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Periodic driving may cause topologically protected, chiral transport along edges of a 2D lattice that, 

without driving, would be topologically trivial. We study what happens if one adds a different on-site 

potential along the diagonal of such a 2D grid. In addition to the usual bulk and edge states, the system 

then also exhibits doublon states, analogous to two interacting particles in one dimension. A particle 

initially located at an edge propagates along the system’s boundary. Its wavefunction splits when it hits 

the diagonal and continues propagating simultaneously along the edge and the diagonal. The strength of 

the diagonal potential determines the ratio between both parts. We show that for specific values of the 

diagonal potential, hopping onto the diagonal is prohibited so that the system effectively separates into 

two triangular lattices. For other values of the diagonal potential, we find a temporal delay between the 

two contributions traveling around and through the system. This behavior could enable the steering of 

topologically protected transport of light along the edges and through the bulk of laser-inscribed photonic 

waveguide arrays. 
I. INTRODUCTION 

In the quantum Hall effect, a perpendicular magnetic 
field leads to circular currents of the electrons in a 2D 
material. The currents cancel within the bulk of the 
material, making it an insulator there. However, electrons 
may skip along edges, rendering the system a conductor at 
the surface. Topological insulators [1] are materials that 
exhibit an insulating bulk and conducting edges without 
an external magnetic field. In his Nobel-prizeawarded 
publication [2], Haldane proposed a model for a 
topological insulator on a hexagonal lattice by introducing 
complex next-nearest neighbor hopping. It was later 
found to exist similarly in real materials owing to spin-
orbit coupling (see, e.g., [3] for a recent review). 

Floquet-topological insulators are synthetic systems, 
which behave as topological insulators due to periodic 
driving [4]. Such synthetic systems are realized with cold 
atoms in optical lattices [5, 6] or with photonic platforms 
[7–11], for example. 

Rudner et al. [12] proposed a Floquet-topological 
insulator and derived its proper topological invariants. In 
this publication, we investigate a modified version of that 
system where, instead of alternating on-site potentials on 
the two sublattices, we introduce increased onsite 
potentials along the diagonal of the lattice. The motivation 
to do so originated from doublon physics. There, two 
interacting particles on, for example, a onedimensional 
[13–16] or two-dimensional [17] lattice may form a bound 
pair, a doublon state. Doublons are stable due to their 
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energetic separation from other states or because of 
topology, characterized by a differing topological 
invariant. They can arise for repulsively as well as for 
attractively interacting particles. 

II. SYSTEM 

 

FIG. 1. Sketch of the driving scheme for a 4×4 system. The dots 

(squares) indicate the lattice sites on sublattice A (B). The yellow 

dots are the lattice sites on the diagonal (with a modified on-site 

potential). The four panels show the different hoppings in the 

four phases of the driving cycle as gray connecting lines. 
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We investigate an N × N square-lattice system. The 

lattice sites si,j are numbered by horizontal and vertical 

indices i,j ∈ {1,2,...,N}. The driving scheme determines two 

sublattices. Sublattice A contains all sites with even sum i 

+ j, sublattice B those with odd i + j. 

Previous studies [12] used global on-site potentials, 
such as alternating potentials on the two sublattices (e.g., 
positive on sublattice A, negative on sublattice B). These 
potentials affect all unit cells. We do not employ such 
global on-site potentials, but modify the potentials of the 
sites si,i along the diagonal (as shown in Fig. 1), which we 
set to Vdia. All other on-site potentials remain 0. 

The hoppings and local elements are described by the 

stepwise constant Hamiltonian 

with 

 

0 < t ≤ T/4 

T/4 < t ≤ T/2 

T/2 < t ≤ 3T/4 

3T/4 < t ≤ T 

(1) 

(2) 
i,j 

i+j even  

N Hˆdia = Vdia 

X|i,iihi,i|, (3) 

i=1 

 

We set J = 1 and choose the timing of all four phases such 
that in the absence of on-site potentials the transfer 
probability between two connected sites during one phase 
is exactly one, i.e., JT/4 = π/2. With onsite potential Vdia 

along the diagonal, the transfer probability between 
diagonal and off-diagonal sites (and vice-versa) is given by 

 , (5) 

derived in appendix A. The zeros of this equation are at 

 1 (6) 

for n ∈ N. We see that hopping onto the diagonal can be 

suppressed entirely (and the square lattice thus splits into 

two triangles) at a remarkably low diagonal potential 

 

III. METHODS 

The time evolution operator (in units where ~ = 1) 

 , (7) 

where T is the time-ordering operator, describes the 
temporal evolution of the system. For a complete driving 
cycle t = T consisting of the four discrete phases, the time 
evolution operator reads 

 ˆ ˆ ˆ ˆ 

gives the Floquet eigenstates ψF, and the Floquet energies 
εF are calculated from the eigenvalues λF = exp(−iεFT). By 
following the states (not just their energies) as a function 
of Vdia, we can distinguish state crossings from avoided 
crossings. Appendix B explains the details of the state-
tracking algorithm. 

Uˆ(T) = ecH4ecH3ecH2ecH1, 

with c = 4Ti. Solving the equation 

(8) 

Uˆ(T)ψF = λFψF (9) 
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IV. FLOQUET STATES 

 

FIG. 2. Floquet energies εF for the 4×4 system as a function of the 

diagonal potential Vdia. a) The line colors and styles indicate the 

types of states.b) The dotted gray lines indicate the zeros

 of the transfer probability p(Vdia). 

Without a diagonal potential, the N × N system contains 

(N − 1)2 bulk states at Floquet energy εF = 0 and 2N − 1 edge 

states at equally spaced Floquet energies εF = m/(2N −1), 

m ∈ Z, |m| < N. At non-vanishing diagonal potential, some 

of the bulk states superpose to form diagonal states, 

resulting in (N − 3)(N − 2) remaining bulk states, N − 1 

primary diagonal states, and 2(N − 2) secondary diagonal 

states. Particles in a primary diagonal state hop on and off 

the modified diagonal twice during a complete driving 

cycle. They hop on and off the diagonal once in a secondary 

diagonal state. 

We call these diagonal states doublons, in analogy to 
doublons in one-dimensional, interacting systems [13– 
17]. A system of two interacting particles on a 
onedimensional lattice (e.g., an SSH chain [18]) can be 
mapped to a single particle on a two-dimensional lattice. 
The x- and y-coordinates of the 2D particle correspond to 
the position of the first and the second particle on the 1D 
chain, respectively. Movements of the first (second) 
particle then amount to horizontal (vertical) hoppings. 
Their interaction V (|x−y|) is captured by an on-site 
potential in 2D. A local interaction in 1D, through which 
the particles only affect each other if they are on the same 
site, corresponds to the diagonal potential along x = y used 
in this study. Longer-range interactions would require 
non-vanishing on-site potentials on not only the main but 
also the secondary, tertiary, etc. diagonal, depending on 
the maximum interaction distance. 

Figure 2 shows the Floquet energies εF as a function of 
the diagonal potential Vdia. The four different types of 
states are indicated in Fig. 2a: The diagonal potential does 
not influence the bulk states’ energies because the bulk 
states remain located on sites whose potentials are zero in 
each step of the driving cycle. The edge states cross the 
diagonal in the system’s bottom left and top right corners. 
Therefore, their energies increase with increasing 
diagonal potential. The doublons cross the diagonal as 
well, which leads to increasing Floquet energies. The 
primary doublons’ energies increase faster because they 
cross the diagonal twice during a driving cycle, unlike the 
secondary doublons, which only cross it once. 

At higher diagonal potentials Vdia & 2 (shown in Fig. 2b), 

three types of states exist: The bulk states’ energies 
remain zero, while the edge states’ energies increase 
slightly with diagonal potential. For the Floquet states 
located on the diagonal of the system, we find εF ≈ Vdia. All 
states form pairs with similar energies. At the zeros of the 
transfer probability, these pairs degenerate, and we find 
superpositions of the states which are confined to either 
the top left or bottom right triangular half of the system. 

V. TEMPORAL EVOLUTION 

By definition, the Floquet states ψF remain unchanged 
after a complete cycle’s evolution, except for a phase 
factor. However, for an intuitive understanding of the 
driven quantum dynamics, it is instructive (and closer to 
experimental realizations on photonic platforms) to study 
the temporal evolution of (initially) localized states 
ϕ(~r,t). We initialize these as one at a single site ~rinitial and 
zero everywhere else. Specifically, in Fig. 3, we look at the 
state starting in the top left corner of the 4 × 4 system. 

Without a diagonal potential and therefore perfect 
transfer p(0) = 1 between diagonal and off-diagonal sites 
(Fig. 3a), the state remains localized and moves counter- 
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FIG. 3. Temporal evolution (snapshots after 0,1,...,7 complete 

driving cycles) of a localized state in a 4 × 4 system. a) Vdia = 0, i.e. 

p(Vdia) = 1, the state moves around the whole√ system and 

returns after 2N − 1 = 7 cycles. b) Vdia = 2 3, i.e. p(Vdia) = 0, the 

state moves around the upper left triangle because the diagonal 

is insurmountable and returns after 2N − 3 = 5 cycles. c) Vdia = 

1.59737, i.e. p(Vdia) = 0.5, the state splits. The supplementary 

material contains animations of these three cases for a 10 × 10 

system. 

clockwise along the edges of the system, and returns to its 
origin after 2N − 1 complete driving cycles. At the zeros of 
the hopping probability p(Vdia) = 0, the state cannot cross 
the diagonal. Because it started above the diagonal, it will 
remain in the upper left triangular half of the system, 
moving along the edge of that triangle and returning to its 
origin after 2N − 3 = 5 cycles (Fig. 3b). For all other 
potentials, which result in 0 < p(Vdia) < 1, the state splits at 
the bottom left corner of the system and delocalizes (Fig. 
3c). 

Most ((N − 3)(N − 2)) of the (N − 1)2 bulk states do not 

interact with any sites on the diagonal, and therefore their 

evolution is unaffected by Vdia. The other 3N − 5 bulk 

states, however, interact with the diagonal at least once 

and are split up for 0 < p(Vdia) < 1. For p(Vdia) = 0, 2N −3 

bulk states turn into edge states on the upper left and 

lower right triangles. The N − 2 bulk and 2 edge states 

which start on the diagonal remain stationary for p(Vdia) = 

0. 

While snapshots of the temporal evolution allow us to 

understand the general behavior, it is not easy to 

investigate them systematically for varying potentials. 

Therefore, we record the probability density 

|ϕ(~rinitial,nT)|2 (n ∈ N) at the starting location ~rinitial after 

each driving cycle. Because we initialize all states perfectly 

localized, |ϕ(~rinitial,0)|2 = 1 for all states. The bulk states 

return to their starting location after each cycle and 

therefore |ϕbulk(~rinitial,nT)|2 = 1 ∀n ∈ N. 

As shown in Fig. 4, without a diagonal potential, an edge 
state returns back at its origin after 2N − 1 cycles. At the 
zeros of p(Vdia) (6), the system is equivalent to one without 

sites on the diagonal. There, the edge states remain 
confined to the upper left or bottom right triangle, which 
they started in, and return to their origins after 2N − 3 
cycles. Other on-site potentials Vdia lead to a splitting of the 
state. Part of the wavefunction travels through the 
diagonal and along the square’s edge, arriving after 2N − 1 
cycles, while another part travels around the triangle and 
arrives after 2N −3 cycles. Due 
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density |ϕ(~rinitial,nT)|2 

FIG. 4. a) Hopping probability p(Vdia) as a function of diagonal 

potential. b) Probability density |ϕ(~rinitial,nT)|2 (n ∈ N) at the 

starting location ~rinitial for an edge state, as a function of time and 

diagonal potential. The dotted gray lines indicate the zeros of 

p(Vdia) in a), which coincide with the perfect earlier returns in b). 

to the imperfect transfer, there are not two discrete arrival 
peaks. Instead, the peaks disperse and interfere. 

VI. CONCLUSION AND OUTLOOK 

We characterized a Floquet-topological insulator on a 
square lattice with varying diagonal on-site potential. The 
addition of a diagonal potential causes the appearance of 
two additional bands. These bands consist of states that 
cross the square system’s diagonal (once or twice during 
a driving cycle). We call these states doublons, in analogy 
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to doublons in systems of one-dimensional, interacting 
particles. 

We showed how fine-tuning the diagonal potential 
allows switching between the propagation along the edge 
and propagation along the diagonal. In a photonic setting 
with laser-inscribed waveguides, intense laser light and 
nonlinearities can modify the diagonal potential (i.e., 
refractive index) [19]. In that way, one may switch 
topologically protected light currents by light, rendering a 
photonic platform programmable instead of ”hardwired.” 
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Appendix A: Derivation of hopping probability 

The 2 × 2 Hamiltonian 

  (A1) 

describes the hopping between two sites with potential 
difference V and hopping element J. Its eigenstates 

  (A2) 

and corresponding eigenenergies 

  (A3) 

satisfy the time-independent Schr¨odinger equation 

 Hϕˆ 1,2 = ε1,2ϕ1,2. (A4) 

The solutions of the time-dependent Schr¨odinger 
equation 

 Hψˆ (t) = i∂tψ(t) (A5) 

are superpositions of the eigenstates, ψ(t) = a1 

exp(−iε1t)ϕ1 + a2 exp(−iε2t)ϕ2. (A6) 

For a time-dependent state starting localized on the first 
lattice site, 

 , (A7) 

we find 

 . (A8) 

The transfer probability is the absolute square of the time-
dependent state at the second lattice site, 

(A9) 

 .

 (A10) 

The driving period 

  (A11) 

is chosen such that, for V = 0, complete transfer happens 
during each of the four phases, 

 . (A12) 

Finally, we find the hopping probability after a single 
phase of the driving cycle as a function of potential, 

(A13) 

 .

 (A14) 

Appendix B: Tracking States 

We follow states through changing parameters, e.g. in 
the closed interval [Vdia,min,Vdia,max]. As a starting point, we 
calculate the Floquet energies ε0,j and states ψ0,j (j = 
1,2,...,NxNy) at V0 = Vdia,min. Then we loop through the 
following procedure: We increase the diagonal potential 

to Vi = Vi−1 + δ, with 0 < δ ≤ 

Vdia,max − Vdia,min, and calculate the new Floquet energies εi,k 

and states ψi,k (k = 1,2,...,NxNy). Each of the states ψi,k is 

compared to all states ψi−1,j from the previous step by 

calculating their overlap (scalar product). 

The index l of the most similar previous state ψi−1,l (with 

 ψi−1,j| ∀j) is stored in a similarity 

If the mapping of states from the previous parameter 
Vi−1 to the current parameter Vi is not bijektive, i.e. si,k = si,k0 

for k =6 k0 (as shown in Fig. 5a), the states could not be 
followed because they have changed too much. In this 
case, δ must be decreased (in our calculations to δ0 = 
δ/10), and the step repeated for Vi = Vi−1 + δ0. 
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If the mapping was successful (Fig. 5b), δ may be kept 
constant or increased before the next step to Vi+1. We 
repeat these steps until we reach Vdia,max. 

This adaptive-stepsize tracking works for non-zero 
diagonal potentials but breaks down at Vdia = 0, where the 
doublon states all collapse to localized bulk states at εF = 0 
and can not be followed. 
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FIG. 5. a) Example of tracking algorithm failure. Both ψi,2 and ψi,3 

are most similar to (i.e. have the largest overlap with) the same 

state ψ(i−1),3 from the previous step (si,2 = si,3 = 3). We can not track 

the evolution of ψ(i−1),3 unambiguously. Therefore, we must 

repeat the step from i − 1 to i using a smaller step size. b) 

Example of tracking algorithm success. The states ψ(i−1),j map 

biuniquely to the states ψi,k (j,k = 1,2,3,4). 
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