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A B S T R A C T

Image quality assessment is usually achieved by pooling local quality scores. However, commonly used
pooling strategies, based on simple sample statistics, are not always sensitive to distortions. In this short
communication, we propose a novel perspective of pooling: reliable pooling through statistical hypothesis
testing, which enables effective detection of subtle changes of population parameters when the underlying
distribution of local quality scores is affected by distortions. To illustrate the significance of this novel
perspective, we design a new pooling strategy utilising simple one-sided one-sample 𝑡-test. The experiments on
benchmark databases show the reliability of hypothesis testing-based pooling, compared with state-of-the-art
pooling strategies.
. Introduction

Image quality assessment (IQA) has attracted considerable research
nterests recently [1]. IQA metrics are often obtained via two steps:
1) calculate local quality scores, and (2) pool local scores together to
et an overall score for the image. Most studies focused on the first
tep, designing better local quality scores such as noise quality measure
NQM) [2], structural similarity index (SSIM) [3], multiscale structural
imilarity (MS-SSIM) [4], feature similarity index (FSIM) [5], gradient
imilarity (GSM) [6], and deep learning-based local scores [7–9].

However, fewer studies have paid attention to the pooling strategy.
ue to its simplicity, mean pooling, which uses the mean of local

cores as the overall score, is commonly used [3,7]. An issue with the
ean pooling is that it treats all local scores equivalently, whereas

ome local scores should contribute more, because they are more as-
ociated with human visual fixation or visual region of interest. Hence
everal weighted-mean pooling strategies are then proposed to assign
ifferent weights to local scores based on various criteria, including
nformation content weighting [10], visual saliency weighting [11],
isual importance weighting [12], and the weights learned by neural
etworks [13]. However, the computation of weights is often costly,
specially for deep models, which are further affected by their training
ata. In addition, each weighting scheme is usually designed for some
pecific IQA metrics and not suitable for pooling local scores of other
QA metrics. Besides mean, standard deviation has also been used as
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a pooling strategy, by assuming that the overall quality is associated
with the variation of local quality scores [14]. It is worth noting that
although they share similar names, the pooling strategy discussed in
this paper is different from the pooling layer involved in deep models
which aims to downsample the feature maps.

Sample mean and sample standard deviation are summary statistics
that can only capture certain simple properties of the probability
distribution of the local scores: mean measures the location of the
distribution while standard deviation measures the spread of the distri-
bution. Moreover, they are not always sensitive to distortions, in which
case the inference based on them are not reliable.

Different from summary statistics, statistical hypothesis testing can
make more reliable statistical inference from a set of observations
[15,16]. For example, in statistical inference, a proper hypothesis test is
usually hired to obtain a more reliable conclusion on which population
mean is larger, instead of simply comparing the sample means directly.

Therefore in this short communication, we propose a novel per-
spective of pooling: statistical hypothesis testing-based pooling (HT
Pooling). By using hypothesis tests, we can obtain more reliable ranks
of the quality of the images, and thus the overall quality scores obtained
from our HT pooling can achieve better prediction monotonicity with
the mean opinion scores (MOS). Besides the reliable predictions, the
HT pooling can have low computational cost and high generalisability
to work with various IQA metrics.
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To illustrate the feasibility and effectiveness of this new perspective,
e develop the HT pooling counterpart of mean pooling by utilising
ne-sided one-sample 𝑡-test on the local quality scores of each image:
e test the null hypothesis that the mean of local quality scores of
n image is equal to a constant 𝑐, against the alternative hypothesis
hat the mean is larger than 𝑐. Then the one-sample 𝑡-test statistic
core can be directly used as the overall quality score: the higher the
-test statistic score, the higher the quality of the image. Further, to
chieve better prediction with MOS, we apply a log-transformation on
he 𝑡-test statistic score and use the transformed score as final overall
uality score. This simple HT pooling strategy can achieve superior
verall results on benchmark databases, demonstrating its effectiveness.
further remark of advantage: this simple HT pooling strategy does not

equire information from reference images, and thus can be adopted for
oth full-reference and no-reference IQA [17–19].

The novelties and contributions in this short communication are
wo-fold.

1. First, to the best of our knowledge, we are the first to introduce
statistical hypothesis testing as an IQA pooling strategy. The
HT pooling is more reliable than prior pooling strategies based
on simple summary statistics. In addition, different from most
weighted average pooling strategies, the HT pooling is not re-
stricted by the IQA metrics used to calculate local quality scores:
it is applicable and generally reliable for various IQA metrics.

2. Second, the HT pooling opens a novel perspective for designing
various new pooling strategies. This short communication shows
one example by designing a new pooling strategy based on
the 𝑡-test, which infers the mean of the underlying distribution.
Various hypothesis tests in statistical inference can be further
exploited to design other HT pooling strategies, such as the
𝐹 -test to infer the variance.

. Related work

The pooling strategy is one vital element for designing IQA metrics,
hich aims to decide the overall image quality score from a set of local

mage quality scores.
The mean pooling [3] is the most widely used pooling strategy,

hich provides the average of local scores as the overall quality score.
owever, researchers note that the mean pooling is not always a good

trategy because different regions should receive different degrees of
ttention in pooling; for example, the region providing more infor-
ation of human visual fixation should be weighted more. Thus a

imple average that uses the same weight for all local scores can be
mproved. Several weighting schemes are developed via exploring vi-
ual information in different ways. Moorthy and Bovik [12] explore the
oncept of visual importance based on a visual fixation predictor and
ropose the visual importance weighting. Wang and Li [10] propose an
nformation content weighting scheme which weights the local scores
y measuring their local information content. Zhang et al. [11] utilise
he visual saliency in the pooling strategy that measures the importance
f the region to attract people’s attention. Deep neural networks are
lso powerful to learn weights. Bosse et al. propose an end-to-end
etwork with ten convolutional layers to learn local scores and five
ooling layers to obtain local weights for weighted-mean pooling [7].
iang et al. develop a new metric for screen content images, following
similar approach to Bosse’s method while considering the special

haracteristics of screen content images [9].
However, we note that finding appropriate weights can raise the

omputational cost substantially, especially for deep models. In ad-
ition, most weighting schemes are designed only for specific IQA
etrics which cannot serve as a general pooling strategy for various

QA metrics. Moreover, the mean pooling or weighted-mean pooling
nly makes use of the mean statistic, which can only reflect the location

nformation of the set of local scores. a

2

The standard deviation pooling [14] uses the standard deviation of
he local scores as the overall image quality score. This is based on
he observation that the variation of local quality scores can reflect the
verall quality degradation. However, the standard deviation pooling
an only provide information about the spread information of the local
cores.

. Methodology

Suppose the set of local quality scores of an image is 𝐱 = [𝑥1, 𝑥2,… ,
𝑁 ]𝑇 ∈ R𝑁×1, where 𝑁 is the total number of pixels. A pooling strategy
ims to obtain an overall quality score for the image given 𝐱. From
statistical point of view, we treat 𝐱 as a set of observations from

n underlying population probability distribution that describes the
uality of the image. In this way, the aim of a pooling strategy can
e regarded as to find a value to describe the underlying distribution
ased on the observations.

In Section 3.1, we first give an example in Fig. 1 when the mean
ooling is not sensitive to distortions and the overall score is not
eliable. This motivates us to propose a novel perspective to design
ew pooling strategies based on statistical hypothesis testing, which
an provide more reliable objective overall scores than prior summary
tatistics-based pooling strategies. Then in Section 3.2, we develop an
xample of using one-sided one-sample 𝑡-test as the pooling strategy.

.1. Motivation for the HT pooling

The mean pooling and standard deviation pooling strategies are not
lways sensitive to distortions. For example, an image that is severely
isually-distorted by few pixels can have a high overall mean score: the
ew small local quality scores are compensated by a large number of
igh local quality scores. However, a good pooling strategy is expected
o detect those small local quality scores and give a low overall quality
core to this image. The mean pooling gives an incorrect high overall
uality score because it is not sensitive to the few small local quality
cores. In other words, the mean pooling cannot distinguish between
he population mean of the distribution which describes the above
ow quality image and that of the distribution which describes a high
uality image, because their sample means are similar.

Fig. 1 shows an example of the above situation in the TID2013
atabase. Fig. 1(b) is severely distorted by two local blocks and has
low MOS, while Fig. 1(c) is slightly distorted by the non eccentricity
attern noise and has a high MOS. The histograms of the local SSIM
cores of the two images are shown in Fig. 1(d) and Fig. 1(e), respec-
ively. It is obvious that most of the pixels have high local scores close
o 1 in both images. However, different from Fig. 1(e), Fig. 1(d) has
ew small local scores around zero, due to the two local blocks. The
ean pooling cannot detect those small local scores in Fig. 1(d), and it

ives almost the same overall scores for the two images with distinct
isual qualities. That is, the overall scores from the mean pooling are
ot consistent with MOS and thus not reliable.

This problem can be resolved by weighted mean pooling strategies.
owever, the weights have to be carefully engineered or learned from a
ostly algorithm to emphasise the importance of those distorted pixels.
n contrast, here we show a much simpler solution from a paired 𝑡-
est without heavy calculations, which can effectively detect the subtle
ifference between the means of the underlying distributions of the
ocal SSIM scores of Fig. 1(b) and Fig. 1(c). The 𝑝-value of the paired
-test on the two sets of local SSIM scores is 3.95×10−11, which indicates
hat we have very strong confidence to conclude that the two popula-
ion means are significantly different. This is because the 𝑡-test statistic
ointly considers both sample mean and sample standard deviation.
lthough the sample means are similar, the 𝑡-test can recognise the

arge difference between the standard deviations of the local scores in
ig. 1(d) and Fig. 1(e) and conclude that the two sets of local scores

re significantly different.
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Fig. 1. An example in the TID2013 database when the mean pooling is not sensitive to distortions: (a) the original image; (b) the local block-wise distorted image with SSIM =
.9825 and MOS = 4.80; (c) the non eccentricity pattern noise distorted image with SSIM = 0.9866 and MOS = 6; (d) the histogram of the local SSIM scores of the image in (b);

and (e) the histogram of the local SSIM scores of the image in (c). Here the overall SSIM score is calculated by the mean pooling.
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Similar examples can also be found when adopting standard de-
viation pooling. For instance, when the standard deviations of the
local quality scores of the same image affected by the local block-
wise distortion and spatially correlated noise are similar, the one with
spatially correlated noise usually has a lower MOS. This is because there
is a large amount of pixels affected by the spatially correlated noise,
which results in a histogram with high frequency densities for lower
scores, and such strong global noise can affect HVS more than a few
mild local block distortions.

These observations inspire us to propose a new perspective of
pooling based on statistical hypothesis testing (termed HT pooling),
which can be more sensitive to distortions.

Under this perspective, the existing summary statistics-based pool-
ing strategies can be replaced by new pooling strategies simply based
on their corresponding hypothesis tests, to obtain more reliable results.
Various hypothesis tests to compare different population parameters
can be found in statistics literature, such as the 𝑡-test to compare means
and the 𝐹 -test to compare the variances [15], to name a few.

3.2. The HT pooling by using 𝑡-test

In this section, we develop an example of the HT pooling: we design
pooling strategy based on a one-sided one-sample 𝑡-test. Specifically,
e apply the one-sided one-sample 𝑡-test on the local quality scores
nd adopt a transformation of the 𝑡 statistic as the final image quality
etric. The null hypothesis 𝐻0 is that the population mean 𝜇 = 𝑐, and

he alternative hypothesis 𝐻1 is that 𝜇 > 𝑐, where 𝑐 is a constant. The
est statistic 𝑡 is
3

𝑡 = �̄� − 𝑐

𝑠∕
√

𝑁
, (1)

where �̄� and 𝑠 are the sample mean and the sample standard deviation
of the local scores, respectively, and 𝑐 is a pre-determined constant.
If 𝑡 is larger than the critical value, we reject the null hypothesis and
conclude that the population mean is larger than 𝑐. Although the 𝑡-test
assumes that the samples are from Gaussian populations, we can still
use it for non-Gaussian samples with large sample size: the power of the
test is still strong in this case [15]. As the number of pixels in an image
is usually large, we can adopt the 𝑡-test without losing much testing
power.

The value of the 𝑡 statistic in (1) can be considered as the scaled
ifference between the sample mean and 𝑐. If the sample mean is much
arger than 𝑐, we obtain very large 𝑡 values. Alternatively, if the sample
ean is much smaller than 𝑐, we obtain very small negative 𝑡 values.
herefore, we can use the 𝑡 values as the overall quality scores: the

arger the 𝑡 value, the higher the quality of the image.
It is clear in (1) that the 𝑡 statistic contains information from

ample mean �̄� and sample standard deviation 𝑠. Therefore, the pooling
trategy based on the 𝑡 statistic can exploit the advantages of both the
ean pooling and the standard deviation pooling and is expected to
rovide better performance than those two pooling strategies.

However, using the 𝑡 value in (1) directly will result in poor pre-
iction with MOS. This is because the 𝑡 statistic can have extreme
alues when 𝑠 is very small. To shrink the extreme 𝑡 values and obtain
ood prediction accuracy, we propose to use the following monotonic
og-transformation of 𝑡 values as the final overall quality score:
log(𝑡 +𝐾), (2)



R. Zhu, F. Zhou, W. Yang et al. Signal Processing: Image Communication 114 (2023) 116942
Fig. 2. The scatter plots of MOS against (a) 𝑡 and (b) log(𝑡 + 3000) with fitting curves based on SSIM local scores on the TID2013 database.
Table 1
The ranks of the two images in Fig. 1 for MOS, the mean pooling and the HT pooling:
the higher the rank, the higher the quality of the image.

MOS Mean pooling HT pooling

Fig. 1(b) 880 2215 1131
Fig. 1(c) 1317 2261 1584

where 𝐾 is a sufficiently large constant. We illustrate the effect of this
log-transformation in Fig. 2, which depict the scatter plots of MOS
against 𝑡 in Fig. 2(a) and log(𝑡 + 3000) in Fig. 2(b) with fitting curves
based on SSIM local scores on the TID2013 database. Clearly, the
original 𝑡 values have a wide range from zero to 7 × 104 with only
few extremely large points, while the log-transformation can shrink
the values to a reasonable range. Moreover, the log-transformation
can improve the prediction accuracy: the Pearson linear correlation
coefficient and the root mean squared error of using the original 𝑡 value
are 0.7865 and 0.8287, respectively, while those of using log(𝑡 + 3000)
are 0.7881 and 0.8261. This can also be intuitively observed from
Fig. 2: the fitting curve of log(𝑡 + 3000) is more linear than that of 𝑡.

In the HT pooling, we set 𝑐 = 0.8 as the default value for 𝑐 because
most IQA metric provide local scores within the range [−1, 1] and
the local scores of images without severe distortions are usually large
positive numbers close to 1. We set 𝐾 = 3000 as the default value for 𝐾
by observing that the 𝑡 values calculated from the benchmark databases
can be small negative numbers, so we need 𝐾 to be sufficiently large
to make 𝑡 +𝐾 nonnegative.

To illustrate the effectiveness of the HT pooling, we calculate the
ranks of Fig. 1(b) and Fig. 1(c) and list them in Table 1, by using dif-
ferent strategies to pool SSIM local scores. We can clearly observe that
the HT pooling can provide distinct ranks, which are more consistent
with MOS, to well distinguish the qualities of Fig. 1(b) and Fig. 1(c),
while the mean pooling provides similar ranks and fails to distinguish
the two distortions.

4. Experiments

In the following experiments, we shall show the reliably superior
performance of HT pooling for various full-reference and no-reference

IQA metrics.

4

4.1. Experiment settings

4.1.1. For full-reference IQA
We compare the performances of five pooling strategies in the ex-

periments: mean pooling (MP) [3], information content weighting pool-
ing (IWP) [10], standard deviation pooling (SDP) [14], visual saliency
pooling (VSP) [11] and hypothesis testing-based pooling (HTP). We use
these pooling strategies to pool local scores obtained from five IQA
metrics: SSIM [3], GSM [6], FSIM [5], GMSD [14] and VSI [11]. The
local scores are calculated on four benchmark databases: LIVE [20],
CSIQ [21], TID2008 [22] and TID2013 [23]. To be more specific,
for each set of local scores calculated from an IQA metric, we apply
five pooling strategies on it separately to calculate the overall scores.
In the rest of this short communication, we use the notation ‘IQA
metric-pooling strategy’ to denote an IQA model with the combination
of an IQA metric (SSIM, GSM, FSIM, GMSD and VSI) and a pooling
strategy (MP, IWP, SDP, VSP or HTP). For example, SSIM-MP denotes
the model with mean pooling of the SSIM local scores. Note that FSIM-
MP is calculated by using the weighted mean proposed in the original
FSIM paper [5]. We use the default parameters for SSIM [3], GSM [6],
FSIM [5], IWP [10], GMSD [14] and VSI [11], as stated in their works.
For the HT pooling, we set 𝑐 = 0.8 and 𝐾 = 3000.

4.1.2. For no-reference IQA
We assess the performance of HTP on two no-reference IQA met-

rics, the perception-based image quality evaluator (PIQUE) [18] and
blind/referenceless image spatial quality evaluator (BRISQUE) [17],
on the LIVE database. PIQUE is an opinion-unaware metric, while
BRISQUE is opinion-aware and relies on training a support vector
regression model that regresses human ratings against the designed
features.

PIQUE adopts MP as its pooling strategy to pool the scores of local
patches. Different from the full-reference IQA metrics discussed above,
the lower the score of PIQUE, the higher the quality of the image.
Thus we slightly adjust the 𝑡-test in Section 3.2 when applying it to
the local scores of PIQUE. First, the 𝑡-test becomes left-sided with an
alternative hypothesis 𝐻1 of mean 𝜇 < 𝑐, while the test statistic in (1)
remains the same. Similarly to PIQUE, the lower the value of 𝑡, the
better the quality of the image. Second, the default setting of 𝑐 = 0.8
is not suitable now, because 0.8 indicates poor quality in PIQUE. The
authors of PIQUE suggests that an image with a score of 0.5 can be
considered as average quality; thus we follow their suggestion and set
𝑐 = 0.5 in this experiment.

Different from PIQUE, BRISQUE does not provide a quality map:

the final quality score is calculated by the regression model directly;
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cient. PLCC denotes the Pearson linear correlation coefficient.
images in that database divided by that in all four databases.

VSI local scores

VSP HTP MP IWP SDP VSP HTP

0.960 0.958 0.951 0.960 0.955 0.952 0.952
0.825 0.821 0.803 0.823 0.812 0.806 0.806
0.957 0.954 0.947 0.954 0.952 0.948 0.822
7.946 8.198 8.811 8.156 8.376 8.682 15.572

0.936 0.941 0.936 0.945 0.957 0.942 0.953
0.775 0.783 0.773 0.794 0.814 0.785 0.806
0.921 0.924 0.919 0.928 0.952 0.928 0.834
0.103 0.100 0.103 0.098 0.080 0.098 0.145

0.885 0.896 0.880 0.893 0.878 0.898 0.887
0.696 0.712 0.687 0.710 0.692 0.712 0.704
0.868 0.879 0.860 0.881 0.858 0.811 0.869
0.666 0.640 0.684 0.634 0.689 0.786 0.663

0.813 0.810 0.886 0.876 0.856 0.897 0.863
0.642 0.639 0.701 0.696 0.670 0.718 0.679
0.862 0.878 0.890 0.891 0.843 0.900 0.874
0.629 0.593 0.565 0.564 0.666 0.540 0.602

0.865 0.866 0.896 0.898 0.885 0.907 0.890
0.695 0.698 0.717 0.726 0.711 0.734 0.717
0.880 0.891 0.890 0.898 0.873 0.883 0.858

5

Table 2
Performance measurements on four benchmark databases. SROCC denotes the Spearman rank correlation coefficient. KROCC denotes the Kendall rank order correlation coeffi
RMSE denotes the root mean square error. The weighted average is the weighted mean of the results of all four databases. The weight for one database is the total number of
The top two results for each IQA metric are in bold faces.
Database Criterion SSIM local scores GSM local scores FSIM local scores GMSD local scores

MP IWP SDP VSP HTP MP IWP SDP VSP HTP MP IWP SDP VSP HTP MP IWP SDP

LIVE

SROCC 0.941 0.957 0.918 0.493 0.940 0.956 0.949 0.946 0.957 0.946 0.963 0.947 0.960 0.147 0.958 0.960 0.947 0.960
KROCC 0.782 0.817 0.740 0.348 0.782 0.815 0.809 0.797 0.817 0.797 0.834 0.797 0.825 0.101 0.821 0.824 0.797 0.827
PLCC 0.926 0.952 0.908 0.564 0.937 0.951 0.938 0.941 0.952 0.881 0.960 0.942 0.958 0.177 0.954 0.956 0.942 0.960
RMSE 10.334 8.347 11.428 22.556 9.567 8.432 9.434 9.256 8.330 21.514 7.659 9.199 7.841 26.894 8.233 8.049 9.199 7.692

CSIQ

SROCC 0.870 0.922 0.807 0.469 0.845 0.911 0.832 0.931 0.915 0.930 0.924 0.903 0.957 0.087 0.944 0.929 0.903 0.957
KROCC 0.685 0.753 0.633 0.324 0.653 0.737 0.658 0.767 0.746 0.764 0.757 0.726 0.809 0.058 0.786 0.763 0.726 0.813
PLCC 0.857 0.914 0.801 0.532 0.827 0.896 0.827 0.920 0.901 0.821 0.901 0.726 0.953 0.295 0.929 0.913 0.726 0.953
RMSE 0.135 0.106 0.157 0.222 0.147 0.116 0.148 0.103 0.114 0.150 0.114 0.180 0.080 0.251 0.097 0.107 0.180 0.080

TID2008

SROCC 0.776 0.856 0.746 0.416 0.795 0.850 0.607 0.847 0.879 0.852 0.881 0.843 0.892 0.104 0.894 0.848 0.843 0.891
KROCC 0.577 0.663 0.562 0.289 0.601 0.659 0.471 0.657 0.696 0.663 0.694 0.651 0.706 0.074 0.707 0.653 0.651 0.709
PLCC 0.776 0.858 0.732 0.552 0.788 0.842 0.466 0.829 0.867 0.838 0.874 0.845 0.880 0.013 0.879 0.837 0.845 0.880
RMSE 0.846 0.689 0.914 1.119 0.826 0.724 1.187 0.750 0.669 0.731 0.653 0.717 0.638 1.342 0.640 0.735 0.717 0.637

TID2013

SROCC 0.741 0.778 0.723 0.405 0.753 0.795 0.659 0.780 0.811 0.783 0.802 0.776 0.808 0.092 0.813 0.788 0.776 0.804
KROCC 0.557 0.598 0.548 0.282 0.575 0.625 0.500 0.606 0.647 0.610 0.629 0.597 0.636 0.065 0.640 0.613 0.597 0.634
PLCC 0.793 0.832 0.756 0.582 0.811 0.846 0.694 0.816 0.863 0.847 0.859 0.837 0.858 0.205 0.882 0.840 0.837 0.858
RMSE 0.755 0.688 0.811 1.008 0.724 0.660 0.893 0.717 0.627 0.658 0.635 0.677 0.637 1.213 0.584 0.674 0.677 0.636

Weighted SROCC 0.790 0.838 0.762 0.426 0.797 0.843 0.702 0.836 0.859 0.839 0.857 0.829 0.866 0.101 0.868 0.842 0.829 0.865
KROCC 0.606 0.661 0.585 0.297 0.616 0.671 0.550 0.663 0.692 0.666 0.687 0.652 0.700 0.071 0.698 0.668 0.652 0.700

Average PLCC 0.811 0.862 0.772 0.563 0.820 0.862 0.679 0.846 0.877 0.843 0.878 0.835 0.886 0.162 0.894 0.860 0.835 0.887
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Table 3
The average performance measurements of the pooling strategies over four databases
and five IQA metrics, calculated as the averages of the weighted average results in
Table 2. SROCC denotes the Spearman rank correlation coefficient. KROCC denotes the
Kendall rank order correlation coefficient. PLCC denotes the Pearson linear correlation
coefficient. The best measurements are in bold faces.

MP IWP SDP VSP HTP

SROCC 0.846 0.820 0.843 0.632 0.852
KROCC 0.670 0.648 0.672 0.499 0.679
PLCC 0.860 0.822 0.853 0.673 0.861

Table 4
Counts of the top two ranks in Table 2, excluding the weighted
average results.

MP IWP SDP VSP HTP

SSIM 6 16 0 0 11
GSM 8 0 4 14 6
FSIM 6 0 14 0 12
GMSD 1 0 12 8 12
VSI 3 11 8 8 4

Total 24 27 38 30 45

in other words, no pooling strategy is involved. Thus we make the
following modification of getting the final BRISQUE score to assess
the performance of HTP. For each test image, we divide it to non-
overlapping patches of size 32 × 32, calculate the BRISQUE scores for
ll patches and pool them to obtain the final score. A lower BRISQUE
core refers to a higher quality, thus we adopt the left-sided 𝑡-test
ollowing the same strategy for PIQUE. However, since the BRISQUE
core is not between 0 and 1, we cannot use 𝑐 = 0.5 as in PIQUE
o represent average quality. To resolve this problem, we calculate
he mean of the BRISQUE scores for the reference images in the LIVE
atabase, which is just above 43, and thus we adopt 43 as the value
or 𝑐.

.2. Performance measurements

To compare the objective scores provided by the pooling strategies
ith the subjective scores provided by the databases, we first transform

he original objective scores 𝑥 using the following regression model to
emove their nonlinearity [24]:

𝑦 = 𝛽1

(

1
2
− 1

1 + exp(𝛽2(𝑥 − 𝛽3))

)

+ 𝛽4𝑥 + 𝛽5, (3)

here 𝑥 denotes the original objective score, 𝑦 denotes the transformed
bjective score, and 𝛽𝑖 (𝑖 = 1,… , 5) denote the parameters in the

regression model which are estimated by minimising the mean squared
error between 𝑦 and the subjective score. In this short communication,
we set the initial values of 𝛽𝑖 (𝑖 = 1,… , 5) following the algorithm
n [25], to avoid the non-convergence or the local optimal problems.

The transformed objective scores are compared with the MOS or
MOS provided by the databases in terms of two properties: prediction
onotonicity and prediction accuracy. In this short communication,
e measure the prediction monotonicity by the Spearman rank order

orrelation coefficient (SROCC) and the Kendall rank order correla-
ion coefficient (KROCC). The prediction accuracy is measured by the
earson linear correlation coefficient (PLCC) and root mean squared
rror (RMSE) [25]. That is, for full-reference IQA, in total we compare
00 combinations of pooling strategies, full-reference IQA metrics, and
atasets; and for each combination, we compare their performances in
erms of three measures.

.3. Experiment results

In this section, we first show the results of full-reference IQA for the

verall databases and the individual distortion types in Section 4.3.1

6

Table 5
The 𝑝 values of the one-sided paired 𝑡-test of HT pooling against other pooling
strategies, with 𝐻0: 𝜇𝑚

𝐻𝑇𝑃 ≤ 𝜇𝑚
𝑠 and 𝐻1: 𝜇𝑚

𝐻𝑇𝑃 > 𝜇𝑚
𝑠 . The 𝑝 values less than 10%

are labelled by bold faces.
HTP v.s.

MP IWP SDP VSP

SROCC 0.058 0.050 0.034 0.003
KROCC 0.060 0.048 0.129 0.003
PLCC 0.853 0.142 0.769 0.008

and those of no-reference IQA in Section 4.3.2. Then we discuss the
sensitivity of the parameters, 𝑐 and 𝐾, used in the HT pooling in
Section 4.3.3.

4.3.1. Results of full-reference IQA
Results of the overall databases: The results in Table 2 demon-

strate that HTP is a reliable pooling strategy to pool local scores for
various IQA metrics in the case of overall databases.

First, on average, HTP ranks in the top two pooling strategies for
three IQA metrics, SSIM, FSIM and GMSD. Other pooling strategies rank
in the top two for less times: SDP, VSP and IWP rank in the top two
for two IQA metrics while MP ranks in the top two for only one IQA
metric.

Second, HTP can still provide competitive performance for GSM and
VSI metrics, compared with their associated top two pooling strategies.
However, other pooling strategies often perform poorly for some IQA
metrics, especially the pooling strategies that are designed for specific
IQA metrics. For example, IWP can provide superior performance for
SSIM local scores. However, it provides the worst performance for GSM
local scores. Similarly, VSP can provide superior performance for VSI
local scores. However, it fails to provide reliable performances for SSIM
and FSIM local scores.

Third, to make the above conclusions clearer, we show in Table 3
the average performance measurements of the pooling strategies over
four databases and five IQA metrics, calculated as the averages of the
weighted average results in Table 2. It is obvious that HTP has the
best average performance for SROCC, KROCC and PLCC. Furthermore,
we summarise the counts of ranking in the top two for each pooling
strategy in Table 4. We can make two observations from this table.
First, HTP totally ranks in the top two 45 times which is the largest
among all pooling strategies. Second, the counts of HTP distribute
roughly evenly over all IQA metrics, which demonstrates the general
reliability of HTP. In contrast, the counts of other pooling strategies
distribute unevenly with zero entries for some IQA metrics, which
suggests that they are not suitable for all IQA metrics.

Finally, we formally compare the performances of HTP with other
pooling strategies via the one-sided paired 𝑡-test for SROCC, KROCC
and PLCC, respectively, at the significance level of 10%. To be spe-
cific, we test 𝐻0: 𝜇𝑚

𝐻𝑇𝑃 ≤ 𝜇𝑚
𝑠 against 𝐻1: 𝜇𝑚

𝐻𝑇𝑃 > 𝜇𝑚
𝑠 , where

𝜇𝑚
𝐻𝑇𝑃 denotes the population mean of the performance metric 𝑚 ∈

{SROCC,KROCC,PLCC} for HT pooling while 𝜇𝑚
𝑠 denotes that for the

ooling strategy 𝑠 ∈ {MP, IWP, SDP ,VSP}. For each test, we aggregate
the performance metric of each pooling strategy for all databases and
IQA metrics in Table 2, excluding the weighted averages. That is, we
conduct paired 𝑡-tests for two paired samples, each of size 4 × 5 = 20.
The 𝑝 values of all tests are reported in Table 5, with those less than
10% labelled by bold faces. Obviously, the two rank correlations of
HTP, SROCC and KROCC, are statistically significantly better than other
strategies at 10% significance level, except for HTP against SDP whose
𝑝 value is slightly larger than 10%. This result formally shows the
superior performance of HTP on prediction monotonicity.

Results of individual distortion types: To further demonstrate the
ffectiveness of HTP, we show the SROCCs for individual distortion
ypes on three benchmark databases in Table 6. We do not present the
esults for TID2008 because TID2013 is an extension of TID2008 and
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ation coefficient. PLCC denotes the Pearson linear correlation
otal number of images in that database divided by that in all

VSI local scores

VSP HTP MP IWP SDP VSP HTP

0.974 0.968 0.980 0.981 0.981 0.983 0.981
0.957 0.958 0.954 0.967 0.956 0.953 0.956
0.979 0.979 0.974 0.982 0.975 0.976 0.974
0.969 0.971 0.959 0.970 0.967 0.960 0.966
0.942 0.939 0.941 0.953 0.941 0.943 0.936

0.966 0.966 0.963 0.962 0.968 0.963 0.968
0.965 0.962 0.961 0.970 0.971 0.968 0.967
0.961 0.962 0.960 0.971 0.967 0.962 0.965
0.965 0.964 0.961 0.975 0.975 0.969 0.972
0.942 0.913 0.944 0.956 0.917 0.950 0.925
0.952 0.948 0.963 0.963 0.960 0.964 0.961

0.934 0.945 0.942 0.935 0.950 0.946 0.950
0.861 0.869 0.865 0.860 0.869 0.871 0.869
0.923 0.919 0.934 0.931 0.945 0.937 0.942
0.724 0.708 0.793 0.805 0.754 0.769 0.754
0.915 0.915 0.915 0.911 0.915 0.920 0.916
0.835 0.781 0.856 0.820 0.796 0.874 0.804
0.850 0.902 0.887 0.883 0.898 0.875 0.898
0.957 0.925 0.966 0.964 0.922 0.961 0.927
0.941 0.952 0.948 0.947 0.956 0.948 0.956
0.942 0.948 0.958 0.952 0.958 0.954 0.958
0.964 0.963 0.967 0.970 0.970 0.971 0.970
0.864 0.847 0.899 0.882 0.857 0.922 0.862
0.919 0.914 0.924 0.919 0.926 0.923 0.928
0.799 0.814 0.804 0.808 0.806 0.806 0.805
0.551 0.659 0.334 0.359 0.668 0.172 0.674
0.692 0.735 0.771 0.749 0.772 0.769 0.773
0.477 0.346 0.475 0.477 0.393 0.475 0.399
0.297 0.294 0.814 0.802 0.810 0.810 0.813
0.884 0.886 0.894 0.892 0.902 0.912 0.902
0.921 0.928 0.917 0.922 0.933 0.924 0.932
0.953 0.962 0.950 0.958 0.964 0.956 0.963
0.888 0.911 0.912 0.896 0.904 0.884 0.906
0.873 0.853 0.899 0.882 0.880 0.890 0.881
0.960 0.966 0.962 0.966 0.968 0.963 0.968

7

Table 6
SROCC for different distortion types on three benchmark databases. SROCC denotes the Spearman rank correlation coefficient. KROCC denotes the Kendall rank order correl
coefficient. RMSE denotes the root mean square error. The weighted average is the weighted mean of the results of all four databases. The weight for one database is the t
four databases. The top two results for each IQA metric are in bold faces.
Database Distortion SSIM local scores GSM local scores FSIM local scores GMSD local scores

MP IWP SDP VSP HTP MP IWP SDP VSP HTP MP IWP SDP VSP HTP MP IWP SDP

LIVE

AWGN-c 0.967 0.967 0.788 0.736 0.965 0.977 0.986 0.986 0.982 0.985 0.965 0.963 0.968 0.735 0.961 0.967 0.963 0.974
GB 0.935 0.972 0.943 0.392 0.957 0.952 0.965 0.958 0.951 0.959 0.971 0.968 0.958 0.405 0.960 0.959 0.968 0.957
JPEG 0.974 0.981 0.974 0.460 0.976 0.978 0.981 0.975 0.978 0.975 0.983 0.978 0.978 0.309 0.980 0.979 0.978 0.978
JP2K 0.958 0.965 0.955 0.363 0.968 0.970 0.971 0.971 0.970 0.971 0.972 0.965 0.970 0.030 0.971 0.968 0.965 0.971
J2K 0.930 0.944 0.918 0.496 0.931 0.940 0.897 0.933 0.939 0.929 0.950 0.911 0.944 0.192 0.943 0.943 0.911 0.942

CSIQ

AWGN 0.877 0.938 0.826 0.322 0.858 0.944 0.949 0.956 0.953 0.955 0.926 0.948 0.965 0.113 0.961 0.962 0.948 0.967
GB 0.964 0.978 0.972 0.489 0.959 0.959 0.974 0.973 0.967 0.970 0.973 0.973 0.971 0.465 0.966 0.958 0.973 0.971
JPEG 0.952 0.966 0.957 0.437 0.954 0.963 0.968 0.965 0.967 0.965 0.965 0.965 0.964 0.066 0.963 0.959 0.965 0.965
JP2K 0.962 0.968 0.976 0.522 0.961 0.965 0.973 0.978 0.971 0.977 0.969 0.969 0.971 0.355 0.970 0.957 0.969 0.972
CC 0.790 0.954 0.296 0.486 0.767 0.935 0.948 0.934 0.944 0.938 0.942 0.956 0.903 0.395 0.913 0.933 0.956 0.904
CCS 0.891 0.906 0.813 0.622 0.862 0.939 0.951 0.948 0.947 0.947 0.923 0.916 0.946 0.137 0.942 0.945 0.916 0.950

TID2013

AWGN 0.867 0.844 0.938 0.365 0.921 0.906 0.894 0.934 0.920 0.933 0.897 0.882 0.945 0.150 0.938 0.926 0.882 0.946
AWGN-c 0.757 0.753 0.847 0.212 0.844 0.818 0.802 0.843 0.838 0.843 0.822 0.799 0.868 0.136 0.868 0.849 0.799 0.869
SCN 0.854 0.817 0.935 0.574 0.873 0.916 0.906 0.944 0.933 0.943 0.875 0.851 0.931 0.385 0.906 0.908 0.851 0.935
MN 0.726 0.802 0.683 0.021 0.679 0.729 0.721 0.688 0.693 0.688 0.794 0.742 0.723 0.034 0.723 0.753 0.742 0.707
HFN 0.862 0.855 0.906 0.363 0.896 0.887 0.889 0.899 0.900 0.899 0.898 0.887 0.915 0.280 0.914 0.905 0.887 0.916
IN 0.755 0.727 0.739 0.254 0.742 0.796 0.790 0.728 0.813 0.731 0.807 0.752 0.758 0.385 0.780 0.816 0.752 0.763
QN 0.869 0.846 0.885 0.572 0.894 0.884 0.876 0.914 0.860 0.913 0.872 0.859 0.901 0.055 0.897 0.876 0.859 0.905
GB 0.964 0.970 0.944 0.471 0.955 0.969 0.967 0.951 0.962 0.952 0.955 0.968 0.919 0.001 0.931 0.960 0.968 0.911
ID 0.923 0.915 0.945 0.519 0.944 0.943 0.930 0.948 0.943 0.948 0.930 0.927 0.950 0.009 0.948 0.942 0.927 0.952
JPEG 0.915 0.919 0.931 0.549 0.928 0.928 0.914 0.936 0.934 0.935 0.932 0.919 0.951 0.292 0.948 0.939 0.919 0.951
JP2K 0.949 0.951 0.958 0.619 0.951 0.960 0.948 0.967 0.962 0.966 0.958 0.947 0.966 0.486 0.963 0.961 0.947 0.966
JPEG-t 0.852 0.839 0.814 0.422 0.845 0.851 0.820 0.813 0.862 0.816 0.847 0.839 0.848 0.185 0.853 0.855 0.839 0.841
JP2K-t 0.885 0.866 0.902 0.613 0.886 0.918 0.899 0.922 0.923 0.922 0.891 0.876 0.916 0.431 0.912 0.907 0.876 0.914
NEPN 0.787 0.801 0.791 0.265 0.793 0.813 0.830 0.807 0.813 0.807 0.792 0.825 0.812 0.030 0.812 0.805 0.825 0.814
LBD 0.571 0.372 0.582 0.092 0.571 0.641 0.236 0.540 0.525 0.546 0.549 0.417 0.665 0.254 0.657 0.645 0.417 0.662
MS 0.774 0.782 0.696 0.256 0.719 0.787 0.751 0.785 0.793 0.785 0.752 0.572 0.730 0.157 0.730 0.726 0.572 0.734
CC 0.373 0.459 0.004 0.002 0.194 0.485 0.459 0.446 0.486 0.447 0.468 0.457 0.307 0.282 0.330 0.482 0.457 0.323
CCS 0.415 0.419 0.325 0.112 0.308 0.357 0.335 0.313 0.264 0.313 0.274 0.386 0.212 0.217 0.335 0.369 0.386 0.294
MGN 0.783 0.773 0.849 0.343 0.836 0.835 0.847 0.867 0.868 0.866 0.847 0.820 0.881 0.207 0.876 0.859 0.820 0.889
CN 0.862 0.876 0.894 0.558 0.887 0.912 0.911 0.923 0.921 0.923 0.912 0.904 0.929 0.085 0.927 0.912 0.904 0.930
LCN 0.910 0.904 0.958 0.543 0.942 0.956 0.956 0.967 0.965 0.967 0.947 0.934 0.964 0.022 0.961 0.945 0.934 0.963
ICQD 0.862 0.840 0.900 0.314 0.899 0.897 0.889 0.912 0.886 0.912 0.876 0.872 0.911 0.332 0.912 0.903 0.872 0.910
CA 0.864 0.868 0.832 0.355 0.831 0.882 0.846 0.859 0.875 0.860 0.871 0.848 0.861 0.397 0.863 0.880 0.848 0.853
SSR 0.949 0.947 0.961 0.686 0.956 0.967 0.964 0.970 0.966 0.970 0.956 0.957 0.967 0.278 0.963 0.961 0.957 0.968
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Fig. 3. The sensitivities of SROCC of SSIM-HTP, GSM-HTP, FSIM-HTP, GMSD-HTP and VSI-HTP to parameters 𝑐 and 𝐾 for three databases.
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Table 7
Counts of the top two ranks in Table 6.

MP IWP SDP VSP HTP

SSIM 13 19 18 0 23
GSM 12 12 20 14 18
FSIM 14 9 22 0 27
GMSD 10 9 25 14 19
VSI 10 15 22 14 20

Total 59 64 107 42 107

covers all the distortion types in TID2008. The top two SROCCs for each
IQA metric are in bold faces.

Similarly to that for overall databases, we summarise the counts of
ranking in the top two for each pooling strategy in Table 7. Paired 𝑡-
ests are not performed here, because for a lot of distortions in TID2013
e only have five observations for each pooling strategy, which makes

he tests less reliable. The following two conclusions can be drawn from
able 7.

First, HTP has the largest total counts and distributes evenly over
ifferent IQA metrics. This observation demonstrates the superior per-
ormance of HTP for individual distortion types.

Second, SDP also has superior performance for individual distor-
ions. However, it shows worse performance in Table 4 for overall
atabases.

To sum up, based on the results in this section, HTP has a high
eneral reliability: it can provide superior overall quality scores for
oth overall databases and individual distortions and also for different
QA metrics. However, other pooling strategies discussed in this paper
o not exhibit such general reliability.

.3.2. Results of no-reference IQA
The performances of MP and HTP to pool PIQUE and BRISQUE local

cores are presented in Table 8. Clearly, HTP performs better than MP
n terms of all three measures, which shows the superior ability of
TP to pool the local scores of these two no-reference IQA metrics.
 i

8

Table 8
Performance comparison between MP and HTP on the LIVE database
based on two no-reference IQA metrics, PIQUE and BRISQUE. Better
performances are in bold faces.

PIQUE local scores BRISQUE local scores

MP HTP MP HTP

SROCC 0.840 0.856 0.825 0.835
KROCC 0.638 0.657 0.622 0.622
PLCC 0.836 0.850 0.821 0.833

Note that here the performances of BRISQUE are not as good as in
Anish et al. [17]. This is because BRISQUE is originally calculated
based on the features extracted from the whole image while our setting
obtains the BRISQUE local scores on small patches which affects the
final performance. Nevertheless, the purpose of this experiment is to
demonstrate the performance of HTP strategy rather than providing the
best IQA metric.

4.3.3. Sensitivity to parameters
The sensitivities of SROCC of SSIM-HTP, GSM-HTP, FSIM-HTP,

GMSD-HTP and VSI-HTP to parameters 𝑐 and 𝐾 are shown in Fig. 3
for three databases (LIVE, CSIQ, TID2013). The parameter 𝑐 is tested
on four values: 0.6, 0.7, 0.8 and 0.9; and the parameter 𝐾 is tested on
five values: 1000, 2000, 3000, 4000 and 5000. It is clear that SROCC
is stable with the value of 𝐾 over different methods and different
atabases. Although SROCC is slightly sensitive to 𝑐, the conclusions
n Table 2 still hold, even with the worst values of SROCC with respect
o 𝑐. This also demonstrates the effectiveness of HT pooling.

. Conclusion and future work

In this short communication, for the first time, we introduce statis-
ical hypothesis testing to pooling for IQA. The HT pooling can provide
ore reliable scores than the summary statistics-based pooling. For
llustrative purposes, we design a new HT pooling strategy based on
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the one-sample one-sided 𝑡-test. This new strategy shows reliable per-
formance on local scores calculated by five full-reference IQA metrics
(SSIM, GSM, FSIM, GMSD and VSI) and two no-reference IQA metric
(PIQUE, BRISQUE).

The current version of HT pooling does not consider the spatial
information provided by the local neighbourhood which is vital in
image data analysis; thus we could involve such information to enhance
HT pooling. The HT pooling can also be applied to recent deep learning-
based no-reference IQA metrics. Another future direction is to explore
the incorporation of the HT pooling in the training procedures of deep
networks for no-reference IQA.
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