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Abstract: This paper proposes a multi–convolutional neural network (CNN)-based system for the
detection, tracking, and recognition of the emotions of dogs in surveillance videos. This system
detects dogs in each frame of a video, tracks the dogs in the video, and recognizes the dogs’ emotions.
The system uses a YOLOv3 model for dog detection. The dogs are tracked in real time with a deep
association metric model (DeepDogTrack), which uses a Kalman filter combined with a CNN for
processing. Thereafter, the dogs’ emotional behaviors are categorized into three types—angry (or
aggressive), happy (or excited), and neutral (or general) behaviors—on the basis of manual judgments
made by veterinary experts and custom dog breeders. The system extracts sub-images from videos of
dogs, determines whether the images are sufficient to recognize the dogs’ emotions, and uses the long
short-term deep features of dog memory networks model (LDFDMN) to identify the dog’s emotions.
The dog detection experiments were conducted using two image datasets to verify the model’s
effectiveness, and the detection accuracy rates were 97.59% and 94.62%, respectively. Detection errors
occurred when the dog’s facial features were obscured, when the dog was of a special breed, when
the dog’s body was covered, or when the dog region was incomplete. The dog-tracking experiments
were conducted using three video datasets, each containing one or more dogs. The highest tracking
accuracy rate (93.02%) was achieved when only one dog was in the video, and the highest tracking
rate achieved for a video containing multiple dogs was 86.45%. Tracking errors occurred when
the region covered by a dog’s body increased as the dog entered or left the screen, resulting in
tracking loss. The dog emotion recognition experiments were conducted using two video datasets.
The emotion recognition accuracy rates were 81.73% and 76.02%, respectively. Recognition errors
occurred when the background of the image was removed, resulting in the dog region being unclear
and the incorrect emotion being recognized. Of the three emotions, anger was the most prominently
represented; therefore, the recognition rates for angry emotions were higher than those for happy or
neutral emotions. Emotion recognition errors occurred when the dog’s movements were too subtle or
too fast, the image was blurred, the shooting angle was suboptimal, or the video resolution was too
low. Nevertheless, the current experiments revealed that the proposed system can correctly recognize
the emotions of dogs in videos. The accuracy of the proposed system can be dramatically increased
by using more images and videos for training the detection, tracking, and emotional recognition
models. The system can then be applied in real-world situations to assist in the early identification of
dogs that may exhibit aggressive behavior.

Keywords: convolutional neural networks; dog detection; dog tracking; dog emotion recognition;
long short-term memory

1. Introduction

Keeping pets has become increasingly popular in recent years, leading to a surge
in stray dogs due to abandonment, loss, and breeding. This has resulted in numerous
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issues, such as disease spread, attacks on humans, the disruption of urban cleanliness, and
traffic accidents. Although the government uses TNvR and precise capture, addressing dog
attacks is time-consuming and labor-intensive. In recent years, many surveillance cameras
have been installed in essential areas, such as roads, intersections, transfer stations, and
public places. However, these surveillance cameras cannot provide immediate warning
messages before incidents occur. Nevertheless, recent computer vision technology can
analyze camera footage and replace human reporting by sending alerts to emergency
services when one or more stray dogs are detected as being about to attack. Therefore,
computer vision has also been widely used for object identification. Integrating these
technologies to detect and analyze dog behavior can save time and processing power, and
facilitate the real-time collection of dog information and issue immediate warning alerts.

From 2014 to 2022, researchers used animal motion tracking and gesture recogni-
tion to study animal emotions and improve their emotional well-being. Sofia et al. used
computer vision technology to assess animal emotions and pain recognition through a
comprehensive analysis of facial and body behavior [1]. Identifying animal emotional
behaviors is challenging because they express internal emotional states subjectively [2].
Researchers traditionally observe or record videos of animal behavior to analyze their
behaviors. However, automatic facial and body pose analysis enables the extensive annota-
tion of human emotional states. Fewer studies have focused on the mechanical behavior
of non-human animals. Animal tracking studies include pose estimation, canine behavior
analysis, and animal identification and tracking techniques using deep learning methods.
Analyzing facial expressions and body behaviors to understand animal emotions presents
many challenges. Techniques for recognizing animal emotional states and pain are more
complex than those for tracking movement.

Recently, researchers have used computer vision and deep learning techniques for
canine emotion recognition. Zhu used indoor static cameras to record dogs’ behavior
during locomotion, and their architecture combined pose and raw RGB streams to identify
pain in dogs [3]. Franzoni et al. and Boneh et al. used images of dogs in experiments that
elicited emotional states, and the main target was the detection of emotion on the dog’s
face [4,5]. Ferres et al. recognized dog emotions from body poses, using 23 regions on the
body and face as critical points [6]. The imaging dataset for these studies was limited to a
single dog, and high-resolution, clear images of faces and limbs were necessary. Research
on dog emotion recognition using computer vision and deep learning has mainly focused
on high-resolution, clear facial images of a single dog. These studies have generally used
surveillance cameras, and the emotional state of animals has been primarily based on phys-
ical behavior due to distance and low-resolution videos. Past research on human emotion
recognition has used text, audio, or video data and various models to achieve high accuracy,
with facial expressions or body language analysis used for emotion recognition. However,
no studies investigate dog tracking and emotion recognition due to the complexity of dog
behavior and a lack of readily available imaging data.

Numerous studies on object detection have been conducted [7–12]. In object detection,
colors, textures, edges, shapes, spatial relationships, and other features are extracted
from data, and machine learning methods are used to classify objects according to these
features. Dalal and Triggs used the histogram of an oriented gradient image feature
extractor and a support vector machine (SVM) classifier to achieve human detection [7].
With the development of deep learning in artificial intelligence, convolutional neural
networks (CNNs) have been applied in various deep learning technologies. Deep learning
is now commonly used in computer vision, mainly because of the 2012 ImageNet Large-
Scale Visual Recognition Challenge [13]. AlexNet, the deep learning network architecture
proposed by Alex Krizhevsky [14], heralded the era of the CNN model. Subsequently,
VGG, GoogleNet, and ResNet architectures, all of which are commonly used in innovative
technologies, were developed [15–17].

Object tracking refers to the tracking of objects in continuous images; after the objects
in each image are detected, they are tracked to determine and analyze their movement



Appl. Sci. 2023, 13, 4596 3 of 29

trajectory. Pedestrians and cars have been the objects most commonly tracked in previous
studies [18–22], and the MeanShift tracking method, Kalman filter method, particle filter
method, local steering kernel object texture descriptors method, CamShift method, and
optical flow method have been commonly used for tracking [12,18–22]. Several methods
have been developed for CNN-based feature extraction and object tracking in video. For
example, simple online and real-time tracking with a deep association metric (DeepSORT)
combines information regarding an object’s position and appearance to achieve high
tracking accuracy [23].

In most previous studies on human emotion recognition, human emotions have been
classified using traditional methods involving feature extractors and classifiers. Some
recent studies have explored using CNN models to extract human features. In 2010,
Mikolov et al. proposed recurrent neural networks (RNNs) to deal effectively with time
series problems [24]. Regarding research on human emotion recognition, Ojala et al. and
Gu et al. used the local binary pattern method [25,26] and the Gabor wavelet transform
method, respectively, to recognize facial expressions [27]. Oyedotun et al. proposed a facial
expression recognition CNN model that receives RGB data and depth maps as input [28].
Donahue et al. introduced long-term recurrent convolutional networks, which combine
CNNs and long short-term memory (LSTM) models to recognize people in videos [29].

Animals have basic emotions that result in different emotional states and neural
structures in their brains [30]. However, the lack of large datasets makes assessing canine
emotional states more challenging than humans. Nevertheless, we can evaluate a dog’s
physiology, behavior, and cognitive mood [31]. Facial expressions, blink rate, twitching,
and yawning are among the essential sources of information for assessing animal stress
and emotional states [1,32]. In addition to facial behavior, body posture and movement
are associated with affective states and pain-related behaviors [33,34]. Open spaces, novel
objects, elevated plus mazes, and qualitative behavioral assessments evaluate animals’ pain,
discomfort, and emotional mood [35,36]. In recent years, physical and postural behavior
has also been utilized to assess affective emotions in dogs and horses [1,37,38].

The present study focused on the recognition of the emotions of dogs in videos to
identify potentially aggressive dogs and relay warning messages in real time. The proposed
system first uses YOLOv3 architecture to detect dogs and their positions in the input
videos. To track the dogs, we modified the sizes of the images input into the DeepSORT
model, improved the feature extraction model, trained the model on the dog dataset, and
modified each final tracking position to the position of each tracked dog. The modified
model is called real-time dog tracking with a deep association metric (DeepDogTrack).
Finally, the system categorizes the dogs’ emotional behaviors into three types—angry (or
aggressive), happy (or excited), and neutral (or general emotional) behaviors—based on
manual judgments made by veterinary experts and custom dog breeders. The dog emotion
recognition model proposed in this study is called the long short-term deep features of dog
memory networks (LDFDMN) model. This model uses ResNet to extract the features of the
dog region that are tracked in the continuous images, which are then input into the LSTM
model. The LSTM model is then used for emotion recognition.

The contributions of this study are as follows:

1. An automated system that integrates an LSTM model with surveillance camera
footage is proposed for monitoring dogs’ emotions.

2. A new model for dog tracking (DeepDogTrack) is developed.
3. A new model for dog emotion recognition (LDFDMN) is proposed.
4. The proposed system is evaluated according to the results of experiments conducted

using various training data, methods, and types of models.

2. Related Work
2.1. The Processing of the SORT

The overall SORT process involves the detection, estimation, data association, and
creation and deletion of tracked identities.
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Detection: First, Faster-RCNN is used for detection and feature extraction. Because
the detection objects in this study are objects, other objects are ignored, and only objects
that are more than 50% likely to be a object are considered.

Estimation: The SORT model’s estimation model describes the model of the object
and enters the movement model of its representation and transmission target in the next
frame. First, the Kalman filter is used to predict the target state model (including size
and position) of an object detected at time T at time T + 1. An object’s state model can be
expressed as follows:

x =
[
u, v, s, r,

.
u,

.
v,

.
s
]T (1)

where (u, v) represents the coordinates of the object’s center at time T; (s, r) represents
the region and aspect ratio of the object’s bounding box at time T; and (

.
u,

.
v) and (

.
s),

respectively, represent the center point and speed of the object at time T. When the object
in the next frame is detected, the object’s bounding box (

.
u,

.
v) is used to update the ob-

ject’s status. If no correlations between the objects are detected, the prediction model is
not updated.

Data association: The detection result is used to determine the object’s target state;
that is, the bounding box (

.
u,

.
v) of the object at time T is used to predict the new position

of the object at time T + 1. First, the model predicts the bounding box (
.
uT+1,

.
vT+1

) of the
object at time T and the ith object at time T + 1 (uT+1

i , vT+1
i ), and calculates the Mahalanobis

distance between them. Thereafter, the model uses the Hungarian algorithm for matching
to enable multi-object tracking. When the intersection area (intersection over union [IOU])
is less than the threshold value, the object is regarded as the tracking target.

Creation and deletion of tracked identities: When an object enters or leaves the
screen, its identity information must be added or deleted from this system. To prevent
erroneous tracking, the model must detect objects to be tracked within a few frames of their
entrance to determine whether the object must be newly added to this system. Furthermore,
the IOU of the object in each frame and in the next frame is calculated; if its value is less
than the threshold value, the object is determined to have left the screen, and the object’s
identity information is deleted.

2.2. The Processing of the DeepSORT

The overall DeepSORT process involves the detection, estimation, data association,
and creation and deletion of tracked identities.

Detection: The DeepSORT model uses YOLOv3 architecture for pedestrian detection.
Because the detection objects in this study are pedestrians, other objects are ignored, and
only objects that are more than 50% likely to be pedestrians are considered.

Estimation: The pedestrian’s description is to enter the motion of its representation
and propagation target in the next frame. First, the model uses the Kalman filter to predict
the state model (including size and position) of a pedestrian detected at time T at time
T + 1. DeepSORT expresses the state model of the pedestrian as eight values (u, v, r, h,

.
x,

.
y,

.
r,

.
h),

as follows:
x = (u, v, r, h,

.
x,

.
y,

.
r,

.
h)

T
(2)

where (u, v) and (r, h) are the coordinates of the pedestrian’s center and the aspect ratio
and height of the bounding box of the pedestrian at time T, respectively. At time T, the
Kalman filter is used to predict the pedestrian’s position at time T +1. DT+1,1, represents
the predicted position (

.
x,

.
y,

.
w,

.
h) of the pedestrian at time T + 1, where (

.
x,

.
y,

.
w,

.
h) are the

coordinates, length, width, and height, respectively, of the pedestrian’s center at time T + 1.
When a pedestrian is detected, the (

.
x,

.
y,

.
w,

.
h) values are updated to reflect the target state

of the pedestrian. If no pedestrian is detected, the predictive model is not updated.
Pedestrian feature extraction: The trained CNN model, which contains two convolu-

tion layers, a max pooling layer, and six residual layers, is used to extract the features of
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each pedestrian at time T + 1, which are output as a 512-dimensional feature vector. The
feature vector of the jth pedestrian at time T + 1 is expressed as f T+1

j .

Data association: The pedestrian region (
.
u,

.
v) at time T is the predicted new position

of the pedestrian at time T + 1. Thereafter, the Mahalanobis distance between the pedes-

trian region at time T O(
.
x,

.
y,

.
w,

.
h)

T+1
i and the region of the ith pedestrian at time T + 1

O′(
.
x,

.
y,

.
w,

.
h)

T+1
j is calculated as follows:

∆d1(i, j) = min
[
(O′T+1

i −OT+1
j )

T
Si
−1(O′T+1

i −OT+1
j ), i, j = 1, 2, . . . , n

]
(3)

First, (
.
x,

.
y,

.
w,

.
h) is converted into (

.
x,

.
y,

.
r,

.
h), where (

.
x,

.
y) represents the coordinates

of the pedestrian’s center,
.
r is the aspect ratio of the pedestrian, and (

.
h) is the height of

the pedestrian. O′(
.
x,

.
y,

.
r,

.
h)

T+1
i represents the new position of the ith pedestrian at time

T + 1, O(
.
x,

.
y,

.
r,

.
h)

T+1
j represents the new location of the jth pedestrian at time T + 1, S−1

i
is the covariance matrix of the ith pedestrian, and n is the total number of pedestrians at
time T + 1. The detection index based on Mahalanobis distance can be used to obtain the
optimal match. The χ2 distribution and its 95% confidence interval are used as the detection
threshold value, which was 9.4877 in the present study.

The Mahalanobis distance is suitable for movement positions that produce low uncer-
tainty regarding the pedestrian’s position. The state distribution of a pedestrian is predicted
using a frame, and the pedestrian’s position in the next frame is obtained using the Kalman
filter. This method only provides an approximate position, and the positions of pedestrians
that are obstructed or moving quickly will not be correctly predicted. Therefore, the model
uses a CNN to extract the feature vector of the pedestrian and calculates the cosine distance
between the extracted vector and the feature vector of the pedestrian in this system. The
minimum cosine distance is represented as follows:

∆d2(i, j) = min
{

.
f

T+1
i − f T+1

j , j = 1, 2, . . . , n
}

(4)

Finally, the position and features of the pedestrian are matched and fused. The fused
cost matrix c(i, j) is expressed as follows:

c(i, j) = λ∆d1(i, j) + (1− λ)∆d2(i, j) (5)

where λ is the weight. Because using a nonfixed camera to shoot may cause the image
to shake violently, λ should be set to 0. Therefore, λ can also account for the problem of
obscured pedestrians and reduce ID switching (IDSW) during tracking.

The creation and deletion of tracked identities is the same as for SORT.

2.3. LSTM Model

In traditional neural networks, each neuron is independent and unaffected by time
series. In RNNs, time series data are used as input [24]. Earlier layers of an RNN exert
weaker effects than subsequent decisions. When too many series are present in the data, the
gradient disappears or explodes. To address this problem, Sepp and Jürgen proposed the
LSTM model [39] in 1997. An LSTM model comprises numerous LSTM cells, each having
three inputs, three components, and two outputs. The three inputs xt are the input at time
t, the output ht−1 at time t – 1, and the long-term memory (LTM) ct−1 at time t – 1. The
three components are the input gate it, the output gate ot and the forget gate ft. The three
components all use sigmoid functions as activation functions to obtain an output value
between 0 and 1, simulating the opening and closing of a valve. The input gate uses the
input xt at time t and the output ht−1 at time t – 1 to determine whether the LTM Ct should
incorporate the memory Ĉt generated at time t. The output gate determines whether the



Appl. Sci. 2023, 13, 4596 6 of 29

LTM Ct generated at time t should be output according to the input xt at time t and the
output ht−1 at time t – 1. The forget gate uses the input xt at time t and the output ht−1 at
time t – 1 to determine whether the LTM Ct−1 at time t – 1 should be added to the LTM Ct
at time t. The two outputs of the LSTM model are the output ht and the LTM Ct at time t.
The LSTM model has one more output (Ct, or LTM) than ordinary RNNs do, which enables
it to solve the gradient problem caused by excessive time series in ordinary RNNs.

3. Proposed System

This study automatically detects the dog’s movements through surveillance video
to predict the dog’s emotions. Therefore, this study must first convert the surveillance
video into a continuous image, then detect the dogs in each image, track the dogs’ po-
sition in each image, and make emotional predictions from the dog’s movements in the
surveillance video.

The proposed system combines CNNs with a deep association metric and RNN
technologies to detect, track, and recognize the emotions of dogs. The system process is
illustrated in Figure 1. First, dogs in each frame of the input video are detected; then, each
dog is tracked; and finally, each dog’s behavior is analyzed to determine which emotion is
being expressed. The dogs’ emotions are categorized into three types: angry (or aggressive),
happy (or excited), and neutral (or general). The methods used for dog detection, tracking,
and emotion recognition are described in the following sections.
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3.1. Dog Detection

The first step of object detection is image feature extraction. Originally, to achieve this
end, suitable filters were used to manually extract various features. However, since the
rise of deep learning, CNNs have been commonly used to extract features automatically.
Experiments have revealed that CNN-based object detection methods are highly accurate.
Therefore, the system described herein uses a YOLOv3 CNN-based object detection algo-
rithm [40] for dog detection. In addition to using Darknet53 to extract shadow features,
YOLOv3 uses feature pyramid network technology to address the inability of YOLOv2 to
detect small objects. The processing method of YOLOv3 involves first dividing the input
image into 13 × 13, 26 × 26, and 52 × 52 grid cells. YOLOv3 is pretrained on Microsoft’s
Common Objects in Context (MSCOCO) image dataset [41], which contains 80 object classes
and generates (13 × 13 + 26 × 26 + 52 × 52) tensors of the prediction results. Because many
overlapping frames may be obtained, the model uses non-maximum suppression (NMS)
processing, and the most reliable and unique bounding box is regarded as the predicted
result of object detection. The dog detection process is illustrated in Figure 2.
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Figure 2. Dog detection.

3.2. Dog Feature Extraction

The model uses a ResNet CNN to extract the features of each dog from the sub-images
of all the dogs and Mask R-CNN architecture to remove the backgrounds of the sub-images
(Figure 3).
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Figure 3. Dog region.

Dog feature extraction: The ResNet uses the shortcut connection method to reinforce
the learning bottlenecks of multiple layers. This method involves retaining the input
feature map before convolution. After the input feature map is subjected to two layers of
convolution, a ReLU function, and a third layer of convolution, the output feature map is
combined with the retained feature map to preserve the pre-convolution features.

Background removal: The proposed system uses Mask R-CNN architecture to remove
the backgrounds of the dog images [42]. Mask R-CNN architecture adds a new output
to Faster R-CNN architecture to produce a fully convolutional network that can be used
to solve object detection and segmentation problems [43]. Faster R-CNN outputs the
classification and coordinate offset of a predicted object. Each pixel in the predicted region
is classified as part of the foreground or background, as illustrated in Figure 4.
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3.3. Dog Tracking

After a dog is detected, it is tracked to determine its movement trajectory. The dog-
tracking system identifies the position of the same dog in consecutive images and plots
these positions to form an action path. The system uses a DeepDogTrack model for dog
tracking. In addition to using a Kalman filter to predict the dog’s position in the next frame,
the model also uses a CNN to extract and match the dog’s features in consecutive frames to
determine the dog’s motion status. DeepDogTrack is an improved DeepTrack pedestrian
tracking model. The DeepSORT model integrates simple online and real-time tracking
(SORT) [44] and CNN technology to extract and match each pedestrian’s features and
analyze the location and appearance information of each pedestrian to achieve accurate
tracking. To reduce the computation time of the system and improve the accuracy of dog
tracking, the system adopts our novel DeepDogTrack model, which contains improvements
in the processing flow and adjustment of parameters.

3.3.1. SORT and DeepSORT

SORT is a practical multi-object tracking method that can effectively track objects in
consecutive frames. The SORT model proposed herein uses Faster-RCNN and a Kalman
filter to detect an object’s position and to predict the object’s position in the next frame,
respectively. Thereafter, the model calculates the Mahalanobis distance between an object’s
location and its predicted location in the next frame and uses the Hungarian algorithm [45]
for matching to enable multi-object tracking. Therefore, the overall SORT process involves
the detection, estimation, data association, and creation and deletion of tracked identities.

Although SORT is a simple and effective multi-object tracking method, it compares
only the size and position of a predicted object and does not consider the object’s features.
To address this limitation, the proposed system incorporates DeepSORT, which improves
upon the detection method of SORT and accounts for the object’s features, thus enhancing
the accuracy of object tracking. DeepSORT applies SQRT’s object tracking to pedestrian
tracking. DeepSORT is based on SORT’s multiple object tracking (MOT) architecture and
uses the Kalman filter to predict a given pedestrian’s position in the next frame. The model
calculates the Mahalanobis distance between the region of the predicted pedestrian and
the region in which other pedestrians may be located. Thereafter, a CNN is used to extract
and calculate the minimum cosine distance between the pedestrian’s features and the
features of all the pedestrians in the next frame. Finally, the Hungarian algorithm is used
for matching to enable multi-pedestrian tracking. Accordingly, DeepSORT involves the
detection, estimation, feature extraction, data association, and the creation and deletion of
tracked identities.

3.3.2. Real-Time Dog Tracking with a Deep Association Metric (DeepDogTrack)

Because DeepSORT is typically used to track pedestrians, and the proportions of the
human body are 64 × 128, the input must be a fixed-size image. Proportion features are
extracted using a simple CNN model, and the result predicted using the Kalman filter is
used as the tracking region of the object. However, the proportions of dogs are different
from those of humans. To adapt DeepSORT for the tracking of dogs and improve the
computational efficiency, the DeepDogTrack model takes the detected dog region as input
data, and the size of the region is not fixed. To increase the depth of the model and
minimize error, a deep residual network (ResNet) is used to extract the dogs’ features. The
DeepSORT model was retrained using the dog data-set to improve its tracking accuracy. The
architecture of the proposed DeepDogSORT dog-tracking model is illustrated in Figure 5.
The original and improved results are presented in Figure 6.
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3.4. Dog Emotion Recognition

The automatic recognition of dog emotion in this study first defines the emotional
type of dogs and then proposes a deep learning technology for predicting dog emotions.

3.4.1. The Emotions of the Dogs

Dogs go through their developmental stages faster than humans and have all the
emotional ranges they can reach by four to six months old (depending on how quickly
their breed matures). However, the variety of emotions in dogs does not exceed that of
humans by two to two and a half years old. Dogs will have all the basic emotions: joy, fear,
anger, disgust [46–48], and even love. However, based on current research, dogs do not
appear to have more complex emotions such as guilt, pride, and shame [46]. Therefore,
we can determine which emotions the dog experiences through the dog’s body language.
A dog’s emotional state is primarily determined by facial and physical behavior, or a
combination of the two. However, the data source of this study is surveillance cameras due
to their long distance and low-resolution video. Therefore, the dogs’ emotional state in this
study was generally determined by physical behavior. In addition, since the emotions of
fear, anger and disgust need to match the subtle features of the face, these emotions are
uniformly assumed to be angry (or aggressive). The proposed model lists the basic human
emotions anger (or aggressive) and happiness (or excitement) [49], but these two emotions
are relatively extreme behaviors. To strengthen the evaluation of canine emotional types,
the third emotion in this study is based on the dog’s physical behavior, which is called
neutral (or general).
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Therefore, the emotions of the dogs in this study are categorized into three
types—angry (or aggressive), happy (or excited), and neutral (or general)—according
to the manual judgment of veterinary experts and custom dog breeders. The descriptions
and characteristics of the three emotional types of dogs are shown in Table 1.

Table 1. The descriptions and characteristics of the three emotional types of dogs.

Types Characteristics
Anger (or Aggressive)
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anger or aggression. It is natural for dogs to feel this way
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they tend to be cranky to avoid them in the future. Dogs will
display terrifying postures. The characteristics of anger in
dogs include tail wagging, stiffness of the body, trembling,
holding the ear back, moving the bodyweight around, hair
standing up, visible sclera, and even defensive aggression
such as growling, biting, and sprinting.

Happy (or Excited)
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The happiness of dogs is written all over their faces, and dogs
tend to be excitable and easily surprised. Dogs are joyful
while doing their favorite activities, which may lead to some
hilarious moments. Dogs will flutter, bounce, and rage
happily (that slight whirring, the panting sound is sometimes
referred to as canine laughter). The characteristics of
happiness in dogs include lying on the stomach, raised
buttocks, wild tail wagging, hanging tongue, and relaxed ears,
mouth, and body.
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The dog is often classified as a neutral emotional category
because it sometimes lacks emotional response or shows
indifference, unlike other pets with clear emotions. The
characteristics of neutral emotions in dogs include relaxation
of the whole body (including the tail, ears, and face), no
evident excitement or daze, and observing their environment
or sniffing.

3.4.2. The Dog Emotion Recognition Model

The dog emotion recognition model proposed herein is the LDFDMN model. After
a dog is detected, the dog region and the dog’s features are extracted using the ResNet
model. Thereafter, these continuous and time-series-associated features are transmitted
to the LSTM model for processing, and the time series output results are obtained. Dog
emotion recognition is based on dogs’ continuous behaviors; analyzing these behaviors is
therefore essential to the proposed system, and the RNN and LSTM models used to do so
are described as follows.

LDFMN Model

In the proposed system, a ResNet CNN and DeepDogTrack model are used to ex-
tract features from and to track dog regions, respectively. The tracked dog region is con-
verted into an image set, as illustrated in Figure 7. Each image set depicts the continuous
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movement of a dog and is used as a data-set for dog emotion recognition. If the image set
comprises fewer than 16 images, it is deleted; if the image set exceeds 16 images, the set is
trimmed to 16 images. Thereafter, the image set is input into the LDFDMN model, and the
dog emotion recognition results are obtained. The architecture of the LDFDMN model is
illustrated in Figure 8.
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Dog Emotion Recognition after Background Removal

Each of the model’s detection regions includes nondog regions, or backgrounds. If
the background area is larger than the dog area, the extracted dog features will be affected,
resulting in a reduced dog emotion recognition rate. Therefore, the proposed model uses a
Mask R-CNN model to remove backgrounds from the image set before the dog tracking and
emotion recognition are processed by DeepDogTrack and the LDFDMN model, respectively.

Video Preprocessing

In this study, we trained the LDFDMN model by using videos collected from YouTube,
the Folk Stray Dog Shelter, and the Dog Training Center (hereafter, DTC) of the Customs
Administration of Taiwan’s Ministry of Finance. The input data of the LDFDMN model
must be a fixed-length feature vector, but the lengths of the videos collected for this study
differed, and multiple dogs may have been present in each video. Therefore, each video
was divided into multiple sub-images, each of which was resized to 360 × 360 pixels.
Sub-images of the same dog were used to create experimental videos in order to analyze
the dog’s emotions.

Although the backgrounds of the dog regions are supposed to be removed by the
Mask R-CNN before tracking, the sub-images may depict the background instead of the
dog because of classification errors, resulting in a set of fewer than 16 continuous sub-
images. To address this problem, the Farneback optical flow method is applied [50], and the
16 sub-images in each image set are linearly interpolated according to the optical flow value.
The results of the linear interpolation of an image are presented in Figure 9. In the figure,
the optical flow information of the image at times t(0) and t(1) is used to produce a linear
interpolation of the image at time t̃( 1

2 ).
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3.5. Dog Emotion Recognition in Surveillance Videos

The proposed system was tested using three dog-tracking methods (DeepSORT, Deep-
SORT_retrained [a version of the DeepSORT model retrained using the dog data-set], and
DeepDogTrack) and two dog emotion recognition methods (sub-images with and without
backgrounds). The methods were combined into six models, as listed in Table 2.

Table 2. Dog emotion recognition model types.

Type Detection Tracking Emotion Recognition
Type_1

YOLOv3

DeepSORT

LDFDMN with backgroundType_2 DeepSORT_retrained

Type_3 DeepDogTrack

Type_4 DeepSORT
LDFDMN with without

background
Type_5 DeepSORT_retrained

Type_6 DeepDogTrack

4. Experiments

The performance of the DeepDogTrack and LDFDMN models for dog tracking and
emotion recognition, respectively, were evaluated through a series of experiments on dog
detection, tracking, and emotion recognition. The hardware and software employed in
the experiments, experimental image and video datasets, experimental procedures and
evaluation criteria, and model performance evaluation are present in the following relevant
information.

4.1. Software and Hardware

The hardware and software systems used in the experiments are listed in Tables 3 and 4.
The CNN architecture incorporates Darknet53 and PyTorch [51], both of which use the
Python programming language, and a computer vision library (OpenCV for Python) [52].

Table 3. Hardware.

Device Specification
CPU processor Intel Core i7-8700 3.2 GHz
GPU processor NVIDIA GeForce GTX1080Ti 11 G
RAM memory 32 G
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Table 4. Software.

Detection Tracking Emotion Recognition
Network architecture YOLOv3 DeepDogTrack LDFDMN

System Windows 10 Pro

Programming language Python 3.5.4

Neural network framework Darknet PyTorch 0.4.1 PyTorch 0.4.1

Computer vision library OpenCV-python 3.4.4

4.2. Image Data-Sets

Experiments were conducted to evaluate the dog detection, tracking, and emotion
recognition models and the proposed system overall. In each set of experiments, different
image datasets were used for training and testing. There may be more than two dogs in
one image.

4.2.1. Data-Set for Dog Detection Experiments

The proposed model used a YOLOv3 model for dog detection, and the MSCOCO
image set was used to train the YOLOv3 model. The image set contained 80 classes of
objects and a total of 118,287 images, as shown in Figure 10. The test images were divided
into two image databases in the dog detection experiment. The first (TestSet1) is the
image database established by Columbia University and the University of Maryland [53],
which contains images from ImageNet, Google, and Flickr. The database contains 8351
images of 133 dog breeds, as shown in Figure 11. The second (TestSet2) is the image
database established by Stanford University [54], which contains images from ImageNet.
The database contains 20,580 images of 120 dog breeds, as shown in Figure 12.
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4.2.2. Data-Set for Dog-Tracking Experiments

The CNN in the DeepSORT model used two pedestrian reidentification data-sets,
Market-1501 and MARS, which contain images of 1501 and 1261 pedestrians [55,56], re-
spectively. The training data-set used by the ResNet CNN in the DeepDogTrack model
proposed in this study contains data from YouTube, the Folk Stray Dog Shelter, and the DTC,
accounting for a total of 40 dogs. Three test videos from the Folk Stray Dog Shelter and
DTC, containing a total of 5 dogs, were used in the experiment. The data-set information is
presented in Table 5.
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Table 5. Test videos used in dog-tracking experiment.

Source Video Dog Number Image Number
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4.2.3. Data-Set for Dog Emotion Recognition Experiments

Since dogs’ emotional states in this study were considered in terms of physical behav-
iors and considering the generality of future applications, few existing canine emotional
video datasets exist. Therefore, in addition to collecting some videos from YouTube, this
study set up a general surveillance camera at Folk Stray Dog Shelter and the DTC to capture
the emotional videos of dogs, as shown in Table 6. Since dogs’ emotions are easily disturbed
by external things, the collected videos may include neutral (general), happy (excited), and
angry (aggressive) dogs. Therefore, we reviewed the videos one by one through veterinary
experts and custom dog breeders and divided them into multiple sub-videos with three
emotions: neutral (general), happy (excited), and angry (aggressive). After screening,
813 sub-videos from YouTube videos were divided into training and testing sub-video
groups, each with 572 and 241 sub-videos; the training video was divided into two groups
of training sub-videos, TrainSet4_1 and TrainSet4_2, each with 294 and 278 sub-videos; the
test video was divided into two groups of training sub-movies, TestSet4_1 and TestSet4_2,
each with 121 and 120 sub-movies, as shown in Table 6. In addition, in this study, static
surveillance cameras were set up outdoors at the Folk Stray Dog Shelter and the DTC.
Dogs were allowed to move freely. We focused our attention on physical behavior indica-
tors. The determination of the dogs’ behaviors was purely based on observed behaviors,
without considering human-induced behaviors. In total, 246 sub-videos were selected
from the videos of the Folk Stray Dog Shelter, which were divided into training and test-
ing sub-video groups, each with 176 and 70 sub-videos; the training video was split into
two groups of training sub-videos, TrainSet4_1 and TrainSet4_2, each of which included
88 and 88 sub-videos; the test video was divided into two groups of training sub-movies,
TestSet4_1 and TestSet4_2, each with 35 and 35 sub-movies. After screening, 278 sub-movies
from the DTC movies were divided into training and testing sub-movies, each with
196 and 82 sub-movies; the training movie was divided into two groups of training
sub-movies, TrainSet4_1 and TrainSet4_2, each with 98 and 98 sub-movies; the test video
was divided into two groups of training sub-movies, TestSet4_1 and TestSet4_2, with 41 and
41 sub-movies, respectively.
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Table 6. The data-set for dog emotion recognition model.

Dataset Source Videos

TrainSet4_1
TrainSet4_2
TestSet4_1
TestSet4_2

YouTube
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In the experiment, the training data-set was divided into TrainSet4_1 and TrainSet4_2.
The information of the datasets is presented in Table 7. In both datasets, image sets
containing fewer than 16 images were deleted. If an image set contained more than
16 images, it was equally divided into subsets of 16 images. Each image was resized to
360 × 360 pixels and sets of images of the same dog were used as training data-sets for
the dog-tracking model. To create TrainSet4_2, a Mask R-CNN was used to remove the
backgrounds from 16 images of the same dog.

The videos in the test dataset for the dog emotion recognition experiment were ob-
tained from YouTube, the Folk Stray Dog Shelter, and the DTC. TestSet4_1 contained
197 preprocessed videos, each of which consisted of more than 16 sub-images. Test-
Set4_2 contained 196 preprocessed videos, and the background of each sub-image of each
video was removed using the Mask R-CNN. If an image set contained fewer than 16 sub-
images, the sub-images were interpolated linearly. The test dataset information is presented
in Table 8.
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Table 7. Training data-set for dog emotion recognition model.

Dataset Emotion Type Source Video Number Total Video Number

TrainSet4_1

Neutral/General

YouTube 116

206

480

Folk Stray Dog Shelter 63

DTC 27

Happy/Excited

YouTube 30

124Folk Stray Dog Shelter 23

DTC 71

Angry/Aggressive

YouTube 148

150Folk Stray Dog Shelter 2

DTC 0

TrainSet4_2

Neutral/General

YouTube 108

198

464

Folk Stray Dog Shelter 63

DTC 27

Happy/Excited

YouTube 30

124Folk Stray Dog Shelter 23

DTC 71

Angry/Aggressive

YouTube 140

142Folk Stray Dog Shelter 2

DTC 0

Note: DTC, Dog Training Center of the Customs Administration of Taiwan’s Ministry of Finance.

Table 8. Test data-set for the dog emotion recognition experiment.

Dataset Emotion Type Source Video Number Total Video Number

TestSet4_1

Neutral/General

YouTube 48

85

197

Folk Stray Dog Shelter 26

DTC 11

Happy/Excited

YouTube 11

50Folk Stray Dog Shelter 9

DTC 30

Angry/Aggressive

YouTube 62

62Folk Stray Dog Shelter 0

DTC 0

TestSet4_2

Neutral/General

YouTube 47

84

196

Folk Stray Dog Shelter 26

DTC 11

Happy/Excited

YouTube 11

50Folk Stray Dog Shelter 9

DTC 30

Angry/Aggressive

YouTube 62

62Folk Stray Dog Shelter 0

DTC 0

Note: DTC, Dog Training Center of the Customs Administration of Taiwan’s Ministry of Finance.
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4.2.4. Test Data-Set of the Integrated System

The integrated system proposed herein was tested using two videos, the information
of which is presented in Table 9. The IMG_0033 video, taken from the Folk Stray Dog
Shelter, contains two dogs with similar appearances. The dogs’ emotions are mostly neutral
but seem happy at a few points in the video, and one dog moves more frequently than the
other does. The “AngryDogs” video, taken from YouTube, depicts only one dog. The dog
mostly expresses anger, although its emotions seem neutral at a few points in the video.

Table 9. Test data-set of integrated system.

Video Total Image Number Number of Dog Emotion Type Image

IMG_0033 400 2 Neutral/Happy
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4.3. Model Training Parameters and Evaluation Criteria

This paper proposes and explains the training of various models to detect, track,
extract the features of, and recognize the emotions of dogs in videos. This paper also
aimed to verify the accuracy of the models in terms of dog detection, tracking and emotion
recognition. Various evaluation criteria were used for different tasks.

4.3.1. Model Training Parameters

In the proposed system, the YOLOv3 and the DeepDogTrack models were used for dog
detection and tracking, respectively. The ResNet50 and Mask R-CNN models, combined
with the LSTM model, were used for dog emotion recognition. In this experiment, to train
the LSTM model, the Mask R-CNN model and ResNet50 models were used to remove the
image backgrounds and extract each dog’s features, respectively. The model parameters
were those of ImageNet. The LSTM model used the feature vectors from ResNet50 as input
data, and its training parameters are presented in Table 10.

Table 10. Training parameters of LSTM model.

Parameters
Input size 16 × 2048

Feature length 16
Learning rate 0.0001

Dropout 0.4
Batch size 2

Activation function tanh
Epoch 50

4.3.2. Model Evaluation Criteria

In the dog detection, tracking, and emotion recognition experiments, various evalua-
tion criteria were used to examine the performance of the models.
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Evaluation Criteria for Dog Detection

The dog detection performance of the proposed system was evaluated according to
the rate of correct predictions (vs. the ground truth region). This experiment used three
evaluation criteria, the first of which is Recall. Recall represents the number of predicted
ground truth pixels and is calculated as follows:

Recall =
1
N ∑N

i=1
Gti ∩ Pi

Gti
(6)

where Gti represents the ground truth region of the ith dog, Pi represents the predicted
region of the ith dog, N is the total number of dogs, and Gti ∩ Pi represents the intersection
between the ground truth and predicted regions.

The second evaluation criterion used was Precision. Precision represents the number
of correctly predicted pixels and is calculated as follows:

Precision =
1
N ∑N

i=1
Gti ∩ Pi

Pi
(7)

The third evaluation criterion used was the mean IOU (mIOU), that is, the aver-
age number of pixels detected correctly in the ground truth and predicted regions. It is
calculated as follows:

mIOU =
1
N ∑N

i=1
Gti ∩ Pi
Gti ∪ Pi

(8)

where Gti ∪ Pi represents the union of the ground truth region Gti and the predicted
region Pi.

The fourth evaluation criterion used was the detection rate. The detection rate is
considered satisfactory if the Recall, Precision, or mIOU value is ≥0.5.

Evaluation Criteria for Dog Tracking

In the dog tracking experiment, the models were evaluated in terms of MOT accuracy
(MOTA), as defined by the MOT Challenge [57]. MOTA is calculated as follows:

MOTA = 1− ∑t (FNi + FPi + IDSWi)

∑i GTi
(9)

where GTi is the ground truth region of the dog in the ith image, FNi (false negative) is the
number of dogs that are not tracked in the ith image, and FPi (false positive) is the number
of tracked dogs in the ith image for which the tracked region is incorrect. Incorrectly
tracked regions are those for which the IOU between the tracked region and the ground
truth region is less than 50%. IDSWi (ID Switch) represents the number of dogs tracked as
other dogs in the ith image. Therefore, larger MOTA values indicate higher MOTA.

Evaluation Criteria for Dog Emotion Recognition

Dog emotion recognition was evaluated by comparing the predicted results with the
ground truth results and is presented herein in terms of identification accuracy ACC, which
is calculated as follows:

ACC = ∑NT
i=1 Pi and Pi =

NTi
Ni

(10)

where Pi is the identification rate of the ith category of emotions, NT represents the total
number of images, NTi represents the number of correct recognitions in the ith category,
and Ni represents the total number of dogs in the ith category.

4.4. Performance Analysis

An analysis of the performance of the proposed system according to the results of
the dog detection, tracking, and emotion recognition experiments is presented in the
following sections.
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4.4.1. Performance for Dog Detection

The results of the dog detection experiment are listed in Table 11. Since the ex-
perimental images were taken from the video on the camera, there may be more than
two dogs in one picture. Therefore, the number of images in the table will be less than the
number of dogs. The detection rate of the TestSet1 data-set was 97.62%; in total, 199 dogs
were undetected. The reasons for the detection errors were the obstruction of the facial
features of the dog, the breed of the dog, and the obstruction or cropping of the body of the
dog (Figure 13). Another factor contributing to the detection error rate may have been the
training data-set, which accounted for too many object categories and contained too few
dog samples. The detection rate of the TestSet2 data-set was 98.39%; in total, 357 dogs were
undetected. In addition to the aforementioned factors contributing to the detection error
rate, some detection errors in the experiment conducted using the TestSet2 data-set were
attributable to incomplete dog regions, as illustrated in Figure 14. In the future, training
data-sets that contain higher numbers of dog images and that account for the types of
detection errors identified in this study should be used to improve the detection rate of the
proposed system.

Table 11. Results of dog detection experiments.

Datasets Image Number Dog Number Detection Rate Precision Recall mIOU
TestSet 1 8351 8371 97.62% 93.49% 83.72% 80.27%
TestSet 2 20580 22126 98.39% 88.87% 85.67% 80.48%
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4.4.2. Performance for Dog Tracking

Dog tracking is an experiment with a single dog after detection. The DeepSORT,
DeepSORT_retrained, and DeepDogTrack models (Models 1, 2, and 3, respectively) were
used in the dog-tracking experiment. The experimental results for the IMG_0043_5 data-set
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are presented in Table 12. The MOTA values of Model 1 and of Models 2 and 3 were
81.1% (false negatives [FNs]: 33, false positives [FPs]: 9) and 83.88% (FNs: 33, FPs: 1),
respectively. The MOTA values of Models 2 and 3 were higher than that of Model 1 because
the prediction regions of these two models use YOLOv3 detection. Two reasons for tracking
failure were identified: the obstruction of the dog’s body in many regions (Figure 15) and
the dog’s back being turned to the camera (Figure 16). The YOLOv3 model was not trained
using images of dogs’ backs, which differ considerably from those taken from front or
side views; consequently, the tracked region in such images is incorrect. If the Kalman
prediction region is used as the dog region, the IOU between the ground truth and predicted
region is less than 50%. This is illustrated in Figure 17, in which blue and red boxes are the
predicted and ground truth regions, respectively; the IOUs in images 47 and 48 are 0.46 and
0.43, respectively.

Table 12. Results of dog tracking experiments conducted using IMG_0043_5 data-set.

Methods Number of Dog Total Image Number Number of Dogs Tracked FN FP IDSW MOTA
Model 1

1 240
169 33 9 0 81.1%

Model 2 177 33 1 0 83.88%
Model 3 177 33 1 0 83.88%
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The experimental results for the IMG_0041_1 data-set are presented in Table 13. The
MOTA values of Model 1 and of Models 2 and 3 were 92.24% (FNs: 8, FPs: 2) and 93.02%
(FNs: 8, FPs: 1), respectively. The MOTA values of Models 2 and 3 were again higher than
that of Model 1 because the prediction regions of these two models use YOLOv3 detection.
The main reason for tracking failure was the obstruction of the vital part (body and head)
of the dog, as illustrated in Figure 18.
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Table 13. Results of dog-tracking experiments conducted using IMG_0041_1 data-set.

Methods Number of Dogs Total Image Number Number of Dogs Tracked FN FP IDSW MOTA
Model 1

1 180
119 8 2 0 92.24%

Model 2 120 8 1 0 93.02%
Model 3 120 8 1 0 93.02%
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Figure 18. Dogs not tracked in images 164 and 165. (a) Image 163; (b) Image 164; (c) Image 165.

The IMG_0014 data-set used in the dog-tracking experiment contained sub-images
of four different dogs (ID 1–4). The experimental results for the data-set are presented in
Table 14. In the experiments involving ID 1, each of the three models achieved a MOTA
value of 98.32%; the tracked regions were all correct. In those involving ID 2, Models 2 and
3 achieved a MOTA value of 69.26%, which was higher than that achieved using Model 1,
but considerably lower than that achieved in the experiments involving other dogs. This is
partially because several dogs were tracked as the same dog. In the experiments involving
ID 3, Models 2 and 3 achieved a MOTA value of 87.50%, which was far higher than that
achieved using Model 1 and second only to that obtained in the experiments involving
ID 1. In the experiment involving ID 4, Models 1 and 3 achieved a MOTA value of 82.50%,
and the tracked regions in both models were all correct; however, Model 2 achieved a lower
MOTA value (81.25%) because several dogs were tracked as the same dog.

Table 14. Results of dog tracking experiments conducted using IMG_0014 data-set.

ID Number of Dog Total Image Number Number of Dogs Tracked FN FP IDSW MOTA

1
Model 1 357 351 6 0 0 98.32%
Model 2 357 351 6 0 0 98.32%
Model 3 357 351 6 0 0 98.32%

2
Model 1 231 159 70 1 1 68.83%
Model 2 231 160 70 0 1 69.26%
Model 3 231 160 70 0 1 69.26%

3
Model 1 48 31 6 11 0 64.58%
Model 2 48 42 6 0 0 87.50%
Model 3 48 42 6 0 0 87.50%

4
Model 1 80 66 14 0 0 82.50%
Model 2 80 66 14 0 1 81.25%
Model 3 80 66 14 0 0 82.50%

The numbers of FNs obtained for IDs 2 and 4 were higher than those obtained for
IDs 1 and 3. Examples of images resulting in FNs for IDs 2 and 4 are presented in
Figures 19 and 20, respectively. ID 2 corresponds to a black dog far from the camera.
In images 266 to 274, the dog is obscured, leading to tracking failure. ID 4 corresponds to a
white dog that entered the frame during recording. In images 302 and 303, the dog has not
yet completely entered the frame, resulting in tracking failure.
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Figure 20. Dog with ID 4 not tracked in images 302 and 303. (a) Image 302; (b) Image 303;
(c) Image 304.

4.4.3. Performance for Dog Emotion Recognition

The LDFMN model and the TestSet4_1 and TestSet4_2 data-sets were used for the
emotion recognition experiments. In the experiment conducted using TestSet4_1, 16 im-
ages were selected as prediction targets, and the ResNet50 model incorporated into the
LDFMN model was trained using ImageNet parameters. In the experiment conducted
using TestSet4_2, 16 images were selected as prediction targets, and the Mask R-CNN
and ResNet50 models incorporated into the LDFMN model were both trained using
ImageNet parameters.

The results of the emotion recognition experiments are presented in Table 15. In the
experiments conducted using the TestSet4_1 data-set, the average identification accuracy of
the LDFMN model was 81.73%, which is higher than that obtained using Convolutional
3D (C3D) [58] architecture (71.07%). The identification accuracy for anger/aggression
(96.77%) was the highest among those for the three emotions. In the experiments con-
ducted using the TestSet4_2 data-set, the average identification accuracy of the LDFMN
model was 76.02%, higher than that obtained using C3D architecture (66.84%). Again, the
identification accuracy for anger/aggression (88.70%) was the highest. The identification
accuracy achieved using the TestSet4_1 data-set was higher than that achieved using the
TestSet4_2 data-set, indicating that background removal did not contribute to higher dog
emotion recognition. However, the identification accuracy for happiness achieved using
the TestSet4_2 data-set was higher than that achieved using the TestSet4_1 data-set, indicat-
ing that background removal may be conducive to the recognition of happiness in dogs.
Nevertheless, as illustrated in Figure 21, background removal can cause the loss of a dog’s
features, resulting in dog emotion recognition errors.
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Table 15. Results of dog emotion recognition experiments.

ACC of the Emotion
Dataset Methods Emotion Type ACC

Average ACC

TestSet4_1

LDFMN

Neutral/General 77.65%

81.73%
Happy/Excited 70.00%

Angry/Aggressive 96.77%

C3D (Tran et al.,
2015 [58])

Neutral/General 74.11%

71.07%Happy/Excited 66.00%

Angry/Aggressive 70.96%

TestSet4_2

LDFMN

Neutral/General 66.66%

76.02%Happy/Excited 76.00%

Angry/Aggressive 88.70%

C3D (Tran et al.,
2015 [58])

Neutral/General 68.51%

66.84%Happy/Excited 68.00%

Angry/Aggressive 64.52%
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Figure 21. Images before and after background removal. (a) Original image; (b) After background
removal.

The reasons for emotion recognition errors, illustrated in Table 16, can be classified
into the following four cases:

Case 1: An angry or aggressive dog is categorized as being happy or excited. For
example, in the image in Table 15, the dog’s mouth is only slightly open, and the dog’s
movements are too subtle.

Case 2: The shooting angle is suboptimal.
Case 3: The dog moves too quickly, resulting in blurry images.
Case 4: The resolution of the image is too low.
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Table 16. Emotion recognition errors.

Image Cases 1 2 3

Case 1
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4.4.4. Performance for Dog Emotion Recognition in Surveillance Videos

The models used in the dog detection, tracking, and emotion recognition experiments
were categorized into different types, listed in Table 1. Type_1, Type_2, and Type_3 use
the LDFDMN model with backgrounds for emotion recognition; Type_4, Type_5, and
Type_6 use the LDFDMN model without backgrounds for emotion recognition. Because
the number of dog reidentification data-sets used in this study was insufficient, the use of
the LDFMN model produced unsatisfactory dog emotion recognition results. Therefore,
the CNN model uses weights pretrained on the ImageNet data-set.

The results of the experiments conducted using the IMG_0033 and AngryDogs data-
sets are presented in Tables 17 and 18, respectively. In the experiment conducted us-
ing the IMG_0033 data-set, the identification accuracy of the Type_2 (YOLOv3 + Deep-
SORT_retrained + LDFDMN with background) and Type_3 (YOLOv3 + DeepDogTrack +
LDFDMN with background) models was the highest (76.36%), indicating that the models
that removed the image backgrounds did not effectively recognize the dogs’ emotions.
Furthermore, the characteristics of happiness and neutrality in dogs are similar (Figure 22),
which can result in emotion recognition errors.
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Table 17. Identification accuracy of model types in experiments conducted using IMG_0033 data-set.

Type of the Processing ACC of the Dog Emotion
Type_1 75.45%
Type_2 76.36%
Type_3 76.36%
Type_4 63.89%
Type_5 63.89%
Type_6 62.46%

Table 18. Identification accuracy of model types in experiments conducted using AngryDogs data-set.

Type of the Processing ACC of the Dog Emotion
Type_1 76.36%
Type_2 76.36%
Type_3 76.36%
Type_4 53.24%
Type_5 53.24%
Type_6 53.76%
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In the experiment conducted using the AngryDogs data-set, the Type_1, Type_2, and
Type_3 models achieved the highest identification accuracy (76.36%), and Type_4 and
Type_5 achieved the lowest (53.24%). This indicates that, as with the IMG_0033 data-set,
the models that removed the image backgrounds did not effectively recognize the dogs’
emotions. Because the dogs in this data-set remain mostly still over the course of the video,
the tracking results and identification accuracy values of the Type_1, Type_2, and Type_3
models were the same.

5. Conclusions

The primary purpose of this study was to develop a multi-CNN model for dog
detection, tracking, and emotion recognition. The dog detection model was trained using
the MSCOCO data-set, and dog tracking and emotion recognition models were trained
using videos collected from YouTube, the Folk Stray Dog Shelter, and the DTC. In the
dog detection experiment, the detection rates for the TestSet1 and TestSet2 data-sets were
97.59% and 95.93%, respectively. The reasons for detection errors were obscured facial
features, special breeds of dogs, obscured or cropped bodies, and incomplete regions. The
effects of these factors can be minimized by reducing the number of object types, increasing
the sample size of dogs in the training data-set and making the ground truth region more
apparent. In the dog-tracking experiment, the MOTA values for videos of a single dog and
for multiple dogs were as high as 93.02% and 86.45%, respectively. The tracking failures
occurred in cases where large parts of the dog’s body were obscured. In the dog emotion
recognition experiments, the identification accuracy rates for the two data-sets were 81.73%,
and 76.02%, respectively. The results of the emotion recognition experiment indicate that
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removing the backgrounds of dog images negatively affects the identification accuracy.
Furthermore, happy and neutral emotions are similar and therefore difficult to distinguish.
In other cases, the dog’s movements may not be apparent, the image may be blurred, the
shooting angle may be suboptimal, or the image resolution may be too low. Nevertheless,
the results of the experiments indicate that the method proposed in this paper can correctly
recognize the emotions of dogs in videos. The accuracy of the proposed system can be
further increased by using more images and videos to train the detection, tracking, and
emotion recognition models presented herein. The system can then be applied in real-world
contexts to assist in the early identification of dogs that exhibit aggressive behavior.

Research on automatic face and emotion recognition technology has developed rapidly
and matured, and many data-sets have been collected. However, because dogs are not easy
to control, there are few datasets for dog tracking and emotion recognition. Therefore, to
improve the accuracy of tracking and emotion recognition, it is necessary to further collect
many dog-tracking and emotion recognition data-sets in the future.
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