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A B S T R A C T   

Two regression methods, namely, Support Vector Regression (SVR) and Kernel Ridge Regression (KRR), are used 
to reconstruct the spectral reflectance curves of samples of Munsell dataset from the corresponding CIE XYZ 
tristimulus values. To this end, half of the samples (i.e., the odd ones) were used as training set while the even 
samples left out for the evaluation of reconstruction performances. Results were reviewed and compared with 
those obtained from Principal Component Analysis (PCA) method, as the most common context-based approach. 
The root mean squared error (RMSE), goodness fit coefficient (GFC), and CIE LAB color difference values be-
tween the actual and reconstruct spectra were reported as evaluation metrics. However, while both SVR and KRR 
methodologies provided better spectral and colorimetric performances than the classical PCA method, the 
computation costs were considerably longer than PCA method.   

1. Introduction 

The spectral reflectance of any object is known as a non-repetitive 
component that provides full information about the color of the object 
under different viewing conditions. Hence, having access to this infor-
mation is crucial in various industries that deal with colors and color-
ants. This information can be used in many fields, such as device color 
characterization, color matching efforts and the most important one, i. 
e., material identification. Compared to color measurement devices like 
RGB cameras, the reflection measuring devices such as spectropho-
tometers and spectral cameras are not widely available and are more 
professional and relatively expensive. This limits the use of spectral 
devices to research and/or industrial laboratories (Abed et al., 2009). 
So, an acceptable approximation of spectral data from the more acces-
sible colorimetric coordinates such as RGB or standard CIE XYZ infor-
mation has been an attractive research subject in color science field, and 
various context and non-context-based approaches such as principal 
component analyzing (PCA), non-negative matrix factorization (NMF) 
and pre-defined Gaussian additive primaries have been introduced for 
this purpose (Wu et al., 2015; Agahian et al., 2008; Amirshahi and 
Amirhahi, 2010; Harifi et al., 2008; Hawkyard, 1993; Eslahi et al., 
2009). The importance of reflectance models in computer graphics is 
also crucial for multispectral imaging systems where different image- 
based reflectance estimation techniques have been developed. In this 

type of application, the spectral data can be reconstructed from the 
response of the corresponding multi-channel imaging system (Xu and 
Xu, 2016). In this regard, many research studies have been directed in 
the recent decades toward reconstruction of spectral reflectances of 
objects based on camera responses using different supervised and un-
supervised methods (Xu and Xu, 2016; Zhou et al., 2020; Heikkinen 
et al., 2008; Wei et al., 2022; Shimano, 2006; Peyvandi et al., 2012; 
Heikkinen et al., 2013; Zhang and Dai, 2008; Zhang et al., 2012; Xiao 
et al., 2019). 

From the mathematical point of view, the reconstruction of the 
spectral data from colorimetric information can be defined as an 
underdetermined system of equations where there are infinite solutions, 
i.e., spectral variable that fit the independent colorimetric data. Usually, 
the minimum norm solution is used to select a unique solution. In color 
science world, such system can be interpreted as metamer pairs and 
shows that, there are several reflectance spectra that provide identical 
color and the effort in this respect is restricted to find the spectra with 
the minimum spectral deviation from the actual reflectance values. 
However, various optimization techniques have been applied to mini-
mize the differences between the estimated and the actual reflectance 
spectra. The main concern of this article is to introduce two regression 
methods, named support vector regression (SVR) and kernel ridge 
regression (KRR) in the spectral reconstruction attempt where the 
colorimetric data are available. Results of methods are compared to 
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those obtained with conventional principal component analysis (PCA) 
technique. 

2. Mathematical background 

2.1. Support vector regression (SVR) method 

While one tries to minimize the error between the actual and pre-
dicted values by classical regression approaches, the SVR estimates the 
best value within a certain threshold, i.e., the distance between the 
hyperplane and boundary line. This alteration makes the SVR a powerful 
and kernel-based regularization algorithm that allows the user to 
improve the error tolerance rate, both through an acceptable error 
margin and through adjusting the tolerance of the acceptable error rate. 
Indeed, it minimizes both the empirical risk and the confidence interval. 
The computational complexity of SVR does not depend on the size of the 
input space. It has been shown that SVR has excellent performance, 
especially for a low sample size with a high feature space dimension. In 
addition, it has excellent generalizability with high predictive accuracy. 
The SVR gives the flexibility to define how much error is acceptable in 
the model and find a suitable line (or hyperplane in higher dimension) 
that fits the data. In this method, with the help of a kernel trick, data is 
transferred from an n-dimensional space to the n + 1-dimensional space 
by maintaining relationships. The hyperplane that contains the most 
points is calculated in this space, and then some acceptable error con-
structs the decision boundaries. 

In mathematical form, the model aims to minimize the function 
shown in Eq. (1): 

minimize
1
2
||β||2 +C

∑n

i=1
|ξi|, subject to||Rtrain − r̂||22⩽ε+ |ξi|, (1)  

Where, r̂ is reconstructed reflectance calculated by: 

r̂ = Xβ (2)  

Here, X is the matrix of independent variables, and β shows the vector of 

the parameters of the regression model. ε refers to margin error, and ξ is 
slack variables. For any value that falls outside of ε, its deviation from 
the margin can be denoted as ξ. C is an additional hyperparameter that 
defines the tolerance for points outside of ε. It should be noted that, in 
addition to the above parameters, there is also a gamma variable in the 
algorithms that is kernel coefficient. Gamma decides how much curva-
ture there is at the decision boundary and higher gamma value indicates 
to more curvature (Vladimir, 2000; Drucker et al., 1997; Smola and 
Schölkopf, 2004). 

2.2. . Kernel ridge regression (KRR) method 

In multiple regression problems, determining the number of inde-
pendent variables to be used in the model is a challenging decision. In 
fact, increasing the number of variables would lead to an overfitting 
problem and conversely, by decreasing of variables, the variance of the 
model can efficiently increase. One way to overcome these problems in 
the multiple regression analysis is to use the “ridge regression” model. 
Typically, an error function is used in the linear regression problem to 
minimize the “sum of squares of error”. In ridge regression approach, by 
combining the function of the sum of squares of error and the amount of 
penalty related to the number of parameters, a new function is created, 
which is used to estimate the parameters of the regression model. 
Consequently, Eq. (3) shows the minimization function used by primal 
model (Ridge regression approach). 

minimize λ||w||2 +
∑ℓ

i=1
ξ2

i ,

subject to yi − 〈w⋅xi〉 = ξi, i = 1,…,ℓ,
(3)  

where, λ is called the penalty amount. In fact, it increases the residual 
sum of squares (RSS) value due to the increase in the number of pa-
rameters. Hence, the optimal value should be found by changing the 
value of λ that is followed by the estimation of model parameters and 
finally selecting the one which minimize the least square error. 

Then, the Lagrangian model could be develop from Eq. (3): 

Table 1 
The RMS, GFC, and ΔE*

ab values between the actual and reconstructed spectra obtained from different methods.  

Method count RMS GFC ΔE*
ab 

A F11 

mean max Std mean min Std mean max Std mean max Std 

SVR 634  0.016  0.149  0.018  0.996  0.763  0.015  1.185  9.268  1.199  1.444  11.955  1.499 
KRR  0.015  0.178  0.020  0.997  0.837  0.009  1.036  11.387  1.563  1.351  14.499  1.926 
PCA  0.024  0.149  0.018  0.993  0.809  0.013  1.717  11.217  1.663  2.238  12.735  2.164  

Fig. 1. Box plot diagram of the RMS and GFC values for SVR, KRR and PCA methods.  
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Fig. 2. The Actual and reconstructed spectra with different methods for 18 randomly selected samples.  
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minimize L(w, ξ,α) = λ||w||2 +
∑ℓ

i=1
ξ2

i +
∑ℓ

i=1
αi(yi − 〈w⋅xi〉 − ξi ) . (4) 

As a result of differentiation and static imposition, it is possible to 
show that: 

w =
1
2λ

∑ℓ

i=1
αixi and ξi =

αi

2
, (5)  

here, the dual problem arises by the resubstituting of the relations: 

maximize W(α) =
∑ℓ

i=1
yiαi −

1
4λ

∑ℓ

i,j=1
αiαj

〈
xi⋅xj

〉
−

1
4
∑

α2
i . (6) 

That can be represented by Eq. (7) in the vector form: 

W(α) = y′ α −
1
4λ

α′Kα −
1
4
α′ α, (7)  

where K denotes the Gram matrix Kij = 〈xi • xj〉, or in kernel-induced 
feature spaces is the kernel matrix Kij = k(xi, xj). Again, by differenti-
ating with respect to α and imposing the stationarity condition: 

−
1
2λ

Kα −
1
2

α+ y = 0 → α = 2λ(K + λI)− 1y. (8) 

And the corresponding regression function is given by Eq. (9). 

f (x) = 〈w⋅x〉 = y′

(K + λI)− 1k, (9)  

which k is ki = 〈xi • xj〉, i = 1,…,ℓ. 
As it is clear, the KRR is a simplified version of Support Vector 

Regression (Cristianini and Shawe-Taylor, 2000; Vovk et al., 2013). 
Both KRR and SVR learn a nonlinear function by using a kernel trick. 

For example, both algorithms learn a linear function in reduced space 
through the kernel corresponding to a nonlinear function in the main 

space. Nevertheless, their difference is in the error function (margin 
versus epsilon-sensitive error). While the KRR fitting is typically faster 
for medium-sized datasets, the estimation step is longer than SVR. 

3. Experimental procedure 

The data studied in this work was the reflectance spectra of 1269 
Munsell matte chips (Finland UoE). The collected reflectance spectra 
were first fixed in the range of 400 to 700 nm at 10 nm intervals. 
Samples of the dataset were divided into two odd and even groups to use 
them as training and testing sets, i.e., 635 specimens for learning and 
634 samples for fitting and testing sequences. 

The CIE XYZ tristimulus values of train and test samples were 
calculated under D65 standard illuminant and 1964 standard observer 
and used to fit models and make predictions. All computations were 
performed using the Python programming language. Sklearn library was 
used for KRR and SVR calculations, and the optimal hyperparameters for 
these two methods were selected using the Grid-search technique. In 
both SVR and KRR methodologies, the optimal kernel was radial basis 
function (RBF) kernel. It is necessary to clarify that, both KRR and SVR 
were constructed for a training set with a single output. It means that, 
models were trained for each wavelengths separately including all 
training data in the given wavelength. Consequently, the predictions 
were individually possible for each wavelength. More clearly, the visible 
spectrum, i.e. 400 to 700 nm, was divided in 31 equal narrow band-
widths and the model was trained 31 times and then, the prediction was 
made for 31 cases, independently. 

Results of the employed methods, i.e., PCA, SVR, and KRR, were 
spectrally compared to actual spectral reflectances of the test dataset by 
using the root mean square (RMS) error and the goodness fit coefficient 
(GFC), which is the cosine of the angle between the actual and recon-
structed spectra. For the colorimetric comparison, the CIE LAB color 
difference values under A and F11 light sources and 1964 standard 
observer were calculated to evaluate the performance of each method. 

4. Result and discussions 

Table 1 shows the reflectance reconstruction results of the test 
dataset for the employed methods in terms of RMS and GFC as well as 
ΔE*

ab color difference values. 
More details on RMS and GFC values are also shown in Fig. 1 in the 

Fig. 3. The eigenvectors corresponding to the top three eigenvalues using odd samples of Munsell spectral dataset.  

Table 2 
Fitting and prediction times of SVR and KRR (mean ± std. dev. Of 7 runs, 10 loop 
each).  

Method Fitting time per loop Prediction time per loop 

SVR 2.05 s ± 113 ms 1.92 s ± 16.9 
KRR 781 ms ± 76.4 ms 469 ms ± 84.1 ms  
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form of boxplot diagrams. 
Results of Table 1 and Fig. 1 show that both SVR and KRR methods 

have provided significantly better recovery performances than PCA. 
They totally yield smaller RMS and ΔE*

ab with higher GFC values. For a 
better demonstration of the results, the actual reflectance spectra of 18 
randomly selected samples and the corresponding reconstructed spectra 
by the employed methods are also shown in Fig. 2. 

As the plots of Fig. 2 show, the reconstructed spectra obtained from 
SVR and KRR do significantly differ from PCA reconstructed spectra and 
are apparently more accurate. The evidence is more evident for red and 
blue specimens that have relatively higher reflectance intensities in the 
short and long wavelength regions of the visible spectrum. The reason 
for this result can be interpreted from the spectral patterns of the 
extracted basic functions by the PCA that are shown in Fig. 3. As can be 
seen in the figure, the eigenvectors have slightly identical shapes in the 
range of 650 to 700 nm. Further, the color matching functions of stan-
dard observer show negligible spectral responses in this region. There-
fore, any spectral differences of samples within two ends of visible 
spectrum are minimized in calculation of the XYZ colorimetric values. 

However, the computational costs of SVR and KRR reconstruction 
methods should be considered in any evaluation, and it is a fact that the 
cost of both approaches are much higher than the PCA. Table 2 shows 
the computation times of proposed regression methods in the fitting and 
prediction stages. 

As Table 2 shows, the KRR is faster than SVR in both fitting and 
prediction steps for the employed dataset. Nevertheless, as mentioned 
before, the computation period could change depending on the size of 
the chosen dataset. 

5. Conclusion 

Three different methodologies, i.e., SVR, KRR and PCA were used to 
reconstruct the reflectance spectra of colored surfaces from the corre-
sponding CIE XYZ tristimulus values calculated under D65 standard 
illuminant and 1964 standard observer. The optimal hyperparameters of 
the SVR and KRR were chosen by the grid-search algorithm applied for 
reflectance reconstruction. RBF kernel was used for both kernel-based 
methods. Results were analyzed in terms of RMS and GFC and ΔE*

ab 
values. It was found that the SVR and KRR methods have led to more 
accurate results than the PCA approach. Both regression methods totally 
achieved similar responses and can be successfully used in spectral 
reconstruction. However, their computation times were significantly 
higher compared to the PCA method. Based on the results of this study, it 
could be concluded that the SVR and KRR methods are suitable alter-
native approaches for reconstruction of spectral data from colorimetric 
information. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 

Abed, F.M., Amirshahi, S.H., Abed, M.R.M., 2009. Reconstruction of reflectance data 
using an interpolation technique. J. Opt. Soc. Am. A 26, 613–624. 

Agahian, F., Amirshahi, S.A., Amirshahi, S.H., 2008. Reconstruction of reflectance 
spectra using weighted principal component analysis. Color Res. Appl. 33 (5), 
360–371. 

Amirshahi, S.H., Amirhahi, S.A., 2010. Adaptive non-negative bases for reconstruction of 
spectral data from colorimetric information. Opt. Rev. 17 (6), 562–569. 

Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and 
Other Kernel-based Learning Methods. Cambridge University Press. 

Drucker, H., Chris, K., Burges, L., Smola, A., Vapnik, V., 1997. Support vector regression 
machines. Paper presented at the meeting of the Advances in Neural Information 
Processing Systems 9. 

Eslahi, N., Amirshahi, S.H., Agahian, F., 2009. Recovery of spectral data using weighted 
canonical correlation regression. Opt. Rev. 16 (3), 296–303. 

Finland UoE. Spectral Database. https://sites.uef.fi/spectral/munsell-colors-matt- 
spectrofotometer-measured/. 

Harifi, T., Amirshahi, S.H., Agahian, F., 2008. Recovery of reflectance spectra from 
colorimetric data using principal component analysis embedded regression 
technique. Opt. Rev. 15 (6), 302–308. 

Hawkyard, C.J., 1993. Synthetic reflectance curves by additive mixing. J. Soc. Dye. 
Colour. 109 (10), 323–329. 

Heikkinen, V., Lenz, R., Jetsu, T., Parkkinen, J., Hauta-Kasari, M., Jääskeläinen, T., 2008. 
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