Article

Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance

Huan-Yu Chen ${ }^{1(D)}$, Chuen-Horng Lin ${ }^{1, *(\mathbb{D})}$, Jyun-Wei Lai ${ }^{1}$ and Yung-Kuan Chan ${ }^{2}$ (D)
1 Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, No. 129, Sec. 3, Sanmin Rd., Taichung 404, Taiwan; hychen@nutc.edu.tw (H.-Y.C.)
2 Department of Management Information Systems, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402, Taiwan
* Correspondence: linch@nutc.edu.tw

Citation: Chen, H.-Y.; Lin, C.-H.; Lai, J.-W.; Chan, Y.-K. Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance. Appl. Sci. 2023, 13, 4596. https://doi.org/10.3390/ app13074596

Academic Editor: Zhengjun Qiu
Received: 6 February 2023
Revised: 26 March 2023
Accepted: 3 April 2023
Published: 5 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

This paper proposes a multi-convolutional neural network (CNN)-based system for the detection, tracking, and recognition of the emotions of dogs in surveillance videos. This system detects dogs in each frame of a video, tracks the dogs in the video, and recognizes the dogs' emotions. The system uses a YOLOv3 model for dog detection. The dogs are tracked in real time with a deep association metric model (DeepDogTrack), which uses a Kalman filter combined with a CNN for processing. Thereafter, the dogs' emotional behaviors are categorized into three types-angry (or aggressive), happy (or excited), and neutral (or general) behaviors-on the basis of manual judgments made by veterinary experts and custom dog breeders. The system extracts sub-images from videos of dogs, determines whether the images are sufficient to recognize the dogs' emotions, and uses the long short-term deep features of dog memory networks model (LDFDMN) to identify the dog's emotions. The dog detection experiments were conducted using two image datasets to verify the model's effectiveness, and the detection accuracy rates were 97.59% and 94.62%, respectively. Detection errors occurred when the dog's facial features were obscured, when the dog was of a special breed, when the dog's body was covered, or when the dog region was incomplete. The dog-tracking experiments were conducted using three video datasets, each containing one or more dogs. The highest tracking accuracy rate (93.02%) was achieved when only one dog was in the video, and the highest tracking rate achieved for a video containing multiple dogs was 86.45%. Tracking errors occurred when the region covered by a dog's body increased as the dog entered or left the screen, resulting in tracking loss. The dog emotion recognition experiments were conducted using two video datasets. The emotion recognition accuracy rates were 81.73% and 76.02%, respectively. Recognition errors occurred when the background of the image was removed, resulting in the dog region being unclear and the incorrect emotion being recognized. Of the three emotions, anger was the most prominently represented; therefore, the recognition rates for angry emotions were higher than those for happy or neutral emotions. Emotion recognition errors occurred when the dog's movements were too subtle or too fast, the image was blurred, the shooting angle was suboptimal, or the video resolution was too low. Nevertheless, the current experiments revealed that the proposed system can correctly recognize the emotions of dogs in videos. The accuracy of the proposed system can be dramatically increased by using more images and videos for training the detection, tracking, and emotional recognition models. The system can then be applied in real-world situations to assist in the early identification of dogs that may exhibit aggressive behavior.

Keywords: convolutional neural networks; dog detection; dog tracking; dog emotion recognition; long short-term memory

1. Introduction

Keeping pets has become increasingly popular in recent years, leading to a surge in stray dogs due to abandonment, loss, and breeding. This has resulted in numerous
issues, such as disease spread, attacks on humans, the disruption of urban cleanliness, and traffic accidents. Although the government uses TNvR and precise capture, addressing dog attacks is time-consuming and labor-intensive. In recent years, many surveillance cameras have been installed in essential areas, such as roads, intersections, transfer stations, and public places. However, these surveillance cameras cannot provide immediate warning messages before incidents occur. Nevertheless, recent computer vision technology can analyze camera footage and replace human reporting by sending alerts to emergency services when one or more stray dogs are detected as being about to attack. Therefore, computer vision has also been widely used for object identification. Integrating these technologies to detect and analyze dog behavior can save time and processing power, and facilitate the real-time collection of dog information and issue immediate warning alerts.

From 2014 to 2022, researchers used animal motion tracking and gesture recognition to study animal emotions and improve their emotional well-being. Sofia et al. used computer vision technology to assess animal emotions and pain recognition through a comprehensive analysis of facial and body behavior [1]. Identifying animal emotional behaviors is challenging because they express internal emotional states subjectively [2]. Researchers traditionally observe or record videos of animal behavior to analyze their behaviors. However, automatic facial and body pose analysis enables the extensive annotation of human emotional states. Fewer studies have focused on the mechanical behavior of non-human animals. Animal tracking studies include pose estimation, canine behavior analysis, and animal identification and tracking techniques using deep learning methods. Analyzing facial expressions and body behaviors to understand animal emotions presents many challenges. Techniques for recognizing animal emotional states and pain are more complex than those for tracking movement.

Recently, researchers have used computer vision and deep learning techniques for canine emotion recognition. Zhu used indoor static cameras to record dogs' behavior during locomotion, and their architecture combined pose and raw RGB streams to identify pain in dogs [3]. Franzoni et al. and Boneh et al. used images of dogs in experiments that elicited emotional states, and the main target was the detection of emotion on the dog's face [4,5]. Ferres et al. recognized dog emotions from body poses, using 23 regions on the body and face as critical points [6]. The imaging dataset for these studies was limited to a single dog, and high-resolution, clear images of faces and limbs were necessary. Research on dog emotion recognition using computer vision and deep learning has mainly focused on high-resolution, clear facial images of a single dog. These studies have generally used surveillance cameras, and the emotional state of animals has been primarily based on physical behavior due to distance and low-resolution videos. Past research on human emotion recognition has used text, audio, or video data and various models to achieve high accuracy, with facial expressions or body language analysis used for emotion recognition. However, no studies investigate dog tracking and emotion recognition due to the complexity of dog behavior and a lack of readily available imaging data.

Numerous studies on object detection have been conducted [7-12]. In object detection, colors, textures, edges, shapes, spatial relationships, and other features are extracted from data, and machine learning methods are used to classify objects according to these features. Dalal and Triggs used the histogram of an oriented gradient image feature extractor and a support vector machine (SVM) classifier to achieve human detection [7]. With the development of deep learning in artificial intelligence, convolutional neural networks (CNNs) have been applied in various deep learning technologies. Deep learning is now commonly used in computer vision, mainly because of the 2012 ImageNet LargeScale Visual Recognition Challenge [13]. AlexNet, the deep learning network architecture proposed by Alex Krizhevsky [14], heralded the era of the CNN model. Subsequently, VGG, GoogleNet, and ResNet architectures, all of which are commonly used in innovative technologies, were developed [15-17].

Object tracking refers to the tracking of objects in continuous images; after the objects in each image are detected, they are tracked to determine and analyze their movement
trajectory. Pedestrians and cars have been the objects most commonly tracked in previous studies [18-22], and the MeanShift tracking method, Kalman filter method, particle filter method, local steering kernel object texture descriptors method, CamShift method, and optical flow method have been commonly used for tracking [12,18-22]. Several methods have been developed for CNN-based feature extraction and object tracking in video. For example, simple online and real-time tracking with a deep association metric (DeepSORT) combines information regarding an object's position and appearance to achieve high tracking accuracy [23].

In most previous studies on human emotion recognition, human emotions have been classified using traditional methods involving feature extractors and classifiers. Some recent studies have explored using CNN models to extract human features. In 2010, Mikolov et al. proposed recurrent neural networks (RNNs) to deal effectively with time series problems [24]. Regarding research on human emotion recognition, Ojala et al. and Gu et al. used the local binary pattern method [25,26] and the Gabor wavelet transform method, respectively, to recognize facial expressions [27]. Oyedotun et al. proposed a facial expression recognition CNN model that receives RGB data and depth maps as input [28]. Donahue et al. introduced long-term recurrent convolutional networks, which combine CNNs and long short-term memory (LSTM) models to recognize people in videos [29].

Animals have basic emotions that result in different emotional states and neural structures in their brains [30]. However, the lack of large datasets makes assessing canine emotional states more challenging than humans. Nevertheless, we can evaluate a dog's physiology, behavior, and cognitive mood [31]. Facial expressions, blink rate, twitching, and yawning are among the essential sources of information for assessing animal stress and emotional states [1,32]. In addition to facial behavior, body posture and movement are associated with affective states and pain-related behaviors [33,34]. Open spaces, novel objects, elevated plus mazes, and qualitative behavioral assessments evaluate animals' pain, discomfort, and emotional mood [35,36]. In recent years, physical and postural behavior has also been utilized to assess affective emotions in dogs and horses [1,37,38].

The present study focused on the recognition of the emotions of dogs in videos to identify potentially aggressive dogs and relay warning messages in real time. The proposed system first uses YOLOv3 architecture to detect dogs and their positions in the input videos. To track the dogs, we modified the sizes of the images input into the DeepSORT model, improved the feature extraction model, trained the model on the dog dataset, and modified each final tracking position to the position of each tracked dog. The modified model is called real-time dog tracking with a deep association metric (DeepDogTrack). Finally, the system categorizes the dogs' emotional behaviors into three types-angry (or aggressive), happy (or excited), and neutral (or general emotional) behaviors-based on manual judgments made by veterinary experts and custom dog breeders. The dog emotion recognition model proposed in this study is called the long short-term deep features of dog memory networks (LDFDMN) model. This model uses ResNet to extract the features of the dog region that are tracked in the continuous images, which are then input into the LSTM model. The LSTM model is then used for emotion recognition.

The contributions of this study are as follows:

1. An automated system that integrates an LSTM model with surveillance camera footage is proposed for monitoring dogs' emotions.
2. A new model for dog tracking (DeepDogTrack) is developed.
3. A new model for dog emotion recognition (LDFDMN) is proposed.
4. The proposed system is evaluated according to the results of experiments conducted using various training data, methods, and types of models.

2. Related Work

2.1. The Processing of the SORT

The overall SORT process involves the detection, estimation, data association, and creation and deletion of tracked identities.

Detection: First, Faster-RCNN is used for detection and feature extraction. Because the detection objects in this study are objects, other objects are ignored, and only objects that are more than 50% likely to be a object are considered.

Estimation: The SORT model's estimation model describes the model of the object and enters the movement model of its representation and transmission target in the next frame. First, the Kalman filter is used to predict the target state model (including size and position) of an object detected at time T at time $T+1$. An object's state model can be expressed as follows:

$$
\begin{equation*}
x=[u, v, s, r, \dot{u}, \dot{v}, \dot{s}]^{T} \tag{1}
\end{equation*}
$$

where (u, v) represents the coordinates of the object's center at time $T ;(s, r)$ represents the region and aspect ratio of the object's bounding box at time T; and (\dot{u}, \dot{v}) and (\dot{s}), respectively, represent the center point and speed of the object at time T. When the object in the next frame is detected, the object's bounding box (\dot{u}, \dot{v}) is used to update the object's status. If no correlations between the objects are detected, the prediction model is not updated.

Data association: The detection result is used to determine the object's target state; that is, the bounding box (\dot{u}, \dot{v}) of the object at time T is used to predict the new position of the object at time $T+1$. First, the model predicts the bounding box $\left(\dot{u}^{T+1}, \dot{v}^{T+1}\right)$ of the object at time T and the i th object at time $T+1\left(u_{i}^{T+1}, v_{i}^{T+1}\right)$, and calculates the Mahalanobis distance between them. Thereafter, the model uses the Hungarian algorithm for matching to enable multi-object tracking. When the intersection area (intersection over union [IOU]) is less than the threshold value, the object is regarded as the tracking target.

Creation and deletion of tracked identities: When an object enters or leaves the screen, its identity information must be added or deleted from this system. To prevent erroneous tracking, the model must detect objects to be tracked within a few frames of their entrance to determine whether the object must be newly added to this system. Furthermore, the IOU of the object in each frame and in the next frame is calculated; if its value is less than the threshold value, the object is determined to have left the screen, and the object's identity information is deleted.

2.2. The Processing of the DeepSORT

The overall DeepSORT process involves the detection, estimation, data association, and creation and deletion of tracked identities.

Detection: The DeepSORT model uses YOLOv3 architecture for pedestrian detection. Because the detection objects in this study are pedestrians, other objects are ignored, and only objects that are more than 50% likely to be pedestrians are considered.

Estimation: The pedestrian's description is to enter the motion of its representation and propagation target in the next frame. First, the model uses the Kalman filter to predict the state model (including size and position) of a pedestrian detected at time T at time $T+1$. DeepSORT expresses the state model of the pedestrian as eight values $(u, v, r, h, \dot{x}, \dot{y}, \dot{r}, \dot{h})$, as follows:

$$
\begin{equation*}
\mathrm{x}=(u, v, r, h, \dot{x}, \dot{y}, \dot{r}, \dot{h})^{T} \tag{2}
\end{equation*}
$$

where (u, v) and (r, h) are the coordinates of the pedestrian's center and the aspect ratio and height of the bounding box of the pedestrian at time T, respectively. At time T, the Kalman filter is used to predict the pedestrian's position at time $T+1 . D_{T+1,1}$, represents the predicted position $(\dot{x}, \dot{y}, \dot{w}, \dot{h})$ of the pedestrian at time $T+1$, where $(\dot{x}, \dot{y}, \dot{w}, \dot{h})$ are the coordinates, length, width, and height, respectively, of the pedestrian's center at time $T+1$. When a pedestrian is detected, the $(\dot{x}, \dot{y}, \dot{w}, \dot{h})$ values are updated to reflect the target state of the pedestrian. If no pedestrian is detected, the predictive model is not updated.

Pedestrian feature extraction: The trained CNN model, which contains two convolution layers, a max pooling layer, and six residual layers, is used to extract the features of
each pedestrian at time $T+1$, which are output as a 512-dimensional feature vector. The feature vector of the j th pedestrian at time $T+1$ is expressed as f_{j}^{T+1}.

Data association: The pedestrian region (\dot{u}, \dot{v}) at time T is the predicted new position of the pedestrian at time $T+1$. Thereafter, the Mahalanobis distance between the pedestrian region at time $T \mathrm{O}(\dot{x}, \dot{y}, \dot{w}, \dot{h})_{i}^{T+1}$ and the region of the i th pedestrian at time $T+1$ $\mathrm{O}^{\prime}(\dot{x}, \dot{y}, \dot{w}, \dot{h})_{j}^{T+1}$ is calculated as follows:

$$
\begin{equation*}
\Delta d_{1}(i, j)=\min \left[\left(\mathrm{O}_{i}^{\prime T+1}-\mathrm{O}_{j}^{T+1}\right)^{T} S_{i}^{-1}\left(\mathrm{O}_{i}^{\prime T+1}-\mathrm{O}_{j}^{T+1}\right), i, j=1,2, \ldots, n\right] \tag{3}
\end{equation*}
$$

First, $(\dot{x}, \dot{y}, \dot{w}, \dot{h})$ is converted into $(\dot{x}, \dot{y}, \dot{r}, \dot{h})$, where (\dot{x}, \dot{y}) represents the coordinates of the pedestrian's center, \dot{r} is the aspect ratio of the pedestrian, and (\dot{h}) is the height of the pedestrian. $\mathrm{O}^{\prime}(\dot{x}, \dot{y}, \dot{r}, \dot{h})_{i}^{T+1}$ represents the new position of the i th pedestrian at time $T+1, \mathrm{O}(\dot{x}, \dot{y}, \dot{r}, \dot{h})_{j}^{T+1}$ represents the new location of the j th pedestrian at time $T+1, S_{i}^{-1}$ is the covariance matrix of the i th pedestrian, and n is the total number of pedestrians at time $T+1$. The detection index based on Mahalanobis distance can be used to obtain the optimal match. The χ^{2} distribution and its 95% confidence interval are used as the detection threshold value, which was 9.4877 in the present study.

The Mahalanobis distance is suitable for movement positions that produce low uncertainty regarding the pedestrian's position. The state distribution of a pedestrian is predicted using a frame, and the pedestrian's position in the next frame is obtained using the Kalman filter. This method only provides an approximate position, and the positions of pedestrians that are obstructed or moving quickly will not be correctly predicted. Therefore, the model uses a CNN to extract the feature vector of the pedestrian and calculates the cosine distance between the extracted vector and the feature vector of the pedestrian in this system. The minimum cosine distance is represented as follows:

$$
\begin{equation*}
\Delta d_{2}(i, j)=\min \left\{\dot{f}_{i}^{T+1}-f_{j}^{T+1}, j=1,2, \ldots, n\right\} \tag{4}
\end{equation*}
$$

Finally, the position and features of the pedestrian are matched and fused. The fused cost matrix $c(i, j)$ is expressed as follows:

$$
\begin{equation*}
c(i, j)=\lambda \Delta d_{1}(i, j)+(1-\lambda) \Delta d_{2}(i, j) \tag{5}
\end{equation*}
$$

where λ is the weight. Because using a nonfixed camera to shoot may cause the image to shake violently, λ should be set to 0 . Therefore, λ can also account for the problem of obscured pedestrians and reduce ID switching (IDSW) during tracking.

The creation and deletion of tracked identities is the same as for SORT.

2.3. LSTM Model

In traditional neural networks, each neuron is independent and unaffected by time series. In RNNs, time series data are used as input [24]. Earlier layers of an RNN exert weaker effects than subsequent decisions. When too many series are present in the data, the gradient disappears or explodes. To address this problem, Sepp and Jürgen proposed the LSTM model [39] in 1997. An LSTM model comprises numerous LSTM cells, each having three inputs, three components, and two outputs. The three inputs x_{t} are the input at time t, the output h_{t-1} at time $t-1$, and the long-term memory (LTM) c_{t-1} at time $t-1$. The three components are the input gate i_{t}, the output gate o_{t} and the forget gate f_{t}. The three components all use sigmoid functions as activation functions to obtain an output value between 0 and 1 , simulating the opening and closing of a valve. The input gate uses the input x_{t} at time t and the output h_{t-1} at time $t-1$ to determine whether the LTM C_{t} should incorporate the memory \hat{C}_{t} generated at time t. The output gate determines whether the
whether the LTM C_{t} generated at time t should be output according to the input x_{t} at time t and the output h_{t-1} at time $t-1$. The forget gate uses the input x_{t} at time t and

 me ordinart ReN
it to solve the gradi

3. Proposed System

 danceividfee video.

Figure 1. Dog emotion recognition process.
Figure 1. Dog emotion recognition process.

3.1.1. Bog Deteation

 ure 2.

Figure 2. Dog detection.

 inages (rigure 3).

Figure 3. Dog region.

Gug fatupe extraction: The ResNet uses the shortcut connection method to reinforc
 the eqparace

 classification and coordinate ofset of a predicted object. Each pixe in the predicted regic
 eground or background, as illustrated in Figure 4.

Figure 4. Background removal. 3.5.0use
3.3. Bref Traching is detected, it is tracked to determine its movement trajectory. The dog

 tracking system identifies the position of the same dod in Sorspecitive imades and pio these prsitions to torm an action path. hite sytem uses a jeepuogurack model for do

3.3. Dog Tracking

After a dog is detected, it is tracked to determine its movement trajectory. The dogtracking system identifies the position of the same dog in consecutive images and plots these positions to form an action path. The system uses a DeepDogTrack model for dog tracking. In addition to using a Kalman filter to predict the dog's position in the next frame, the model also uses a CNN to extract and match the dog's features in consecutive frames to determine the dog's motion status. DeepDogTrack is an improved DeepTrack pedestrian tracking model. The DeepSORT model integrates simple online and real-time tracking (SORT) [44] and CNN technology to extract and match each pedestrian's features and analyze the location and appearance information of each pedestrian to achieve accurate tracking. To reduce the computation time of the system and improve the accuracy of dog tracking, the system adopts our novel DeepDogTrack model, which contains improvements in the processing flow and adjustment of parameters.

3.3.1. SORT and DeepSORT

SORT is a practical multi-object tracking method that can effectively track objects in consecutive frames. The SORT model proposed herein uses Faster-RCNN and a Kalman filter to detect an object's position and to predict the object's position in the next frame, respectively. Thereafter, the model calculates the Mahalanobis distance between an object's location and its predicted location in the next frame and uses the Hungarian algorithm [45] for matching to enable multi-object tracking. Therefore, the overall SORT process involves the detection, estimation, data association, and creation and deletion of tracked identities.

Although SORT is a simple and effective multi-object tracking method, it compares only the size and position of a predicted object and does not consider the object's features. To address this limitation, the proposed system incorporates DeepSORT, which improves upon the detection method of SORT and accounts for the object's features, thus enhancing the accuracy of object tracking. DeepSORT applies SQRT's object tracking to pedestrian tracking. DeepSORT is based on SORT's multiple object tracking (MOT) architecture and uses the Kalman filter to predict a given pedestrian's position in the next frame. The model calculates the Mahalanobis distance between the region of the predicted pedestrian and the region in which other pedestrians may be located. Thereafter, a CNN is used to extract and calculate the minimum cosine distance between the pedestrian's features and the features of all the pedestrians in the next frame. Finally, the Hungarian algorithm is used for matching to enable multi-pedestrian tracking. Accordingly, DeepSORT involves the detection, estimation, feature extraction, data association, and the creation and deletion of tracked identities.

3.3.2. Real-Time Dog Tracking with a Deep Association Metric (DeepDogTrack)

Because DeepSORT is typically used to track pedestrians, and the proportions of the human body are 64×128, the input must be a fixed-size image. Proportion features are extracted using a simple CNN model, and the result predicted using the Kalman filter is used as the tracking region of the object. However, the proportions of dogs are different from those of humans. To adapt DeepSORT for the tracking of dogs and improve the computational efficiency, the DeepDogTrack model takes the detected dog region as input data, and the size of the region is not fixed. To increase the depth of the model and minimize error, a deep residual network (ResNet) is used to extract the dogs' features. The DeepSORT model was retrained using the dog data-set to improve its tracking accuracy. The architecture of the proposed DeepDogSORT dog-tracking model is illustrated in Figure 5. The original and improved results are presented in Figure 6.

Figure 6．Dog tracking with DeepSORT and DeepDogTrack models．（a）DeepSORT model；（b）

3．4．Doo Emotion Recognition

The automatic recognition of dog emotion in this study first defines the emotional type 捔度

3．4．1：The Emotions of the Bogs

Bggs go frrouh

中

 nettair（oregentipal）in this study is based on the dog＇s physical behavior，which is called neutral（or general）．

Appl. Sci. 2023, 13, x FOR PEER REVIEW
Appl. Sci. 2023, 13, x FOR PEER REVIEW angry (or aggressive), happy (or excited), and neutral (or general) - a

Therefore, the emotionsn

Characteristics
Table 1. The descriptions and characteristics of the three emotional types of

For better or worse, dekarateqertisa natural emotion. Protective
issues, or genetics can cause anger or aggression. It is natural for

日atan maving
 tensive aggressionsuchias orowing pithog and, sprinting.
standing up, visible sclera, and even defensive aggression such as growling, biting, and sprinting.

The happiness of dogs is written all over their faces, and dogs ter

 Eharactistics of happiness in digs include ving on the stomach
 mouth, and b8ay.

 to the LSTM model for proce

 are described as follows.

LDFMN Model

 therefore essential to the proposed system, and the R a and and and are descriped as follows.
In the proposed system, a ResNet CNN and DeepDogTrack model are used to extract features from and to track dog regions, respectively. The tracked dog region is converted into an image set, as illustrated in Figure 7. Each image set depicts the continuous
movement of a dog and is used as a data-set for dog emotion recognition. If the image set

 dogymation racognition results are obtained. The architecture of the LDFDMN model is
 illustrated in Figure 8.

Dog Emotion Recognition after Back \quad round Removal

each of the moders detection regions includes nondog regions, or backgrounds. If

 ideo Pre rocessing sprectrively.

In this study, we trained the LDFDMN model by using videos collected from YouTube, the:Folk Stray Dog Shelter, and the Dog Training Center (hereafter, DTC) of the Customs Administratton of lat
 d)

 Athough the backrourds of the doo regions are suparosed to be removed by the

 16 sub-Adthay
 theme

FFigure Qitineatimage ipternglation.

Theproposed system yastested using threedgo-tracking methodsineensqro
 Deeenog rack) and woo dog emotion recognition metthods (oub-images with und pithout
 and without backgrounds). The methods were combined into six models, as listed in Tab
Table 2. Dog emotion recognition model types.

Type	Detection	Tracking	Emotion Recognition
Type_1		DeepSORT	
Type_2	Detection	Deeprenkingrained	LDFDME MotiatkRecagnition
Typepel 3	YOLOv3	DeeppISgRTack	
Typepe24		DeepSORApscertrained	LDFDMN with background
Турер 3 5	YOLOv3	Deep Drag Tuaxiked	DFDMN with without
Турере 46		Deeprisgrack	LDFDMN with without back ground
Type_5	4. Experiments	DeepSORT_retrained	
Type_6		DeepDogTrack	

The performance of the DeepDogTrack and LDFDMN models for dog tracking and
 detection, tracking, and emotion recognition. The hardware and software employed in the experimpents, experimental image andqideo dand tsets, experimental procedure and tracking ar
 intetactiont tracking, and emotion recognition. The hardware and software employed in tl experiments, experimental image and video datasets, experimental procedures and eva 4uafioffroxtterfla, aridgatiodel performance evaluation are present in the following releva inf hhaliodware and software systems used in the experiments are listed in Tables 3 and 4 . The CNN architecture incorporates Darknet53 and PyTorch [51], both of which use the Pythosufformamingalangurge, and a computer vision library (OpenCV for Python) [52].
Table 3.Therdardeware and software systems used in the experiments are listed in Tables and 4. The CNN architecture incornorates Darknet53 and PyTorch 5511 . both of which u
 [52].

GPU processor RAM memory

NVIDIA GeForce GTX1080Ti 11 G 32 G

Table 3. Hardware.

Device	Specification
CPU processor	Intel Core i7-8700 3.2 GHz
GPU processor	NVIDIA GeForce GTX1080Ti 11 G
RAM memory	32 G

Table 4. Software.
Table 4. Software.

	Detection	Tracking	Emation Recoonition
	Detection	Tracking	Emotion Recognition
Netsystern architecture	YOLOv3	Derintorg fracko	LDFDMN
- Programmin System		Pyindows 10 Pro	
Programming language		Python 3.5.4	
Nepatne work framework	Dackarner ${ }^{\text {a }}$	PyPorch 0.4.1	PyTorch 0.4 .1 .1
Computer vision.librar ${ }^{\text {amputer vision }}$		Opycy-python 3 3.4 .4 . 3.4 .4	

44.2.1. Qatai-Setet for Pog Retection Experiments

 obiects and a totallof 11188,28 , images as shown in Fisure 1 Po . He testimages were divided into two image databases in the do detection experimente The first teetseth is the image database established py columbia University and the University of Maryland 53 l . which.contains images from mageNet Googe and Fickr The database contains 8351 images of 133° dog breeds, as shown in Figure 11 . The second TestSet2 is the image
 database estabisheq by Staniord The database contains 20,580 images of 120 dog breeds, as shown in Figure 12.
base contains 20,580 imáges of 120 dog breeds, as shown in Figure 12.

Figure 10. Some Soimages of the MSEEREO dataset.

Fitupe

Figure 12. Some images of the TestStet?.
Figure 12 . Some images of the Testsetz.

 pmant

Source	Video	Dog Number	Image Number
Table 5. T	est videos Insedid ${ }^{\text {d }}$	periment. 1	240
$\square \square$			
	Video	Dog Number	Image Number
	Vidid 0043 5	Dog Number	Imagben ${ }^{\text {a }}$ (
	IIVG_0043_5	I	240
4	IMG_0041_1	1	180
	$\text { IMG } \mathrm{HM} \mathrm{O}_{-}^{41}+0041 _1$	11	$180{ }^{180}$
DTC			
	IMGIDOCA_0014	44	37171
	IMG_0014	4	371
Fork Stray Dog Shelter Note	DTC, Dog Training Center of the Cus	oms Administration of Taiwa	's Ministry of Finance.
Note: DTC	, Dog Training Center of the Cust Data-Set for Dog Emotion Re binet for Dog. Empotion Recogn	oms Administration of Tai cognition Experiments ition Experiments sonside	van's Ministry of Finance. red in terms of physical

 thiscidequar

 thgoze

 int

 toening

 traistrom the

 ing, 278 submovies respectivel movies, each with 196 and 82 sub-movies; the training movie was divided into two groups of training sub-movies, TrainSet4_1 and TrainSet4_2, each with 98 and 98 sub-movies; the

Table 7. Training data-set for dog emotion recognition model.

Dataset	Emotion Type	Source	Video Number		Total Video Number
TrainSet4_1	Neutral/General	YouTube	116	206	480
		Folk Stray Dog Shelter	63		
		DTC	27		
	Happy/Excited	YouTube	30	124	
		Folk Stray Dog Shelter	23		
		DTC	71		
	Angry/Aggressive	YouTube	148	150	
		Folk Stray Dog Shelter	2		
		DTC	0		
TrainSet4_2	Neutral/General	YouTube	108	198	464
		Folk Stray Dog Shelter	63		
		DTC	27		
	Happy/Excited	YouTube	30	124	
		Folk Stray Dog Shelter	23		
		DTC	71		
	Angry/Aggressive	YouTube	140	142	
		Folk Stray Dog Shelter	2		
		DTC	0		

Note: DTC, Dog Training Center of the Customs Administration of Taiwan's Ministry of Finance.

Table 8. Test data-set for the dog emotion recognition experiment.

Dataset	Emotion Type	Source	Video Number		Total Video Number
TestSet4_1	Neutral/General	YouTube	48	85	197
		Folk Stray Dog Shelter	26		
		DTC	11		
	Happy/Excited	YouTube	11	50	
		Folk Stray Dog Shelter	9		
		DTC	30		
	Angry/Aggressive	YouTube	62	62	
		Folk Stray Dog Shelter	0		
		DTC	0		
TestSet4_2	Neutral/General	YouTube	47	84	196
		Folk Stray Dog Shelter	26		
		DTC	11		
	Happy/Excited	YouTube	11	50	
		Folk Stray Dog Shelter	9		
		DTC	30		
	Angry/Aggressive	YouTube	62	62	
		Folk Stray Dog Shelter	0		
		DTC	0		

[^0]
The integrated system proposed herein was tested using two videos，the information of which is presented in Table 9．The IMG＿0033 video，taken from the Folk Stray Dog

extract the features of，and recognize the emotions of dogs in videos This paper alsp ex－ aimed to yerif the accuracy of the modes in terms of oo detection tracking and emotion
 4．3．1．nithoidhly
tract the features of and recornize the emptions of dogs in videoss．This paper also aimed
 detection and tracking，respectively，he ResNet50 and Mask R－cNN models，combined

 datadeas

Parameters		
Feature length	16	Parameters
Learning rateleput size	0.0001	16×2048
	0.4	16
Activation funeaming rate	tanh	0.0001
Epoch IDpupsize	50	16×0.4048
Batch size		2

4．3．2．Model Evaluationclivitationguntetion 0 t日月似

In the dog detection，traEldiagh and emotion recognition experiments，v50ious evalua－ tion criteria were used to ebadineitle performance of the models．

4．3．2．Model EvaluAtitonaGioinefruinction
tanh
In the dog detection，Epedkking，and emotion recognition experime 5 fs，various evalu－ ation criteria were used to examine the performance of the models．

Evaluation Criteria for Dog Detection

The dog detection performance of the proposed system was evaluated according to the rate of correct predictions (vs. the ground truth region). This experiment used three evaluation criteria, the first of which is Recall. Recall represents the number of predicted ground truth pixels and is calculated as follows:

$$
\begin{equation*}
\text { Recall }=\frac{1}{N} \sum_{i=1}^{N} \frac{G t_{i} \cap P_{i}}{G t_{i}} \tag{6}
\end{equation*}
$$

where $G t_{i}$ represents the ground truth region of the i th $\operatorname{dog}, P_{i}$ represents the predicted region of the i th dog, N is the total number of dogs, and $G t_{i} \cap P_{i}$ represents the intersection between the ground truth and predicted regions.

The second evaluation criterion used was Precision. Precision represents the number of correctly predicted pixels and is calculated as follows:

$$
\begin{equation*}
\text { Precision }=\frac{1}{N} \sum_{i=1}^{N} \frac{G t_{i} \cap P_{i}}{P_{i}} \tag{7}
\end{equation*}
$$

The third evaluation criterion used was the mean IOU (mIOU), that is, the average number of pixels detected correctly in the ground truth and predicted regions. It is calculated as follows:

$$
\begin{equation*}
\mathrm{mIOU}=\frac{1}{N} \sum_{i=1}^{N} \frac{G t_{i} \cap P_{i}}{G t_{i} \cup P_{i}} \tag{8}
\end{equation*}
$$

where $G t_{i} \cup P_{i}$ represents the union of the ground truth region $G t_{i}$ and the predicted region P_{i}.

The fourth evaluation criterion used was the detection rate. The detection rate is considered satisfactory if the Recall, Precision, or mIOU value is ≥ 0.5.

Evaluation Criteria for Dog Tracking
In the dog tracking experiment, the models were evaluated in terms of MOT accuracy (MOTA), as defined by the MOT Challenge [57]. MOTA is calculated as follows:

$$
\begin{equation*}
\mathrm{MOTA}=1-\frac{\sum_{t}\left(F N_{i}+F P_{i}+I D S W_{i}\right)}{\sum_{i} G T_{i}} \tag{9}
\end{equation*}
$$

where $G T_{i}$ is the ground truth region of the dog in the i th image, $F N_{i}$ (false negative) is the number of dogs that are not tracked in the i th image, and $F P_{i}$ (false positive) is the number of tracked dogs in the i th image for which the tracked region is incorrect. Incorrectly tracked regions are those for which the IOU between the tracked region and the ground truth region is less than $50 \% . I D S W_{i}$ (ID Switch) represents the number of dogs tracked as other dogs in the i th image. Therefore, larger MOTA values indicate higher MOTA.

Evaluation Criteria for Dog Emotion Recognition

Dog emotion recognition was evaluated by comparing the predicted results with the ground truth results and is presented herein in terms of identification accuracy ACC, which is calculated as follows:

$$
\begin{equation*}
A C C=\sum_{i=1}^{N_{T}} P_{i} \text { and } P_{i}=\frac{N T_{i}}{N_{i}} \tag{10}
\end{equation*}
$$

where P_{i} is the identification rate of the i th category of emotions, N_{T} represents the total number of images, $N T_{i}$ represents the number of correct recognitions in the i th category, and N_{i} represents the total number of dogs in the i th category.

4.4. Performance Analysis

An analysis of the performance of the proposed system according to the results of the dog detection, tracking, and emotion recognition experiments is presented in the following sections.

Appl. Sci. 2023, 13, x FOR PEER RetituPerformance for Dog Detection
20 of 29
Appl. Sei. 2023, 13, X FOR PEER REVIENThe results of the dog detection experiment are listed in Table 11. Since the en- 29 perimental images were taken from the video on the camera, there may be more than

 attributan eto ingompleted
 detection errors didentirledind this stud should bu ded to mprove the dection rate of te of proposed pystem
TabTaple Ressixesults 8 g dace dectectiox exineriments.

| Datasets | Image Number | Dog Number | Detection Rate | Precision | Recall | mIOU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Datasets | Image Number | Dog Number | Detection Rate | Precision | Recall | mIOU |
| TestSet 1 | 8351 | 8371 | 97.62% | 93.49% | 83.72% | 80.27% |
| TestSet 2 | 20580 | 22126 | 98.39% | 88.87% | 85.67% | 80.48% |

(b)

(c)

Fig Figure 13. Reason for detection errors in TestSett1 data-set experiment (a) Obscured facial features;

(a)

(b)
(b)
(c)

(c)

(d)

Figure 14. Reasons for detection errors in TestSet2 data-set experiment. (a) Obscured facial fea-
 (b) Special bredial dreed of dog; (c) Cbscured or cropped body; (d) Incomplete dog region.
(b) Special Pred of dog; cor Dos Tracking or cropped body; (d) Incómplete dog region.
4.4.2. Performance for Dog Tracking

Dechay

 ing failure were identified: the obstruction of the dog's body in many regions (Figure 15)
are presented in Table 12. The MOTA values of Model 1 and of Models 2 and 3 were
 the prediction regions of these two models use YOLOv3 detection. Two reasons for tracking

Methods	Number of Dog	Total Image Number	Number of Dogs Tracked	FN	FP	IDSW	MOTA
Model 1			169	33	9	0	81.1\%
NModep	1	240	1败7	9.38	1	8	80,
Model 3			177	33	1	0	83.88\%

Figure 16. Rog not tracked in image 40 to 42: (a) Image 48; (b) Image 41; (c) Image 42.

(a)

(B)

Figure 12. Rogs with incorrect tracked regions in images 47 and 48: (a) Image 47 (b) Image 48.

of the dog', as mustrated in mgure 18 :

Table 13. Results of dog-tracking experiments conducted using MMG_0041_1 data-set.

Methods	Number of Dogs	Total Image Number		ber of Tracke		FN		FP		IDSW		MOTA
Model 1	1	180		119		8		2		0		92.24\%
Modelal			119 170	120	8 8	8	${ }_{1}^{2}$	1	0 0	0	92.24\%	93.02\%
Model 3				120		8		1		0		93.02\%

 2 achieved a lower MOTA value (81.25%) because several dogs were tracked as the sam Tos 14 . Results of dog tracking experiments conducted using MMG_0014 atata-set. dog.

ID	Number of Dog	Total Image Number	Number of Dogs Tracked	FN	FP	IDSW	MOTA
1	Model 1 Ta Model 2	14. Resuif57of dog tra 357	351		MG_	014 da	88.32\%

 IDs 1 and 3 . Examples of images resulting in FNs for IDs 2 and 4 are presented in 82.50%

4 Model 2 Model 3 Figures 198 And 20, respectively. ID 2 corfesponds to a black 184 g far $\mathrm{Ofrom}_{\text {from }}$ ther 81.25% In images to 274 , the dog is obscured, leading to tracking failite. ID4 corresponds to 82.50% white dog that entered the frame during recording. In images 302 and 303, the dog has not
 1 and 3. Examples of images resulting in FNs for IDs 2 and 4 are presented in Figures 1 and 20, respectively. ID 2 corresponds to a black dog far from the camera. In images 26 to 274 , the dog is obscured, leading to tracking failure. ID 4 corresponds to a white do that entered the frame during recording. In images 302 and 303, the dog has not yet com pletely entered the frame, resulting in tracking failure.

 (a)

 Bafathereps!lts of the emotion recognition experiments are presented in Table 15. In the

 idatetertatising chara

 ir

 Neverftheless, as illustrated in Figurfe 31, Bakkgraund femmeal ean cause hee less ef a dag features, fesulligh in deg empieien feeggnitien effers:

Table 15. Results of dog emotion recognition experiments.

Figure 21: Images Beffore and after back fem8vat:

The reasons for emotion recognition errors, illustrated in Table 16, can be classified into the following four cases:

Case 1: An angry or aggressive dog is categorized as being happy or excitted. For example, in the image in Table 15, the dog's mouth is only slightly open, and the dog's movements are too subtle.

Case 2: The shooting angle is suboptimal.
Case 3: The dog moves too quickly, resullthiimg iim bollumny iirmages.
Case 4: The resolution of the image is too low.

4.4.4. Performance for Dog Emotion Recognition in Surveillance Videos

The models used in the Gos detection, tracking, and emotion recognition experiments

 Thy 4
 thet the

 LD thetwen
 Figet wh whe

 DdgWy

Table 17. Identification accuracy of model types in experiments conducted using IMG_00336@ffat set.

Type of the Processing	ACC of the Dog Emotion
rave 1/. ruentimcatpraccuracy or II Type_1	
Type of theePpocessing	ACC of the389\% Emotion
Try	775.35%
Type-2	76386\%
Type-3	636.36\%
Typer 5	6.33989%
	623489\%
Type_6	62.46\%

Table 18. Identification accuracy of model types in experiments conducted using AngryDogs dataset.
Table 18. Identification accuracy of model types in experiments conducted using AngryDogs data-set.

Type of the Processing	ACC of the Dog Emotion
Type_1	76.36%
Typee_2	766360%
Type_3	76.36%
Tyype_4	53.24%
Type_5	53.24%
Type_6	53.76%

Figure 22: Bogs with similar emstions: (a) Neutral ((8r general); (b) Happy (or excited
In the experimement conducted using the AngryDogs data-set, the Type_1, Type_2, and
 Tyyper 5 ardhiewed the llownest (533.244%). This indicates that, as writh the IMM_0033 data-set, the moddells thatt neemmoved the iimmage backgrounds did not effectively recognize the dogs' eumottionns. Beecauree tilhe dlogess iim this data-sett remaiim mostthy stitill over the course of the video, there trackkiing reesullths ammd identificication accuracy values of the Type_1, Typpe_2, and Typpe_3 modelds wrene the same.

5. E8nchusions

 effects of these factorscan be minimized fareducing the number, of object types, increasing the sample size got doss in the training data-set and making the ground truth regon more

 occurred in cases where large parts of the dog's body were obscured. In the dog emotion recognition experiments, the identification accuracy rates for the two data-sets were 81.73%, and 76.02%, respectively. The results of the emotion recognition experiment indicate that
removing the backgrounds of dog images negatively affects the identification accuracy. Furthermore, happy and neutral emotions are similar and therefore difficult to distinguish. In other cases, the dog's movements may not be apparent, the image may be blurred, the shooting angle may be suboptimal, or the image resolution may be too low. Nevertheless, the results of the experiments indicate that the method proposed in this paper can correctly recognize the emotions of dogs in videos. The accuracy of the proposed system can be further increased by using more images and videos to train the detection, tracking, and emotion recognition models presented herein. The system can then be applied in real-world contexts to assist in the early identification of dogs that exhibit aggressive behavior.

Research on automatic face and emotion recognition technology has developed rapidly and matured, and many data-sets have been collected. However, because dogs are not easy to control, there are few datasets for dog tracking and emotion recognition. Therefore, to improve the accuracy of tracking and emotion recognition, it is necessary to further collect many dog-tracking and emotion recognition data-sets in the future.

Author Contributions: Conceptualization, Y.-K.C.; Methodology, H.-Y.C. and C.-H.L.; Software, J.-W.L.; Validation, H.-Y.C. and C.-H.L.; Investigation, J.-W.L.; Resources, Y.-K.C.; Data curation, J.-W.L.; Writing-original draft, C.-H.L. and J.-W.L.; Supervision, H.-Y.C., C.-H.L. and Y.-K.C.; Funding acquisition, Y.-K.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Agricultural Technology Research Institute of Taiwan, R.O.C. grant number Grant No. 109 Agriculture-6.1.1-Nomadic-U2.

Institutional Review Board Statement: The Agricultural Technology Research Institute of Taiwan, R.O.C, approved the study protocol.

Informed Consent Statement: Not applicable.
Data Availability Statement: (1) TestSet1 is the image database established by Columbia University and the University of Maryland (Liu, J.; Kanazawa, A.; Jacobs, D.; Belhumeur, P.), which contains images from ImageNet, Google, and Flickr. (2) TestSet2 is the image database established by Stanford University (Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F.F), which contains images from ImageNet. (3) Two pedestrian reidentification data sets, Market-1501 and MARS, which contain images of 1501 and 1261 pedestrians (Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. and Zheng, L.; Bie, Z.; Sun, Y.; Wang, J.; Su, C.; Wang, S.; Tian, Q.). (4) The data set for dog tracking and emotion recognition contains data from YouTube, the Folk Stray Dog Shelter, and the DTC.

Acknowledgments: This work was supported in part by Agricultural Technology Research Institute of Taiwan under Grant No. 109 Agriculture-6.1.1-Nomadic-U2.

Conflicts of Interest: Chuen-Horng Lin reports financial support was provided by Agricultural Technology Research Institute.

References

1. Broome, S.; Feighelstein, M.; Zamansky, A.; Carreira Lencioni, G.; Haubro Andersen, P.; Pessanha, F.; Mahmoud, M.; Kjellström, H.; Salah, A.A. Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions. Int. J. Comput. Vis. 2022, 131, 572-590. [CrossRef]
2. Anderson, D.J.; Adolphs, R. A framework for studying emotions across species. Cell 2014, 157, 187-200. [CrossRef] [PubMed]
3. Zhu, H. Video-Based Dog Pain Recognition via Posture Pattern Analysis. Master's Thesis, Utrecht University, Utrecht, The Netherlands, 2022.
4. Franzoni, V.; Milani, A.; Biondi, G.; Micheli, F. A preliminary work on dog emotion recognition. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence-Companion Volume, Thessaloniki, Greece, 14-17 October 2019; pp. 91-96.
5. Boneh-Shitrit, T.; Amir, S.; Bremhorst, A.; Riemer, S.; Wurbel, H.; Mills, D.; Zamansky, A. Deep learning models for classification of canine emotional states. Comput. Vis. Pattern Recognit. 2022, arXiv:2206.05619.
6. Ferres, K.; Schloesser, T.; Gloor, P.A. Predicting dog emotions based on posture analysis using deeplabcut. Future Internet 2022, 14, 97. [CrossRef]
7. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 20-25 June 2005; Volume 1, pp. 886-893.
8. Yeo, B.C.; Lim, W.S.; Lim, H.S. Scalable-width temporal edge detection for recursive background recovery in adaptive background modeling. Appl. Soft Comput. 2013, 13, 1583-1591. [CrossRef]
9. Rakibe, R.S.; Patil, B.D. Background subtraction algorithm based human motion detection. Int. J. Sci. Res. Publ. 2013, 3, 2250-3153.
10. Mashak, S.V.; Hosseini, B.; Mokji, M.; Abu-Bakar, S.A.R. Background subtraction for object detection under varying environments. In Proceedings of the 2010 International Conference of Soft Computing and Pattern Recognition, Paris, France, 7-10 December 2010; pp. 123-126.
11. Li, H.; Achim, A.; Bull, D.R. GMM-based efficient foreground detection with adaptive region update. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7-10 November 2009; pp. 3181-3184.
12. Horn, B.K.; Schunck, B.G. Determining optical flow. In Proceedings of the Techniques and Applications of Image Understanding, International Society for Optics and Photonics, Washington, DC, USA, 12 November 1981; Volume 281, pp. 319-331.
13. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FA, USA, 20-25 June 2009; pp. 248-255.
14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Nice, France, 2012; pp. 1097-1105.
15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8-10 June 2015; pp. 1-9.
17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.
18. Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619. [CrossRef]
19. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35-45. [CrossRef]
20. Bazzani, L.; Cristani, M.; Murino, V. Decentralized particle filter for joint individual-group tracking. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012; pp. 1886-1893.
21. Zoidi, O.; Tefas, A.; Pitas, I. Visual object tracking based on local steering kernels and color histograms. IEEE Trans. Circuits Syst. Video Technol. 2012, 23, 870-882. [CrossRef]
22. Bradski, G.R. Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 1998, 3, 49-54.
23. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17-20 September 2017; pp. 3645-3649.
24. Mikolov, T.; Karafiát, M.; Burget, L.; Černocký, J.; Khudanpur, S. Recurrent neural network-based language model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Japan, 26-30 September 2010.
25. Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9-13 October 1994; Volume 1, pp. 582-585.
26. Gu, W.; Xiang, C.; Venkatesh, Y.V.; Huang, D.; Lin, H. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Pattern Recognit. 2012, 45, 80-91. [CrossRef]
27. Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 2009, 27, 803-816. [CrossRef]
28. Oyedotun, O.K.; Demisse, G.; El Rahman Shabayek, A.; Aouada, D.; Ottersten, B. Facial expression recognition via joint deep learning of rgb-depth map latent representations. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22-29 October 2017; pp. 3161-3168.
29. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 2625-2634.
30. Panksepp, J. Affective neuroscience of the emotional BrainMind: Evolutionary perspectives and implications for understanding depression. Dialogues Clin. Neurosci. 2010, 12, 533-545. [CrossRef] [PubMed]
31. Kret, M.E.; Massen, J.J.; de Waal, F. My fear is not, and never will be, your fear: On emotions and feelings in animals. Affect. Sci. 2022, 3, 182-189.
32. Descovich, K.A.; Wathan, J.; Leach, M.C.; Buchanan-Smith, H.M.; Flecknell, P.; Framingham, D.; Vick, S.-J. Facial expression: An underutilised tool for the assessment of welfare in mammals. Altex 2017, 34, 409-429. [CrossRef]
33. Briefer, E.F.; Tettamanti, F.; McElligott, A.G. Emotions in goats: Mapping physiological, behavioural and vocal profiles. Anim. Behav. 2015, 99, 131-143.
34. Walsh, J.; Eccleston, C.; Keogh, E. Pain communication through body posture: The development and validation of a stimulus set. PAIN® 2014, 155, 2282-2290. [CrossRef]
35. Lecorps, B.; Rödel, H.G.; Féron, C. Assessment of anxiety in open field and elevated plus maze using infrared thermography. Physiol. Behav. 2016, 157, 209-216. [CrossRef]
36. Kremer, L.; Holkenborg, S.K.; Reimert, I.; Bolhuis, J.; Webb, L. The nuts and bolts of animal emotion. Neurosci. Biobehav. Rev. 2020, 113, 273-286. [CrossRef]
37. Rashid, M.; Silventoinen, A.; Gleerup, K.B.; Andersen, P.H. Equine facial action coding system for determination of pain-related facial responses in videos of horses. PLoS ONE 2020, 15, 0231608. [CrossRef]
38. Lundblad, J.; Rashid, M.; Rhodin, M.; Haubro Andersen, P. Effect of transportation and social isolation on facial expressions of healthy horses. PLoS ONE 2021, 16, 0241532. [CrossRef]
39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]
40. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
41. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6-12 September 2014; Springer: Cham, Switzerland, 2014; pp. 740-755.
42. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22-29 October 2017; pp. 2961-2969.
43. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems; NIPS: Montreal, QC, Canada, 2015; Volume 28, pp. pp. 91-99.
44. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25-28 September 2016; pp. 3464-3468.
45. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1995, 2, 83-97. [CrossRef]
46. Carolyn Steber, 11 Emotions You Didn't Realize Dogs Could Feel, Bustle. Available online: https:/ /www.bustle.com/p/11 -emotions-you-didnt-realize-dogs-could-feel-15644499 (accessed on 25 May 2022).
47. Stanley Coren, Which Emotions Do Dogs Actually Experience? ModernDog. Available online: https:/ / moderndogmagazine. com/articles/which-emotions-do-dogs-actually-experience/32883 (accessed on 25 May 2022).
48. PetFinder, Do Dogs Have Feelings? PetFinder. Available online: https://www.petfinder.com/dogs/dog-training/do-dogs-havefeelings/ (accessed on 25 May 2022).
49. Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169-200. [CrossRef]
50. Farnebäck, G. Two-frame motion estimation based on polynomial expansion. In Proceedings of the Scandinavian Conference on Image Analysis, Halmstad, Sweden, 2-29 June 2003; Springer: Berlin, Heidelberg, 2003; pp. 363-370.
51. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Advances in Neural Information Processing Systems Workshop on Autodiff; NIPS: Long Beach, CA, USA, 9 December 2017.
52. Bradski, G.R.; Kaehler, A. OpenCV. Dr. Dobb's J. Softw. Tools 2000, 120, 122-125.
53. Liu, J.; Kanazawa, A.; Jacobs, D.; Belhumeur, P. Dog breed classification using part localization. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7-13 October 2012; Springer: Berlin, Heidelberg; pp. 172-185.
54. Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F.F. Novel dataset for fine-grained image categorization: Stanford dogs. In Proceedings of the CVPR Workshop on Fine-Grained Visual Categorization (FGVC), Online, 25 June 2011; Volume 2.
55. Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December 2015; pp. 1116-1124.
56. Zheng, L.; Bie, Z.; Sun, Y.; Wang, J.; Su, C.; Wang, S.; Tian, Q. Mars: A video benchmark for large-scale person re-identification. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11-14 October 2016; Springer: Cham, Switzerland; pp. 868-884.
57. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016, arXiv:1603.00831.
58. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December 2015; pp. 4489-4497.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

[^0]: Note: DTC, Dog Training Center of the Customs Administration of Taiwan's Ministry of Finance.

