; Broughton & 

Weitzel, 2018; Fernández-López de Pablo et al., 2019). 

Calibration Effects 

The uncertainty associated with radiocarbon dates is a combination of sample-

specific measurement errors and the systematic effect of the information loss resulting 

from the calibration process. The random nature of the former makes it a 

comparatively negligible factor for most objectives, with limitations primarily 

concerning the analytical resolution. With a sufficiently large sample size, the impact 

of these errors can, in most cases, be considered negligible. The systematic nature of 

the latter is far more problematic as it can lead to artificial patterns in the time–

frequency data—with all other things being equal, 14C dates within calibration 

“plateaus” will tend to produce wider and flat calibrated probability distributions. In 

contrast, samples located within steeper portions of the curve will tend to have 

narrower and more “spiky” distributions (but see Brown, 2015). In this case, 

increasing the sample size does not help—the sum of flat probability distributions 

with similar ranges will, unsurprisingly, be a flat probability distribution. The 

cumulative consequence of this effect is that some of the fluctuations observed in 

empirical SPDs are just the results of these calibration effects. This is a well-known 

problem that has been pointed out repeatedly in the literature (Guilderson et al., 2005; 

Williams, 2012; Brown, 2015; Weninger et al., 2015; Crema & Bevan, 2021). 

It is worth noting that the problem is not unique to radiocarbon dates and applies 

to any dating method where events closer in time have similar systematic information 

loss. Perhaps the most common example is the use of archaeological periodisations 

and relative chronologies, and its implications become tangible when attempts are 

made to quantify their uncertainty and convert assignments to particular periods or 

phases into absolute calendar dates. Several approaches have been proposed in the 

literature, starting from the application of aoristic analysis (Crema, 2012; Johnson, 

2004) to the use of more complex probability models (Baxter & Cool, 2016; Collins-

Elliott, 2019; Crema & Kobayashi, 2020) to convert a given “time-span” of the 

possible existence of an event into a probability distribution. The issue, in this case, 

is that the extent of such temporal intervals is in practice informed by the presence of 

some diagnostic features which allow the specialist to assign a particular object into 

a phase (e.g. “Early Bronze Age I”). Thus, two events that are separated in time, but 

have similar diagnostic features, will be assigned to the same “time span of existence” 

and ultimately have identical probability distributions. It follows that summing these 

probabilities (e.g., using “aoristic sums”) will yield time-series with spurious artefacts 

similar to those observed in SPDs (see Bevan & Crema, 2021 for discussion). 

Calibration effects have been tackled mainly by applying some smoothing 

techniques to remove indiscriminately any short-term fluctuations in the SPDs. These 

can be as simple as calculating the average summed probability over a sliding window 



 

 

(e.g. Shennan et al., 2013; Kelly et al., 2013) or more complex solutions involving 

the joint use of Monte-Carlo simulations and Kernel Density Estimates (e.g., Brown, 

2017). These and other solutions (e.g. Weninger et al., 2015) can help deter over-

interpretations of radiocarbon frequency data, particularly for shorter temporal scales 

(< 500 years) where the impact of these systematic errors is particularly pronounced. 

However, it is worth noting that many of these methods are effectively designed to 

“mask” the effect of calibration for visualisation purposes and do not address the 

problem directly and systematically. 

Statistical Inference 

The brief survey of potential biases affecting radiocarbon time–frequency is a 

reminder of how visual inspections of SPDs should be carried out with extreme 

caution. Any insights obtained from visual assessments should be appropriately 

examined to formally discern whether they pertain to processes of interest or are mere 

statistical artefacts. While this principle generally applies to data visualisations, the 

lurking temptation of making post-hoc narratives from SPD plots appears to be 

particularly common despite continuous reminders and warnings in the literature to 

consider potential confounding factors. 

The confidence that SPDs can be read as a direct signal of fluctuations in 

radiocarbon density (and conversely in population density) has led many to take a 

further step and carry out statistical analyses directly using the temporal sequence of 

summed probability values in SPDs. Examples range from simple correlations 

between SPD curves and other time series such as paleoenvironmental data 

(Palmisano et al., 2021) or other population proxies (Crema, 2020) to more 

sophisticated analyses, including the use of Granger causality analyses to explore 

lagged responses to climatic events (Kelly et al., 2013), attempts to identify early 

warning signals of collapse (Downey et al., 2016), or use of ecological population 

models (Freeman et al., 2021) with externally induced, time-varying carrying 

capacities (Lima et al., 2020). The level of sophistication achieved by some of these 

studies is often very high and undoubtedly offers a glimpse of the kind of exciting 

questions that we could answer. Yet, fundamental concerns regarding sampling error 

or calibration effects are often ignored or just mildly acknowledged without a formal 

exploration of what their impact would be. 

The extent to which inferences based on direct statistical assessments of SPDs are 

biased will inevitably depend on the specific context, but the general expectation is 

that this is a function of sample size, absolute time-interval, and the temporal 

granularity of the process under investigation. When sample sizes and the 

chronological granularity of the analyses are sufficiently large, the impact of 

sampling and calibration is likely negligible compared to the signal we aim to detect. 

However, there is no simple way to determine when this is the case. How many 

radiocarbon dates do we need to stop being concerned about sampling error? What is 

the appropriate temporal scale of analyses so that the impact of calibration can be 

safely ignored? As it is always in these cases, the answer is an unworkable and 

unsatisfying “it depends”. As noted by Price et al. (2021), even with an infinitely 

large number of radiocarbon dates, an SPD would not be able to recover the shape of 



 

 

the underlying population as a result of the summation of the probabilities and the 

systematic impact of calibration. 

There are situations where ignoring these issues can lead to strikingly different 

outcomes. For example, Lima et al. (2020) have recently constructed an SPD for the 

Pacific Island of Rapa Nui and fitted different logistic growth models. They utilised 

information criteria to demonstrate that the highest support was found in a model 

where the carrying capacity was a function of environmental covariates, which they 

used as an argument in support of the so-called ecocide hypothesis. A follow-up study 

by Di Napoli et al. (2021) employing approximate Bayesian computation (see below 

for details), which accounts for sampling error and calibration effects, has shown no 

support for such a model and instead indicated that, with the available evidence at 

hand, there was no way to discern between the competing models. 

However, the direct use of SPD values for statistical analyses does not represent 

the entirety of inferential approaches dedicated to population studies based on time 

frequencies of radiocarbon dates. In less than a decade, a significant number of novel 

methods that account for many of the issues discussed in the previous section have 

been proposed in the archaeological literature. They all share a fundamental 

dissatisfaction with approaches based on the direct interpretation of SPDs and offer 

solutions tailored to specific inferential needs (see below and Table 1 for a summary). 

Despite some fundamental differences, these techniques can be broadly classified into 

three groups based on their primary objective: (1) reconstructive approaches,  

(2) null-hypothesis significance testing (NHST) approaches, and (3) model-fitting 

approaches. As for any attempts in imposing sharp categorical boundaries, one should 

be critically aware that many of the methods presented below do share conceptual 

roots, and a combination of techniques from different approaches can well coexist in 

the same study. 

Reconstructive Approaches 

The section above has repeatedly highlighted that a visual inspection of SPDs is not 

warranted and may lead to biased interpretations in some situations. Yet data 

visualisations can be a powerful tool to highlight information that cannot be 

sufficiently portrayed by numbers alone (Anscombe, 1973). Thus, it does not come 

as a surprise that many have attempted to tackle this difficult trade-off by 

implementing a visualisation technique that can simultaneously correct for the impact 

of the calibration process while acknowledging the potential impact of sampling error 

by displaying an envelope surrounding observed SPD values. 

A few different approaches have been proposed to achieve this objective (see Table 

1 and Fig. 1), with the earliest application dating back to the already mentioned 

bootstrap confidence interval employed by Rick (1987). Since then, other authors 

have taken a similar approach (e.g. Timpson et al., 2014), sometimes in conjunction 

with more sophisticated procedures. For example, McLaughlin (2019) advocates a 

solution based on a combination of bootstrapping and kernel density estimates. Given 

a collection of radiocarbon dates, the approach consists of (1) randomly selecting 

(with replacement) a subset of the sample; (2) calibrating the sampled dates; (3) 

sampling a calendar date from each calibrated probability distribution, and (4) 

running a univariate kernel density estimate (KDE). The process is repeated multiple 

times so that an ensemble of KDEs is obtained, combined, and visualised as an 



 

 

envelope (Fig. 1, first row; see also Brown, 2017 for a similar approach but without 

the bootstrapping step). Such bootstrapped composite KDE (cKDE) addresses the 

issue of sampling error (step 1), chronological uncertainty (step 3), and the problem 

of calibration artefacts (KDE smoothing in step 4). The choice of bandwidth size and 

the shape of the kernel can have a significant impact on the final product, with the 

resulting curve being either under or over-smoothed. McLaughlin suggests a 

comparatively small bandwidth (e.g. 30 years) for most applications to capture 

sudden changes in density, but it is an open question whether this size can avoid all 

instances of artificial calibration peaks often observed in SPDs. While there are a 

relatively large number of algorithms designed to find optimal bandwidth sizes based 

on the observed data (Heidenreich et al., 2013), there is no clear consensus on which 

one should be preferred, nor a systematic exploration of which methods are better 

suited for demographic inference. Finally, KDEs are typically affected by an edge 

effect, with a decline in density at the start and the end of the window of analysis. 

Edge correction formulas do exist, but their application becomes problematic given 

the nature of the resampled data, and the most straightforward approach seems to be 

the selection of a wider data window and a narrower visualisation window. 

The problem of bandwidth size selection can be solved by treating this as a 

parameter to be estimated using Bayesian inference. This solution was developed by 

Bronk Ramsey, 2017) and is implemented in the widely used calibration and Bayesian 

analyses software OxCal (see Fig. 1: second row). The approach consists of using a 

uniform prior for the bandwidth size h with an upper limit based on Silverman’s rule 

(1986), which provides a criterion for identifying h when the underlying distribution 

is Gaussian. Bronk-Ramsey considers this as an upper threshold that  



 

 

 



 

 

 



 

 

 

Fig. 1  Comparison of reconstructive approaches to radiocarbon frequency data on small (n = 10), medium 

(n = 100), and large (n = 1000) datasets using bootstrapped Composite Kernel Density Estimate, OxCal’s 

Model_KDE and baydem’s finite Gaussian Mixture model. The grey area represents the shape of the 

underlying probability (identical for the three sets) from which radiocarbon dates were sampled from. R 

scripts required for generating the figures are available at https:// github. com/ ercre ma/ c14de morev iew 

and archived on zenodo (https:// doi. org/ 10. 5281/ zenodo. 64213 45) 

would over-smooth multimodal distributions. The predictive likelihood used to 

estimate h is instead based on the product of likelihoods of each date as modelled by 

the KDE based on the remaining data, excluding the focal date. The model can be 

fitted alongside other distribution models in OxCal (e.g. uniform, Gaussian, 

exponential, etc.) that will act as a prior and can modify the shape of the kernel for 

each date. Alternatively, an extension of this approach (called KDE_Model in OxCal) 

can be adopted where the prior for each observation point is effectively the KDE 

distribution of all the other radiocarbon dates. 

While the KDE approach proposed by Bronk-Ramsey has both elements of 

frequentist and Bayesian inference, a full non-parametric Bayesian approach is also 

possible via the finite Gaussian mixture model (Fig. 1: third row). This is a flexible 

method that is now widely used in many fields (see, e.g. in isotopic studies Fernandes 

et al., 2014) and the Bchron (Haslett & Parnell, 2008) and the baydem (Price et al., 

2021) R packages offer functionalities for its application for radiocarbon analyses, 

https://github.com/ercrema/c14demoreview
https://github.com/ercrema/c14demoreview
https://doi.org/10.5281/zenodo.6421345


 

 

albeit with some minor differences in their implementation. The core idea of a finite 

Gaussian mixture is to conceive the observed data as the aggregation of a finite 

number of Gaussian distributions, each with its own mean and standard deviation. 

The inferential process consists of determining the number of mixture components 

(i.e. Gaussian distributions), their associated parameters (i.e. mean and standard 

deviation), and their relative contributions (i.e. expected proportion of the data), 

which provides a flexible range of probability distribution shapes. In contrast to other 

applications (e.g. isotope-based diet reconstructions), the objective here is not the 

recovery of particular parameters but the overall shape of the probability distribution, 

which effectively portrays how the density of radiocarbon dates changed over time 

while accounting for sampling error and calibration effect. Price et al. (2021) have 

recently developed this technique specifically for the use of demographic archaeology 

by stressing the importance of the direct computation of the likelihood (see also 

below). They provide a Bayesian workflow and an associated R package to facilitate 

its application (baydem), allowing users to assign specific priors or to estimate the 

optimal number of mixture components. They illustrate their technique by examining 

the radiocarbon record of the Maya city of Tikal, showing how their approach is 

consistent with previous studies based on other lines of evidence and proxies, whilst 

providing a more precise estimate of the timing of key demographic events. 

The three approaches discussed above provide more robust alternatives to SPD for 

visualising the radiocarbon density record. One of the most appealing aspects shared 

by all solutions is that, in contrast to other methods described below, some of them 

require a relatively smaller number of assumptions by the end-user. OxCal’s KDE 

can be fully automated, and cKDE requires only the number of bootstrap iterations 

and the kernel bandwidth size. Bayesian finite Gaussian mixture models do, however, 

require additional user-defined settings, including hyperparameters and the number 

of mixture components. The latter is a key parameter as it defines the complexity of 

the resulting shape of the density distribution, but users can specify multiple values 

and carry out model selection via Pareto smoothed importance sampling (PSIS) to 

determine the optimal number whilst avoiding overfitting. There is, however, a 

substantial variation in terms of computational costs. cKDE with bootstrapping is a 

relatively fast method that will take just a few minutes even when the sample size is 

relatively large; baydem’s Bayesian finite Gaussian mixture model would require a 

much longer processing time, especially when dealing with larger sample sizes and 

the range of mixture components to be explored is high. OxCal’s KDE comes with 

the highest computational cost, with runtimes ranging from several hours to a few 

days when the sample size is above 1000 dates. Despite these differences in 

computational costs, the difference in the output (particularly about the “true” 

population) can be negligible in many situations (Fig. 1, see also Price et al., 2021), 

particularly when sample sizes are large. 

In contrast to the other methods detailed below, these reconstructive approaches 

can be seen as the go-to solution for any preliminary assessment of the available data. 

These approaches are particularly appealing because they do not require the user to 

assume a priori a specific shape of the underlying density distribution.  

However, there are two things to consider. The first relates to the unavoidable 

weakness of all three approaches when dealing with smaller sample sizes (see Fig. 1, 

third column). Confidence envelopes are larger in these cases, but they might still fail 



 

 

to include the true underlying probability distribution. Unfortunately, because of the 

very nature of these models, there is no way to determine an optimal minimum sample 

size as this would depend on the scale and magnitude of the signals one is hoping to 

reconstruct. The second issue stems from the fact that these tools can be abused as 

inductive inference engines. The confidence that visual outputs produced by these 

methods are more reliable than SPDs can easily entice scholars to develop post-hoc 

explanations without formal and direct testing. 

Null‑Hypothesis Significance Testing (NHST) approaches 

Approaches in this category are designed to address the limitation of reconstructive 

methods by formally examining specific hypotheses. For example, one might be 

interested in determining whether observed time frequencies of radiocarbon dates 

conform to or deviate from what we should expect from an exponential population 

growth with a particular rate or whether two regions have experienced similar 

population trajectories during a specific time window. These examples are well suited 

for applying a null-hypothesis significance testing (NHST) framework. 

The number of case studies employing NHST for examining radiocarbon time–

frequency data has grown substantially since the publication of the seminal paper by 

Shennan and colleagues (2013), who first introduced a Monte-Carlo simulation 

approach that underpins most of the current applications. A comprehensive review of 

these approaches and an introduction to a dedicated R package that facilitates their 

applications is provided elsewhere (Crema & Bevan, 2021), but it is worth 

highlighting here the core idea behind these methods and, more importantly, their 

limitations in practical applications. 

The Monte-Carlo simulation approach introduced by Shennan et al. (2013) 

consists of comparing the observed SPD against a distribution of SPDs that one 

should expect to obtain given a particular null model. The intuition here is that given 

a growth model and a sample size of radiocarbon dates, one can iteratively generate 

an ensemble of SPDs and determine whether the observed SPD can be distinguished 

from those or not. In practical terms, such a null model is conceptualised as a 

sequence of probabilities values associated with each calendar year, e.g. P(t = 2500 

BP) = 0.001, P(t = 2499 BP) = 0.002, and P(t = 2498 BP) = 0.003. This effectively 

formalises the simple notion that if a particular year is assumed to have twice the 

population size of another, we would assume that the number of expected dates 

(hence the associated probabilities) would be two times larger. This discrete 

probability distribution is used to simulate n dates, with n equivalent to the observed 

sample size. The resulting set of calendar dates is then converted into 14C age by 

“backcalibration”, and a measurement error, sampled with replacement from the 

observed data, is randomly assigned to each. This workflow generates n radiocarbon 

dates that we should expect to obtain if the null hypothesis was true, and the resulting 

SPD can be constructed using standard procedures. To account for variations arising 

from sampling error, this process is repeated many times. The resulting distribution 

of SPDs is then compared against the empirically observed one in two ways. The first 

consists of displaying the simulation envelope against the observed data and visually 



 

 

identifying regions of positive and negative deviations that represent time interval 

where the density of radiocarbon dates was higher or lower than the one expected by 

the null model. The second consists of retrieving a single, global P value based on a 

test statistic computed from the aggregate deviation from the simulation envelope 

(see Timpson et al., 2014 for details). 

The MCMC approach effectively addresses two of the most problematic issues 

(i.e. sampling error and calibration effect) by emulating their consequences in the 

Monte-Carlo simulation routine. While there have been some minor modifications in 

the method (see, e.g. the use of different algorithms for generating samples—see 

Crema & Bevan, 2021), as well as some follow-up secondary analyses (e.g. 

Edinborough et al., 2017), the fundamental approach remains the same and is 

implemented in the R packages rcarbon (Crema & Bevan, 2021) and ADMUR 

(Timpson et al., 2021). 

The method described above is effectively a one-sample test where the observed 

SPD is compared against a user-defined theoretical model. In many situations, 

however, the key objective is to compare two or more SPDs to each other rather than 

against a theoretical model. Examples include the comparison of the population 

trajectory of two or more geographic regions (Shennan et al., 2013) or the relative 

proportion of different site types (e.g. monuments vs settlements, as in Collard et al., 

2010) or dated samples (e.g. wild vs domesticated plants; as in Stevens & Fuller, 

2012). All these cases can be tackled using a randomisation test, which simply 

consists of (1) assigning a mark to each radiocarbon date defining its membership to 

a particular set (e.g. region A and region B); (2) generating a separate SPD for each 

set; (3) randomly shuffling the marks assigned to the dates, and generating an SPD 

for each set again; (4) repeating the previous step multiple times; (5) comparing the 

observed SPD obtained in step 2 against the distribution of SPDs obtained in step 4 

using a similar procedure to the one-sample Monte-Carlo method described above. 

Such mark permutation test (Crema, Habu, et al., 2016; Crema, Kandler, et al., 2016; 

but see also Dye, 1995 for a similar earlier application) provides a direct test on 

whether multiple SPDs have similar shapes and is currently implemented in the 

rcarbon R package. Extensions of this approach include hot-spot analyses for 

detecting spatial heterogeneity in growth rates (Crema et al., 2017) and formal testing 

of resilience-resistance to external perturbation (Riris & de Souza, 2021). 

NHST approaches to the analysis of time–frequency data have successfully 

introduced a more robust inferential process that overcame many of the limitations 

imposed by simple visual assessments of SPDs. While these advances are important 

steps forward; they also share the same kind of problems afflicting the NHST 

framework in general. Three of them are particularly noteworthy and deserve some 

careful consideration. 

Firstly, the interpretation of P values should account that these are both a 

function of sample and effect sizes. While I am not aware of any systematic survey 

on the misinterpretation of P values in archaeology, review studies in other fields 

that employ statistical inference more routinely suggest that its definition and 

interpretation are often incorrect (e.g. Gliner et al., 2002, Greenland et al., 2016). A 

high P value should not be interpreted as a goodness of fit of the radiocarbon record 

to the proposed null model, while low P values can easily be obtained if there is a 

sufficiently large sample size, even if the effect size (i.e. the deviation from the null 



 

 

hypothesis) is comparatively small. The second point highlights the main inferential 

limitation of NHST, particularly when quantifiable estimates of effect sizes are not 

available, as in this case. Testing whether an observed SPD deviates from a 

particular exponential growth rate or determining whether two regions have 

different trajectories are examples of point hypotheses, i.e. a hypothesis that 

evaluates a single value. Strictly speaking, we already know that the null hypothesis 

is incorrect—an SPD would unlikely have exactly a particular exponential growth 

rate at its 7th decimal point, and two regions would never have perfectly identical 

population dynamics. What matters is how and how much the observed data 

deviates from a particular null hypothesis, and this is not something that can be 

inferred from P values. Obtaining a statistically significant result might well just tell 

us only that we have a large number of radiocarbon dates in our databases. 

Secondly, while the selection of the null hypothesis for permutation tests is 

typically straightforward, one-sample Monte-Carlo tests require a user-defined 

growth model. This means that depending on the choice of this null model, global P 

values, as well as local positive and negative deviations from the simulation envelope, 

can vary. For example, using an exponential growth null model for radiocarbon 

frequency data characterised by a logistic growth would yield a negative deviation 

for time intervals where the population reached its carrying capacity. Similarly, large 

deviations from the null model during early sections of the window of analyses can 

lead to misleading signals in later portions even if the underlying shape of the SPDs 

are similar. Comparing rates of change of the SPDs can partly solve the problem (see, 

e.g. Crema & Kobayashi, 2020, Arroyo-Kalin & Riris, 2021), but clearly, positive 

and negative deviations should not be uncritically interpreted as signals of population 

boom and busts. It is also worth pointing out that some instances of local deviations 

are expected to be false positives (see Timpson et al., 2021 for discussion), and as 

such, interpretation of these plots should only be made only if the global P value 

suggests a rejection of the null hypothesis in the first place. 

Thirdly, it should be noted that the one-sample Monte-Carlo method is designed 

to test the observed SPD against a particular parametrisation of a model. In other 

words, the question that is being asked is not whether a given data follows, for 

example, an exponential growth, but whether it follows an exponential growth with a 

specific growth rate r. It follows that rejecting a particular rate r does not necessarily 

imply that all exponential growth models are rejected. In practice, however, one could 

test against the most probable value of r so that its rejection would imply the rejection 

of all other values of r and consequently the model as a whole. The selection of r (or 

any other parameters) is typically obtained by fitting a regression model to the 

observed SPD values. As discussed above (and explored in Carleton, 2021), these 

estimates can be biased (see also Fig. 2). It is difficult to determine whether the impact 

of this discrepancy can have significant inferential consequences, and it is worth 

noting that the approach does not necessitate a workflow where the null  



 

 

 

Fig. 2  Estimates and 95% confidence interval of a fitted exponential growth rate on a simulated dataset 

with two different sample sizes (n = 50 and n = 500) using: a direct regression fit on the SPD; b Bayesian 

radiocarbon-dated event count (REC) model; c maximum likelihood fit via the ADMUR package; d) 

Bayesian hierarchical model via nimbleCarbon package; e) approximate Bayesian computation with 

rejection algorithm. Real growth rate is shown as a dashed line. R scripts and details required for generating 

the figures are available at https:// github. com/ ercre ma/ c14de morev iew and archived on https:// doi. 

org/ 10. 5281/ zenodo. 64213 45 

model is based on the observed data. For example, Silva and Vander Linden (2017) 

examined SPDs of Neolithic Europe using the growth rate estimated from pre-

existing Mesolithic populations, while Crema and Kobayashi (2020) have compared 

an SPD of the Jomon period in central Japan against a null model based on the 

fluctuations of independently dated pit-dwellings. 

Model‑Fitting Approaches 

Both reconstructive and NHST approaches are commonly used as exploratory devices 

that provide the basis for developing more sophisticated explanatory models. These 

are, however, mostly limited to speculative statements that are rarely tested directly 

or formally compared against alternative hypotheses. The desire to move beyond this 

inferential framework has led to a steadily growing number of studies that have 

attempted to use SPDs in more ingenious ways. In many cases, however, this 

endeavour is being pursued by directly using SPDs as the observed data, effectively 

ignoring the potential bias of sampling error and calibration effects (see discussion 

above). 

In 2021 alone, four different solutions have been developed to address these issues 

and provide a framework that can be used to fit putative growth models, infer their 

parameters, and carry out formal comparisons between competing hypotheses. While 

some of these approaches share similarities from a methodological standpoint, they 

are effectively distinct approaches with different accuracy, flexibility, and 

computational performance levels. 

Carleton (2021) proposes a hierarchical Bayesian workflow named 

Radiocarbondated Event Count model (hereafter REC model), which models the 

https://github.com/ercrema/c14demoreview
https://doi.org/10.5281/zenodo.6421345
https://doi.org/10.5281/zenodo.6421345


 

 

radiocarbon record as a one-dimensional point process with a time-varying intensity 

parameter λ(t). REC consists of fitting a hierarchical generalised linear model (GLM) 

that includes time as one of its covariates and optionally a set of additional 

independent variables (e.g. climate record). The key idea behind REC is to tackle the 

problem of chronological uncertainty by sampling n sets of random calendar dates 

from the calibrated distribution of each radiocarbon date and generating n vectors of 

count frequencies based on user-defined temporal bins. These sets of count data are 

then fitted using either a Poisson or negative binomial regression. The hierarchical 

structure of REC ensures that the distribution of the n regression coefficients is 

directly modelled using Gaussian distributions, which moments are effectively the 

estimate and the associated uncertainty of our parameters of interest. Carleton tested 

the accuracy of the REC model by generating a simulated dataset with a known 

exponential growth rate and showed that although it fails to recover the correct value 

within its posterior range, it does offer a considerable improvement over the direct 

application of GLM on SPD values (Carleton, 2021, but see also Fig. 2). The two 

main limitations of this approach are its high computational cost, which increases 

when the temporal resolution and the number of sampled sets of dates n are high, and 

the requirement for a comparatively large sample size. The latter point is intrinsically 

linked to the idea of using a count-based statistic where effectively the samples are 

not the observed number of dates but the number of temporal bins. It follows that an 

absence of dates in a particular bin could be evidence of low intensity or simply the 

effect of sampling error. In other words, the sampling procedures address the issue of 

chronological uncertainty but not sampling error. When a larger number of 

radiocarbon dates is available, the potential bias in the output is reduced, but when 

sample sizes are small, one should interpret the estimates as descriptive statistics of 

the sample rather than inferred population parameters. Despite these shortcomings, 

the opportunity to directly integrate external covariates is appealing and has already 

led to its application in determining the role of climate change in the extinction of 

quaternary megafauna in North America (Stewart et al., 2021). A dedicated R 

package (chronup) with a revised method that addresses some of these concerns is 

currently being developed (see Carleton & Campbell, 2021). 

Porčić et al. (2021) have instead employed a generative inference approach where 

estimates are made by first simulating a large collection of SPDs with the same 

samples size as the observed data and using different “candidate” parameter 

combinations of a particular population model. These outputs are then individually 

compared to the observed SPD, and the parameter values used in the subset of 

simulations with the closes fit to this target are interpreted as an approximation of the 

estimate. This approach, known as approximate Bayesian computation (hereafter 

ABC), was initially developed in population genetics (Beaumont et al., 2002) and has 

been successfully applied in different fields, including archaeology (Carrignon et al., 

2020; Crema, Habu, et al., 2016; Crema, Kandler, et al., 2016; Kovacevic et al., 

2015). In the case of radiocarbon frequency data, the generative approach effectively 

solves the problem of sampling error and calibration effects following the same 

principles of the one-sample Monte-Carlo simulation method described above. The 

key difference is the definition of an initial prior distribution of possible parameter 

values from which these SPDs are simulated. Porčić et al. (2021) used a distance 

measure to evaluate the similarity between their candidate and observed SPDs, which 



 

 

they then used to define a subset of parameter combinations yielding the closest fit to 

data. These subsets are approximations of the posterior distribution for each of the 

model parameters. The most appealing feature of ABC is the great flexibility in 

defining the generative model, as evidenced by its recent application coupled with 

agent-based simulations (Carrignon et al., 2020). The already mentioned re-analyses 

of the radiocarbon record from Rapa Nui by Di Napoli et al. (2021) is an example 

that showcases how this approach can be used to fit complex ecological models such 

as logistic growths with time-varying and externally dependent carrying capacities. 

However, the flexibility of ABC is countered by the extreme computational cost 

required to obtain a sufficiently large number of posterior samples for an accurate and 

precise estimate of the parameter of interest. The development of more efficient 

algorithms (Beaumont, 2019) is reducing this computational cost, but part of the issue 

is also dictated by the details of the simulation model itself. While there are no 

dedicated software packages for this approach either, both Porčić et al., 2021 and Di 

Napoli et al., 2021 provide R scripts that can be tailored to specific needs (see also 

the script used for Fig. 2 below). 

ABC is typically employed in situations where the likelihood function of a 

particular model cannot be numerically computed and hence substituted by a large 

number of simulations and a measure of discrepancy between target and candidate. 

Numerical solutions of the likelihood function are available for common probability 

distributions, such as the uniform or the Gaussian, that are routinely employed in 

radiocarbon phase modelling (Buck et al., 1992). However, these probability 

distributions rarely represent suitable models of population change (but see the finite 

Gaussian mixture model discussed), particularly so when the latter is more complex, 

as in the example of the time-varying carrying capacity model described above. From 

a mathematical standpoint, the complexity arises because time is modelled as a 

continuum, and hence the likelihood is based on a probability density function. 

However, the likelihood calculation becomes trivial by treating time as discrete (i.e. 

using individual calendar years as units) and using probability mass functions to 

model changes in the density of radiocarbon dates over a given interval. Given a 

population growth model m with some parameters θ1, θ2, … θk representing the 

probabilities of observing a radiocarbon date for each k year within the window of 

analyses, the likelihood is equivalent to the product of the probabilities of the 

observed events. For example, if our sample consists of three dates x1 = 3200, x2 = 

3300, and x3 = 2800, and their probabilities for a particular growth model with some 

defined parameter value y are π1 = 0.02, π2 = 0.023, and π3 = 0.001, then the likelihood 

L(θ = y| x1,x2,x3) is equivalent to π1⨯ π2 ⨯π3, or 0.00000046. One can estimate the 

parameter y yielding the highest likelihood given these three dates. The problem is 

that radiocarbon dates are not single values but are instead described by a probability 

distribution that results from its measurement error and the calibration process. 

Timpson et al. (2021) account for this measurement error by basically calculating the 

scalar product between the model probabilities and the probabilities from the 

calibrated dates. For example, suppose that x1 now has a probability of being equal to 

3200 of 0.4 and a probability of being 3201 of 0.6. We would update π1 as (0.4 ⨯ 

probability of obtaining 3200 according to the model) ⨯ (0.6 ⨯ probability of getting 

3201 according to the model). 



 

 

This solution effectively enables the use of statistical tools based on likelihood 

estimation. Model parameters can be inferred based on maximum likelihood, and 

alternative hypotheses can be compared using information criteria. Because the 

calculation of the likelihood function is effectively always the same, the model is also 

highly flexible. Any mathematical model that can generate discrete probabilities 

within a bounded range of calendar years can effectively be fitted with this approach. 

Timpson et al. (2021) make good use of this flexibility and examined the radiocarbon 

record from the South American Arid Diagonal using a continuous piecewise linear 

(CPL) model. The population growth model they employ effectively consists of n 

linear segments and n-1 hinge-points, which requires 2n-1 parameters to be inferred. 

By using information criteria, they explore models with different numbers of 

segments and show that 3-CPL (i.e. a three-segment model) provides the best fit to 

the data, providing key information such as when major shifts in population growth 

rate occurred in the South American Arid Diagonal region. This explicit model-based 

framework also enables a more robust approach toward typical problems encountered 

in the analyses of SPDs. For example, rather than applying a taphonomic “correction” 

to the observed summed probabilities, ADMUR—the R package developed by 

Timpson et al. (2021)—allows for the direct integration of the taphonomic loss model 

in the calculation of the likelihood and consequently of the parameter estimates. 

Crema and Shoda (2021) offer a Bayesian alternative to the solution developed by 

Timpson et al. (2021). While the calculation of the likelihood function follows the 

same logic based on the shift from probability density to probability mass functions, 

the modelling of measurements errors and the possibility of using priors make their 

approach different. In contrast to Timpson et al. (2021), their model considers 

calibrated probability distributions to be posteriors that can be informed both from 

the individual observation (e.g. laboratory measurement errors) and the higher-level 

model describing the variation in the density of dates over time. This is conceptually 

the same approach used in Bayesian phase models typically employed in software 

packages such as OxCal and BCal. As a result, the fitted model estimates the 

population-level parameters (e.g. exponential growth rate) and the posterior 

probability of each calibrated radiocarbon date. The second, and perhaps more crucial 

difference, is the possibility to provide prior distributions to parameters of interest. 

While strong priors and strict constraints as those occasionally implemented in 

Bayesian phase models are unlikely to be useful in this context, the opportunity to 

use weakly informative priors that can “nudge” and reduce the possible range of 

parameters values (e.g. by reducing the probability of biologically implausible growth 

rates) can enormously help the inference process when sample sizes are limited, 

allowing researchers to implement stricter inclusion criteria for their available 

radiocarbon datasets. 

The Bayesian nature of this inferential framework is particularly useful when the 

full extent of the uncertainty associated with the individual parameters is of interest. 

For example, in their case study, Crema & Shoda (2021) aimed to determine whether 

and when we observe a significant shift in population growth rate on the island of 

Kyushu in south-west Japan at the onset of the introduction of rice farming. They 

estimated this change-point to be around the seventh-eighth century BC and used the 

earliest dated charred remains of rice to estimate a temporal lag of several centuries 

between the putative date of the introduction of farming and the timing of the 



 

 

demographic response. Similarly, Kim et al. (2021) investigated whether the 

population crash that occurred during the latter half of the Chulmun period (10,000–

3,500 cal BP) resulted from mid-4th millennium climatic deterioration. To evaluate 

this hypothesis, they measured the temporal lag between the estimated start point of 

the population decline (as inferred from radiocarbon density) and the timing of abrupt 

changes estimated from Bayesian age-depth models of different proxies. Because 

both measures are characterised by chronological uncertainty, Kim et al. (2021) 

computed distributions of age differences from the estimated posteriors and 

calculated the probability that the population crash initiated after the climatic 

deterioration. While there were some differences, they showed that the probability of 

such an event was close to zero for at least two of the three proxies examined. 

It is also worth noting that because the computational framework developed by 

Crema & Shoda (2021) is essentially just a Bayesian hierarchical model, there are 

opportunities to construct models that can benefit from more complex structures. For 

example, cross-regional analyses can employ a hierarchical structure where growth 

rates of each region are inferred via partial-pooling, i.e. informed to some extent by 

the growth rates of other regions. This provides more robust estimates compared to 

separated analyses for each region and, at the same time, offers opportunities to 

directly model interregional variability in growth rates. 

The four model-fitting approaches described here all offer substantially more 

robust ways to infer model parameters compared to regression models directly 

applied to SPDs. Figure 2 shows the fitted value and the 95% confidence interval of 

the growth rate of two samples of 50 and 500 radiocarbon dates. The direct regression 

fit to the SPD fails to include the actual growth rate (dashed line), and the difference 

in sample size has minimal to no impact on the width of the confidence interval. Three 

out of the four approaches discussed here successfully manage to include the actual 

growth rate in their confidence intervals, with a wider confidence interval for the 

smaller data set. REC shows a mixed outcome instead, with the actual rate recovered 

only for the larger set and the smaller set yielding a narrower confidence interval than 

the other methods examined here. Similarly, although recovering the true parameter, 

the ABC approach performs less efficiently with substantially wider posterior 

intervals. 

Model-fitting approaches also provide an important additional benefit of being able 

to formally compare alternative growth models against the observed data. For 

example, Timpson et al. (2021) employed Schwarz Criterion to determine the optimal 

number of hinges in their CPL model, and similarly, Di Napoli et al. (2021) used 

Bayes Factors to compare different ecological models, and Crema and Shoda (2021) 

used the widely applicable information criterion (WAIC) to determine whether a 

model with change point provided more support in contrast to simple exponential 

growth. The epistemological shift from a single to multi-model inference is highly 

appealing, as it allows for formal grounds for the contrasting of competing hypotheses 

of demographic histories. There are, however, a couple of important issues to 

consider. Firstly, as mentioned earlier, the calculation of AIC and other information 

criteria on regression models directly applied to SPD values returns incorrect 

estimates. As such, those interested in this inferential framework will have to resort 

to one of the approaches described in this section. Secondly, multi-model inference 

provides only a relative measure of goodness-of-fit; the best model among the 



 

 

candidates can still be, in absolute terms, a terrible model. Timpson et al. (2021) 

tackle this problem by employing a goodness-of-fit test that is effectively equivalent 

to the one-sample Monte Carlo test discussed earlier, while both Crema and Shoda 

(2021) and Di Napoli et al. (2021) employ a graphical posterior predictive check. 

While the robustness of these sanity checks is limited with smaller sample sizes, they 

offer an important tool for the multi-model inference of radiocarbon frequency data. 

Where Next? 

The methodological review presented here showcases the growing range of analytical 

approaches designed to infer demographic changes from radiocarbon density data. 

While this trend is dictated by similar objectives and hence can be conceived as 

genuine alternatives, most of the methods discussed above were developed with 

different needs in mind. Some of the proposed solutions, particularly those grouped 

under model-fitting approaches, provide the foundation for developing bespoke 

analyses tailored to specific problems and questions arising from a given dataset. 

Others, such as those described here as reconstructive approaches, offer all-around 

solutions that are more suitable for an initial assessment of the available evidence. 

There is clearly no single go-to solution, and users should consider options according 

to their objectives. However, it is useful to highlight three recommendations that 

transcend these classifications and have often been raised by scholars who developed 

these techniques. 

1. SPD curves should never be exclusively interpreted from their visualisations nor 

directlyused for statistical inference. As mentioned repeatedly throughout this 

paper, the impact of sampling error and calibration effect is simply too significant 

to be ignored. Visual assessments of SPD can, however, provide important cues, 

particularly when dealing with broader-scale multimillennial trends. As such, if 

the objective of the analysis is data description and exploration, the adoption of 

reconstructive approaches that visually provides an uncertainty envelope should 

be considered. While in some cases these methods might be too conservative and 

hide shorter scale fluctuations, they can avoid hasty conclusions based on little 

evidence. 

2. Consider running sensitivity analysis. Many of the methods described above rely 

on some fine-tune settings where users are required to provide some numerical 

figures. These include, for example, binning window sizes for aggregating 

radiocarbon dates from the same site or bandwidth sizes in some Kernel den- 

sity estimates. Although in some cases one can justify their choices, the relative 

impact of how changing these parameters affects the ultimate inference should 

be explored when possible (see, e.g. Riris, 2018; Feeser et al., 2019). Similarly, 

the inclusion or exclusion of a particular set of samples should be evaluated when 

possible. Such sensitivity analyses would reveal how changing these settings 

have no qualitative impact on the conclusion in the best-case scenario. 

Conversely, in the worst-case scenario, the ultimate results would depend on 

these decisions. 



 

 

3. Carry-out tactical models and what-if experiments. Tactical models (Crema, 

2018; Lake, 2014; Orton, 1973) and what-if experiments (Buck & Meson, 2015; 

Hinz, 2020; Holland-Lulewicz & Ritchison, 2021) are simulation techniques 

consisting of generating, in silico, artificial archaeological data under known 

conditions to determine the robustness of analytical techniques, explore the 

impact of particular biases, or estimate necessary sample sizes and guide data 

collection. These are powerful yet relatively underutilised tools that can 

enormously help in any statistical analysis. It is thus not surprising that these 

techniques have been used in radiocarbon density-based demographic research, 

either to establish the robustness of new or existing techniques (Contreras & 

Meadows, 2014; Edinborough et al., 2017; Crema et al., 2017; Timpson et al., 

2021; Carleton, 2021; Price et al., 2021), question the impact of various forms of 

biases (e.g. Surovell & Brantingham, 2007; Davies et al., 2016; Bevan & Crema, 

2021), or determine whether the available sample size is sufficient to recover 

putative demographic events (e.g. Hinz, 2020; Crema & Shoda, 2021). These 

techniques provide invaluable insights into the robustness of our analyses. They 

can be tailored to the specific needs and challenges of particular contexts and 

even guide alternative solutions or more targeted future sampling strategies. 

Some of these recommendations can be challenging to implement, particularly as 

they cannot be part of a generalised workflow and require a good understanding of 

the data set. Some techniques, such as ABC and OxCal’s KDE, can also be 

computational too prohibitive to allow exhaustive sensitivity analyses or what-if 

experiments. Nonetheless, the benefit these tools provide is essential if we wish to 

make robust inferences about past population dynamics. 

Despite these outstanding challenges, it is unquestionable that the appeal of 

radiocarbon-based population inference for comparative research remains. We are 

now able to, at least in principle, develop demographic models that are not limited to 

regional constraints of archaeological periodisations and start investigating common 

trajectories and detect anomalies. Several exciting studies have already started to 

move towards such a line of research, estimating benchmark figures of long-term 

population growth rates (Zahid et al., 2016) or identifying shared trajectories in their 

fluctuation at the global scale (Freeman et al., 2018). Similarly, continentalscale 

windows of analysis are revealing new insights and providing the grounds for 

developing new hypotheses (Bird et al., 2020; Crema et al., 2017; Palmisano et al., 

2021; Riris & Arroyo-Kalin, 2019; Shennan et al., 2013). While the methodological 

developments reviewed in this paper showcase the effort made by different research 

groups in addressing many of the concerns raised against early applications of 

radiocarbon density-based demographic inference, there is a clear trade-off between 

these large-scale comparative analyses and the inevitable increase in the number of 

biases that larger datasets entail. Local anomalies in the radiocarbon record might 

provide genuine insights that can help understand the demographic history of a 

particular region but might simply be the result of a spatially or chronologically 

structured bias. Incorrect inferences are inevitable, and the stakes can often be high. 

Still, the methodological advances made over the last few years and the high reward 

of expanding comparative demographic research in deep history suggest it is an 

endeavour well worth pursuing. 
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