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Abstract: This paper proposes a multi-convolutional neural network (CNN)-based system for the
detection, tracking, and recognition of the emotions of dogs in surveillance videos. This system
detects dogs in each frame of a video, tracks the dogs in the video, and recognizes the dogs’ emotions.
The system uses a YOLOv3 model for dog detection. The dogs are tracked in real time with a deep
association metric model (DeepDogTrack), which uses a Kalman filter combined with a CNN for
processing. Thereafter, the dogs” emotional behaviors are categorized into three types—angry (or
aggressive), happy (or excited), and neutral (or general) behaviors—on the basis of manual judgments
made by veterinary experts and custom dog breeders. The system extracts sub-images from videos of
dogs, determines whether the images are sufficient to recognize the dogs’ emotions, and uses the long
short-term deep features of dog memory networks model (LDFDMN) to identify the dog’s emotions.
The dog detection experiments were conducted using two image datasets to verify the model’s
effectiveness, and the detection accuracy rates were 97.59% and 94.62%, respectively. Detection errors
occurred when the dog’s facial features were obscured, when the dog was of a special breed, when
the dog’s body was covered, or when the dog region was incomplete. The dog-tracking experiments
were conducted using three video datasets, each containing one or more dogs. The highest tracking
accuracy rate (93.02%) was achieved when only one dog was in the video, and the highest tracking
rate achieved for a video containing multiple dogs was 86.45%. Tracking errors occurred when
the region covered by a dog’s body increased as the dog entered or left the screen, resulting in
tracking loss. The dog emotion recognition experiments were conducted using two video datasets.
The emotion recognition accuracy rates were 81.73% and 76.02%, respectively. Recognition errors
occurred when the background of the image was removed, resulting in the dog region being unclear
and the incorrect emotion being recognized. Of the three emotions, anger was the most prominently
represented; therefore, the recognition rates for angry emotions were higher than those for happy or
neutral emotions. Emotion recognition errors occurred when the dog’s movements were too subtle or
too fast, the image was blurred, the shooting angle was suboptimal, or the video resolution was too
low. Nevertheless, the current experiments revealed that the proposed system can correctly recognize
the emotions of dogs in videos. The accuracy of the proposed system can be dramatically increased
by using more images and videos for training the detection, tracking, and emotional recognition
models. The system can then be applied in real-world situations to assist in the early identification of
dogs that may exhibit aggressive behavior.

Keywords: convolutional neural networks; dog detection; dog tracking; dog emotion recognition;
long short-term memory

1. Introduction

Keeping pets has become increasingly popular in recent years, leading to a surge
in stray dogs due to abandonment, loss, and breeding. This has resulted in numerous
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issues, such as disease spread, attacks on humans, the disruption of urban cleanliness, and
traffic accidents. Although the government uses TNVR and precise capture, addressing dog
attacks is time-consuming and labor-intensive. In recent years, many surveillance cameras
have been installed in essential areas, such as roads, intersections, transfer stations, and
public places. However, these surveillance cameras cannot provide immediate warning
messages before incidents occur. Nevertheless, recent computer vision technology can
analyze camera footage and replace human reporting by sending alerts to emergency
services when one or more stray dogs are detected as being about to attack. Therefore,
computer vision has also been widely used for object identification. Integrating these
technologies to detect and analyze dog behavior can save time and processing power, and
facilitate the real-time collection of dog information and issue immediate warning alerts.

From 2014 to 2022, researchers used animal motion tracking and gesture recogni-
tion to study animal emotions and improve their emotional well-being. Sofia et al. used
computer vision technology to assess animal emotions and pain recognition through a
comprehensive analysis of facial and body behavior [1]. Identifying animal emotional
behaviors is challenging because they express internal emotional states subjectively [2].
Researchers traditionally observe or record videos of animal behavior to analyze their
behaviors. However, automatic facial and body pose analysis enables the extensive annota-
tion of human emotional states. Fewer studies have focused on the mechanical behavior
of non-human animals. Animal tracking studies include pose estimation, canine behavior
analysis, and animal identification and tracking techniques using deep learning methods.
Analyzing facial expressions and body behaviors to understand animal emotions presents
many challenges. Techniques for recognizing animal emotional states and pain are more
complex than those for tracking movement.

Recently, researchers have used computer vision and deep learning techniques for
canine emotion recognition. Zhu used indoor static cameras to record dogs’ behavior
during locomotion, and their architecture combined pose and raw RGB streams to identify
pain in dogs [3]. Franzoni et al. and Boneh et al. used images of dogs in experiments that
elicited emotional states, and the main target was the detection of emotion on the dog’s
face [4,5]. Ferres et al. recognized dog emotions from body poses, using 23 regions on the
body and face as critical points [6]. The imaging dataset for these studies was limited to a
single dog, and high-resolution, clear images of faces and limbs were necessary. Research
on dog emotion recognition using computer vision and deep learning has mainly focused
on high-resolution, clear facial images of a single dog. These studies have generally used
surveillance cameras, and the emotional state of animals has been primarily based on phys-
ical behavior due to distance and low-resolution videos. Past research on human emotion
recognition has used text, audio, or video data and various models to achieve high accuracy,
with facial expressions or body language analysis used for emotion recognition. However,
no studies investigate dog tracking and emotion recognition due to the complexity of dog
behavior and a lack of readily available imaging data.

Numerous studies on object detection have been conducted [7-12]. In object detection,
colors, textures, edges, shapes, spatial relationships, and other features are extracted
from data, and machine learning methods are used to classify objects according to these
features. Dalal and Triggs used the histogram of an oriented gradient image feature
extractor and a support vector machine (SVM) classifier to achieve human detection [7].
With the development of deep learning in artificial intelligence, convolutional neural
networks (CNNs) have been applied in various deep learning technologies. Deep learning
is now commonly used in computer vision, mainly because of the 2012 ImageNet Large-
Scale Visual Recognition Challenge [13]. AlexNet, the deep learning network architecture
proposed by Alex Krizhevsky [14], heralded the era of the CNN model. Subsequently,
VGG, GoogleNet, and ResNet architectures, all of which are commonly used in innovative
technologies, were developed [15-17].

Object tracking refers to the tracking of objects in continuous images; after the objects
in each image are detected, they are tracked to determine and analyze their movement
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trajectory. Pedestrians and cars have been the objects most commonly tracked in previous
studies [18-22], and the MeanShift tracking method, Kalman filter method, particle filter
method, local steering kernel object texture descriptors method, CamShift method, and
optical flow method have been commonly used for tracking [12,18-22]. Several methods
have been developed for CNN-based feature extraction and object tracking in video. For
example, simple online and real-time tracking with a deep association metric (DeepSORT)
combines information regarding an object’s position and appearance to achieve high
tracking accuracy [23].

In most previous studies on human emotion recognition, human emotions have been
classified using traditional methods involving feature extractors and classifiers. Some
recent studies have explored using CNN models to extract human features. In 2010,
Mikolov et al. proposed recurrent neural networks (RNNs) to deal effectively with time
series problems [24]. Regarding research on human emotion recognition, Ojala et al. and
Gu et al. used the local binary pattern method [25,26] and the Gabor wavelet transform
method, respectively, to recognize facial expressions [27]. Oyedotun et al. proposed a facial
expression recognition CNN model that receives RGB data and depth maps as input [28].
Donahue et al. introduced long-term recurrent convolutional networks, which combine
CNNs and long short-term memory (LSTM) models to recognize people in videos [29].

Animals have basic emotions that result in different emotional states and neural
structures in their brains [30]. However, the lack of large datasets makes assessing canine
emotional states more challenging than humans. Nevertheless, we can evaluate a dog’s
physiology, behavior, and cognitive mood [31]. Facial expressions, blink rate, twitching,
and yawning are among the essential sources of information for assessing animal stress
and emotional states [1,32]. In addition to facial behavior, body posture and movement
are associated with affective states and pain-related behaviors [33,34]. Open spaces, novel
objects, elevated plus mazes, and qualitative behavioral assessments evaluate animals’ pain,
discomfort, and emotional mood [35,36]. In recent years, physical and postural behavior
has also been utilized to assess affective emotions in dogs and horses [1,37,38].

The present study focused on the recognition of the emotions of dogs in videos to
identify potentially aggressive dogs and relay warning messages in real time. The proposed
system first uses YOLOv3 architecture to detect dogs and their positions in the input
videos. To track the dogs, we modified the sizes of the images input into the DeepSORT
model, improved the feature extraction model, trained the model on the dog dataset, and
modified each final tracking position to the position of each tracked dog. The modified
model is called real-time dog tracking with a deep association metric (DeepDogTrack).
Finally, the system categorizes the dogs’ emotional behaviors into three types—angry (or
aggressive), happy (or excited), and neutral (or general emotional) behaviors—based on
manual judgments made by veterinary experts and custom dog breeders. The dog emotion
recognition model proposed in this study is called the long short-term deep features of dog
memory networks (LDFDMN) model. This model uses ResNet to extract the features of the
dog region that are tracked in the continuous images, which are then input into the LSTM
model. The LSTM model is then used for emotion recognition.

The contributions of this study are as follows:

1.  An automated system that integrates an LSTM model with surveillance camera
footage is proposed for monitoring dogs” emotions.

2. Anew model for dog tracking (DeepDogTrack) is developed.

A new model for dog emotion recognition (LDFDMN) is proposed.

4. The proposed system is evaluated according to the results of experiments conducted
using various training data, methods, and types of models.

W

2. Related Work
2.1. The Processing of the SORT

The overall SORT process involves the detection, estimation, data association, and
creation and deletion of tracked identities.
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Detection: First, Faster-RCNN is used for detection and feature extraction. Because
the detection objects in this study are objects, other objects are ignored, and only objects
that are more than 50% likely to be a object are considered.

Estimation: The SORT model’s estimation model describes the model of the object
and enters the movement model of its representation and transmission target in the next
frame. First, the Kalman filter is used to predict the target state model (including size
and position) of an object detected at time T at time T + 1. An object’s state model can be
expressed as follows:

x = [u,v,5,1,1,0,5] T 1)

where (1, v) represents the coordinates of the object’s center at time T; (s, ¥) represents
the region and aspect ratio of the object’s bounding box at time T; and (u,7) and (s),
respectively, represent the center point and speed of the object at time T. When the object
in the next frame is detected, the object’s bounding box (1, 7) is used to update the ob-
ject’s status. If no correlations between the objects are detected, the prediction model is
not updated.

Data association: The detection result is used to determine the object’s target state;

that is, the bounding box (i, v) of the object at time T is used to predict the new position

of the object at time T + 1. First, the model predicts the bounding box (itT+1, i)T+1) of the

object at time T and the ith object at time T + 1 (ul-T“, viT‘H ), and calculates the Mahalanobis
distance between them. Thereafter, the model uses the Hungarian algorithm for matching
to enable multi-object tracking. When the intersection area (intersection over union [IOU])
is less than the threshold value, the object is regarded as the tracking target.

Creation and deletion of tracked identities: When an object enters or leaves the
screen, its identity information must be added or deleted from this system. To prevent
erroneous tracking, the model must detect objects to be tracked within a few frames of their
entrance to determine whether the object must be newly added to this system. Furthermore,
the IOU of the object in each frame and in the next frame is calculated; if its value is less
than the threshold value, the object is determined to have left the screen, and the object’s
identity information is deleted.

2.2. The Processing of the DeepSORT

The overall DeepSORT process involves the detection, estimation, data association,
and creation and deletion of tracked identities.

Detection: The DeepSORT model uses YOLOV3 architecture for pedestrian detection.
Because the detection objects in this study are pedestrians, other objects are ignored, and
only objects that are more than 50% likely to be pedestrians are considered.

Estimation: The pedestrian’s description is to enter the motion of its representation
and propagation target in the next frame. First, the model uses the Kalman filter to predict
the state model (including size and position) of a pedestrian detected at time T at time

T + 1. DeepSORT expresses the state model of the pedestrian as eight values (1, v, 7, 1, x, 1,1, h),
as follows:

LT
x = (u,v,r,h,x,y,1,h) ()

where (1, v) and (7, h) are the coordinates of the pedestrian’s center and the aspect ratio
and height of the bounding box of the pedestrian at time T, respectively. At time T, the
Kalman filter is used to predict the pedestrian’s position at time T +1. Dt 1, represents

the predicted position (x,y, w, h) of the pedestrian at time T + 1, where (x,y, w, h) are the
coordinates, length, width, and height, respectively, of the pedestrian’s center at time T + 1.
When a pedestrian is detected, the (x,y, w, h) values are updated to reflect the target state
of the pedestrian. If no pedestrian is detected, the predictive model is not updated.
Pedestrian feature extraction: The trained CNN model, which contains two convolu-
tion layers, a max pooling layer, and six residual layers, is used to extract the features of
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each pedestrian at time T + 1, which are output as a 512-dimensional feature vector. The

feature vector of the jth pedestrian at time T + 1 is expressed as ff“.

Data association: The pedestrian region (1, v) at time T is the predicted new position
of the pedestrian at time T + 1. Thereafter, the Mahalanobis distance between the pedes-

o TH ) . .
trian region at time T O(x,y,w,h);  and the region of the ith pedestrian at time T + 1

o . TH
O'(x,y,w,h) j iscalculated as follows:

T
Ady (i) = min | (O] = OF*1) s 7101 =0, i,j=1,2,...,n 3)

First, (%,1,,h) is converted into (,7,#,h), where (%,7) represents the coordinates

of the pedestrian’s center, 7 is the aspect ratio of the pedestrian, and (h) is the height of
the pedestrian. O'(x, y, r,h)IT i
T+1,0(x,y,r, h)jTH represents the new location of the jth pedestrian at time T + 1, S;!
is the covariance matrix of the ith pedestrian, and # is the total number of pedestrians at
time T + 1. The detection index based on Mahalanobis distance can be used to obtain the
optimal match. The x? distribution and its 95% confidence interval are used as the detection
threshold value, which was 9.4877 in the present study.

The Mahalanobis distance is suitable for movement positions that produce low uncer-
tainty regarding the pedestrian’s position. The state distribution of a pedestrian is predicted
using a frame, and the pedestrian’s position in the next frame is obtained using the Kalman
filter. This method only provides an approximate position, and the positions of pedestrians
that are obstructed or moving quickly will not be correctly predicted. Therefore, the model
uses a CNN to extract the feature vector of the pedestrian and calculates the cosine distance
between the extracted vector and the feature vector of the pedestrian in this system. The
minimum cosine distance is represented as follows:

represents the new position of the ith pedestrian at time

o . . T+1 .
(i) =min{ 1} ;T =12, @

Finally, the position and features of the pedestrian are matched and fused. The fused
cost matrix c(i, j) is expressed as follows:

c(i, j) = A (i, ) + (1= A)Ady(i, ) 5)

where A is the weight. Because using a nonfixed camera to shoot may cause the image
to shake violently, A should be set to 0. Therefore, A can also account for the problem of
obscured pedestrians and reduce ID switching (IDSW) during tracking.

The creation and deletion of tracked identities is the same as for SORT.

2.3. LSTM Model

In traditional neural networks, each neuron is independent and unaffected by time
series. In RNNs, time series data are used as input [24]. Earlier layers of an RNN exert
weaker effects than subsequent decisions. When too many series are present in the data, the
gradient disappears or explodes. To address this problem, Sepp and Jiirgen proposed the
LSTM model [39] in 1997. An LSTM model comprises numerous LSTM cells, each having
three inputs, three components, and two outputs. The three inputs x; are the input at time
t, the output h;_q at time t — 1, and the long-term memory (LTM) ¢;_1 at time  — 1. The
three components are the input gate i;, the output gate o; and the forget gate f;. The three
components all use sigmoid functions as activation functions to obtain an output value
between 0 and 1, simulating the opening and closing of a valve. The input gate uses the
input x; at time t and the output /;_; at time ¢ — 1 to determine whether the LTM C; should
incorporate the memory C; generated at time . The output gate determines whether the
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whether the LTM C; generated at time ¢ should be output according to the input x, at
time ¢ and the out ut h,_, at time t - 1. The forget gate uses the input x% at time ¢ and
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3.3. Dog Tracking

After a dog is detected, it is tracked to determine its movement trajectory. The dog-
tracking system identifies the position of the same dog in consecutive images and plots
these positions to form an action path. The system uses a DeepDogTrack model for dog
tracking. In addition to using a Kalman filter to predict the dog’s position in the next frame,
the model also uses a CNN to extract and match the dog’s features in consecutive frames to
determine the dog’s motion status. DeepDogTrack is an improved DeepTrack pedestrian
tracking model. The DeepSORT model integrates simple online and real-time tracking
(SORT) [44] and CNN technology to extract and match each pedestrian’s features and
analyze the location and appearance information of each pedestrian to achieve accurate
tracking. To reduce the computation time of the system and improve the accuracy of dog
tracking, the system adopts our novel DeepDogTrack model, which contains improvements
in the processing flow and adjustment of parameters.

3.3.1. SORT and DeepSORT

SORT is a practical multi-object tracking method that can effectively track objects in
consecutive frames. The SORT model proposed herein uses Faster-RCNN and a Kalman
filter to detect an object’s position and to predict the object’s position in the next frame,
respectively. Thereafter, the model calculates the Mahalanobis distance between an object’s
location and its predicted location in the next frame and uses the Hungarian algorithm [45]
for matching to enable multi-object tracking. Therefore, the overall SORT process involves
the detection, estimation, data association, and creation and deletion of tracked identities.

Although SORT is a simple and effective multi-object tracking method, it compares
only the size and position of a predicted object and does not consider the object’s features.
To address this limitation, the proposed system incorporates DeepSORT, which improves
upon the detection method of SORT and accounts for the object’s features, thus enhancing
the accuracy of object tracking. DeepSORT applies SQRT’s object tracking to pedestrian
tracking. DeepSORT is based on SORT’s multiple object tracking (MOT) architecture and
uses the Kalman filter to predict a given pedestrian’s position in the next frame. The model
calculates the Mahalanobis distance between the region of the predicted pedestrian and
the region in which other pedestrians may be located. Thereafter, a CNN is used to extract
and calculate the minimum cosine distance between the pedestrian’s features and the
features of all the pedestrians in the next frame. Finally, the Hungarian algorithm is used
for matching to enable multi-pedestrian tracking. Accordingly, DeepSORT involves the
detection, estimation, feature extraction, data association, and the creation and deletion of
tracked identities.

3.3.2. Real-Time Dog Tracking with a Deep Association Metric (DeepDogTrack)

Because DeepSORT is typically used to track pedestrians, and the proportions of the
human body are 64 x 128, the input must be a fixed-size image. Proportion features are
extracted using a simple CNN model, and the result predicted using the Kalman filter is
used as the tracking region of the object. However, the proportions of dogs are different
from those of humans. To adapt DeepSORT for the tracking of dogs and improve the
computational efficiency, the DeepDogTrack model takes the detected dog region as input
data, and the size of the region is not fixed. To increase the depth of the model and
minimize error, a deep residual network (ResNet) is used to extract the dogs’ features. The
DeepSORT model was retrained using the dog data-set to improve its tracking accuracy. The
architecture of the proposed DeepDogSORT dog-tracking model is illustrated in Figure 5.
The original and improved results are presented in Figure 6.
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Type_1 e RT

Typepel3 DeepréaRdck
Typep24 YOLOVS DeepS@Rpsartained LDFDMN with background
TYEEP 68 5 Mﬁﬁ?ﬁg}?ﬁmﬁke d LDFDMN with without

_ YOLOV3 background
TyPepels DeepSQRIck

LDFDPV{PJ VV 1th VV 1‘-1 l\Jut back

Type_5 DeepSORT _retrained round
Type_6 4. Experiments DeepDogTrack 8

The performance of the DeepDogTrack and LDFDMN models for dog tracking and
emm@m@n respectively, were evaluated through a series of experiments on dog

deteCt],?Jl:ll trac arrllc:(lj Smo on eC 1t1 e ha i“s D Of%)(f 15 ef'mIp c]f(gg tracfkmg ar

the ex%ernrlen]ts, experlment 1ma eo da as exper1rnen

SIMAHOR EREEN RN SRRGHY aﬁ‘églé%ﬁ threy ﬁ&@f%&ﬁﬁ%g?&l%ﬁts on d
irdstaetiom, tracking, and emotion recognition. The hardware and software employed in tl

experiments, experimental image and video datasets, experimental procedures and eve

4dabiftivers e 1498 Heodel performance evaluation are present in the following releva
infdhe heitskivare and software systems used in the experiments are listed in Tables 3 and 4.

The CNN architecture incorporates Darknet53 and PyTorch [51], both of which use the
Pzt%og(y%%%m%e, and a computer vision library (OpenCV for Python) [52].

Table 3 H6:hprdware and software systems used in the experiments are listed in Tables

Device Spec1ﬁcat1on
A < Cl = UL C Cl Cl O [ CL LY v - 1'

or Pytho

PO processop ntel Core 17-8700 3.2 GH
[52]. GPU processor NVIDIA GeForce GTX1080Ti 11 G
RAM memory 32G
Table 3. Hardware.
Device Specification
CPU processor Intel Core i7-8700 3.2 GHz
GPU processor NVIDIA GeForce GTX1080Ti 11 G

RAM memory 32G
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Appl. Sci. 2023, 1574595 &lable 6. The data-set for dog emotion|recognition model. 60129
Dataset Talale G Tl s.‘lo!.'lrcel. Lo ks pa |
Fable-6—Thedata-setfordogemotionfecognitionmod
Dataset Table 6. The data=setfor dgﬁﬁl;wiiuu recognition mgdel: pisg T
atase ce
YouTube
YouTube YouTulge
TrainSet4 1
TrainSet4_2 Folk Stray Dog Shelter
f&i@éﬂ}l TrainSet4_1 ‘
"Fl‘%ﬁ‘i%éﬂEZ Trains%ﬁ( Stray Dog Shélel¢ Stray Dof Shelter i
TreinSetd 1 TestSet4_1
. g TestSet4 \
TreinSet4_2 estSefbk Stray Dog Shelter i
TestSet4_1 |
TestSetd_2
DTC DTC
DTC
Note: D"iIC, Dog Training Centd? §he Customs Administlation of Taiwan’s ; __»-:i: ;E%
Inffthe expeiircift, B8 ARNS GRAep Rl Grelams 8 sk e ARG ERr:  of Finar
The information of the datasets is presented|in Table 7. In bo tasets, image sets
containing fewoer: BED DogjMrageas g areted Culftaans ifvdlagierisetT O GITTEION o stiy of Finar
16 images, it was equally divided into subsetq of 16 images. Each image was resized to

360 x 360 pixels: D3 e80T iandgeCehthe samc dagiwesd msedtagitiabiingwhata-Saisidey of Finan
the dog-tracking model. To create TrainSet4_2, a Mask R-CNN was used to remove the
backgrounds from 16 images of the same dog.

The videos in the test dataset for the dog emotion recognition experiment were ob-
tained from YouTube, the Folk Stray Dog Shelter, and the DTC. TestSet4_1 contained
197 preprocessed videos, each of which consisted of more than 16 sub-images. Test-
Set4_2 contained 196 preprocessed videos, and the background of each sub-image of each
video was removed using the Mask R-CNN. If an image set contained fewer than 16 sub-
images, the sub-images were interpolated linearly. The test dataset information is presented
in Table 8.
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Table 7. Training data-set for dog emotion recognition model.

YouTube 116
Neutral /General Folk Stray Dog Shelter 63 206
DTC 27
YouTube 30
TrainSet4 1 Happy/Excited Folk Stray Dog Shelter 23 124 480
DTC 71
YouTube 148
Angry/Aggressive  Folk Stray Dog Shelter 2 150
DTC 0
YouTube 108
Neutral/General Folk Stray Dog Shelter 63 198
DTC 27
YouTube 30
TrainSetd 2 Happy/Excited Folk Stray Dog Shelter 23 124 464
DTC 71
YouTube 140
Angry/Aggressive  Folk Stray Dog Shelter 2 142
DTC 0

Note: DTC, Dog Training Center of the Customs Administration of Taiwan’s Ministry of Finance.

Table 8. Test data-set for the dog emotion recognition experiment.

YouTube 48
Neutral/General Folk Stray Dog Shelter 26 85
DTC 11
YouTube 11
TestSet4_1 Happy/Excited Folk Stray Dog Shelter 9 50 197
DTC 30
YouTube 62
Angry/Aggressive  Folk Stray Dog Shelter 62
DTC 0
YouTube 47
Neutral/General Folk Stray Dog Shelter 26 84
DTC 11
YouTube 11
TestSet4_2 Happy/Excited Folk Stray Dog Shelter 9 50 196
DTC 30
YouTube 62
Angry/Aggressive  Folk Stray Dog Shelter 0 62
DTC 0

Note: DTC, Dog Training Center of the Customs Administration of Taiwan’s Ministry of Finance.
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4.3.2. Model Evaluation digtatinguateion 0:g680

In the dog detection, trablpoeh) and emotion recognition experiments, vafious evalua-
tion criteria were used to eRateinsilee performance of the models. 2
4.3.2. Model EvaliActovaGoitefianction tanh
In th iorkl ing, and emotion r nition experim ri lu-

ation criteria were used to examine the performance of the models.
4.3.2. Model Evaluation Criteria
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Evaluation Criteria for Dog Detection

The dog detection performance of the proposed system was evaluated according to
the rate of correct predictions (vs. the ground truth region). This experiment used three
evaluation criteria, the first of which is Recall. Recall represents the number of predicted
ground truth pixels and is calculated as follows:

N GtNE
i=1 Gt;

Recall = 1 Z

- ©®)

where Gt; represents the ground truth region of the ith dog, P; represents the predicted
region of the ith dog, N is the total number of dogs, and Gt; N P; represents the intersection
between the ground truth and predicted regions.

The second evaluation criterion used was Precision. Precision represents the number
of correctly predicted pixels and is calculated as follows:
1 ZN Gt;N P

Precision = — ) .
N &~i=1 P;

@)

The third evaluation criterion used was the mean IOU (mIOU), that is, the aver-
age number of pixels detected correctly in the ground truth and predicted regions. It is
calculated as follows:

1 N GNP
IOU=—) .
mlOU = 5 ) in1 Gru P, ®)
where Gt; U P; represents the union of the ground truth region Gt; and the predicted

region P;.
The fourth evaluation criterion used was the detection rate. The detection rate is
considered satisfactory if the Recall, Precision, or mIOU value is >0.5.

Evaluation Criteria for Dog Tracking

In the dog tracking experiment, the models were evaluated in terms of MOT accuracy
(MOTA), as defined by the MOT Challenge [57]. MOTA is calculated as follows:

Y (FN; + FP; + IDSW;)

MOTA =1 —
Y. GT;

©)

where GT; is the ground truth region of the dog in the ith image, FN; (false negative) is the
number of dogs that are not tracked in the ith image, and FP; (false positive) is the number
of tracked dogs in the ith image for which the tracked region is incorrect. Incorrectly
tracked regions are those for which the IOU between the tracked region and the ground
truth region is less than 50%. IDSW; (ID Switch) represents the number of dogs tracked as
other dogs in the ith image. Therefore, larger MOTA values indicate higher MOTA.

Evaluation Criteria for Dog Emotion Recognition

Dog emotion recognition was evaluated by comparing the predicted results with the
ground truth results and is presented herein in terms of identification accuracy ACC, which

is calculated as follows:
NT;

N;
where P; is the identification rate of the ith category of emotions, Nt represents the total

number of images, NT; represents the number of correct recognitions in the ith category,
and N; represents the total number of dogs in the ith category.

ACC =Y M Piand P; = (10)

4.4. Performance Analysis

An analysis of the performance of the proposed system according to the results of
the dog detection, tracking, and emotion recognition experiments is presented in the
following sections.
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are presented in Table 12. The MOTA Values of Model 1 and of Models 2 and 3 were
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white dog that entered the frame during recording. In images 302 and 303, the dog has not

yet compleiehhtiered fNdoptairRaiRgDsPasking Rvéchigher than those obtained for ID
1 and 3. Examples of images resulting in FNs for IDs 2 and 4 are presented in Figures 1
and 20, respectively. ID 2 corresponds to a black dog far from the camera. In images 26
to 274, the dog is obscured, leading to tracking failure. ID 4 corresponds to a white do;
that entered the frame during recording. In images 302 and 303, the dog has not yet com
pletely entered the frame, resulting in tracking failure.
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The reasons for emotion recognition errors, illustrated in Table 16, ean be elassified
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Case 1: Am angry or aggressive dog is categorized as being happy or exdited. For
example, in the image in Table 15, the dog’s mouth is only slightly open, and the dog’s

movements are too subtle.

Case 2: The shooting angle is suboptimal.
Case 3: The dog moves too quickly, mesuilimg iim Bilumry fmeages.
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Case 4: The resolution of the image is too low.
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occurred in cases where large parts of the dog’s body were obscured. In the dog emotlon
recognition experiments, the identification accuracy rates for the two data-sets were 81.73%,
and 76.02%, respectively. The results of the emotion recognition experiment indicate that
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removing the backgrounds of dog images negatively affects the identification accuracy.
Furthermore, happy and neutral emotions are similar and therefore difficult to distinguish.
In other cases, the dog’s movements may not be apparent, the image may be blurred, the
shooting angle may be suboptimal, or the image resolution may be too low. Nevertheless,
the results of the experiments indicate that the method proposed in this paper can correctly
recognize the emotions of dogs in videos. The accuracy of the proposed system can be
further increased by using more images and videos to train the detection, tracking, and
emotion recognition models presented herein. The system can then be applied in real-world
contexts to assist in the early identification of dogs that exhibit aggressive behavior.

Research on automatic face and emotion recognition technology has developed rapidly
and matured, and many data-sets have been collected. However, because dogs are not easy
to control, there are few datasets for dog tracking and emotion recognition. Therefore, to
improve the accuracy of tracking and emotion recognition, it is necessary to further collect
many dog-tracking and emotion recognition data-sets in the future.
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