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a b s t r a c t 

Robust learning methods aim to learn a clean target distribution from noisy and corrupted training data 

where a specific corruption pattern is often assumed a priori. Our proposed method can not only success- 

fully learn the clean target distribution from a dirty dataset but also can estimate the underlying noise 

pattern. To this end, we leverage a mixture-of-experts model that can distinguish two different types of 

predictive uncertainty, aleatoric and epistemic uncertainty. We show that the ability to estimate the un- 

certainty plays a significant role in elucidating the corruption patterns as these two objectives are tightly 

intertwined. We also present a novel validation scheme for evaluating the performance of the corrup- 

tion pattern estimation. Our proposed method is extensively assessed in terms of both robustness and 

corruption pattern estimation in the computer vision domain. Code has been made publicly available at 

https://github.com/jeongeun980906/Uncertainty-Aware-Robust-Learning . 
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. Introduction 

In this paper, we focus on the problem of robust learning [5–

,37–39] with its emphasis on elucidating the corruption patterns 

n the noisy training dataset. Most existing robust learning studies 

6,9] assume that the label corruption pattern is solely a function 

f class information, also known as Class-Conditional Noise (CCN). 

hile this CCN assumption is simple to formulate, it may not be 

seful in practice in that it is more natural to assume that the 

oise pattern is a function of input instances which is often re- 

erred to as an Instance-Dependent Noise (IDN) learning problem 

10] . 

However, the original IDN learning problem is likely to be infea- 

ible in that it has to estimate a C × C class transition matrix per 

nput instance. Due to this intractability, recent work on the IDN 

etting focuses on a simple binary classification problem [11,12] or 

equires a small clean dataset [10] . To mitigate this issue, we cast 

he IDN problem into a two-stage problem of first partitioning the 

nput space using uncertainty measures and then estimating the 

abel transition matrix per each group, which will be referred to 

s a Set-Dependent Noise (SDN) learning problem. In particular, 
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 specific type of predictive uncertainty, named aleatoric uncer- 

ainty, is used to partition the input space. The clusters with high 

leatoric uncertainty can be viewed as collective outliers [13] , a 

ubset of inputs with a specific noise pattern. 

We would like to stress that robust learning and uncertainty 

stimation problems are intimately related to each other as robust 

earning deals with the noisy training data, which naturally gives 

ise to predictive uncertainty. The predictive uncertainty can be de- 

omposed into epistemic and aleatoric uncertainty. The former fo- 

uses on the reducible part of the uncertainty (model uncertainty), 

hich may come from the lack of training data. In contrast, the 

atter comes from the irreducible part (data uncertainty), such as 

he measurement noise. Our proposed method can estimate both 

ypes of uncertainty in a unified framework, and it plays a signifi- 

ant role in achieving robustness and estimating the SDN patterns. 

To this end, we utilize a mixture-of-experts model for classifica- 

ion tasks named mixture logit networks (MLN) and present an ef- 

ective training method to achieve both robustness and explainabil- 

ty by revealing the label corruption process. Although a mixture- 

f-experts method was first presented in the 80s, we show its 

ffectiveness on a robust learning framework with simple mod- 

fications and show that it can also estimate the noise distribu- 

ions as well. We first present an uncertainty estimation method 

or the MLN that can distinguish two different types of predictive 

ncertainties, epistemic (model) uncertainty and aleatoric (data) 
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ncertainty. Then, the estimated uncertainty is utilized for the 

ncertainty-aware regularization method. Intuitively speaking, un- 

ike a single deterministic model (e.g., a ResNet), using the MLN 

llows us to model multi-modal (and possibly noisy) target dis- 

ributions, which plays a crucial role in achieving both robustness 

s well as explainability. Furthermore, we present an evaluation 

cheme on SDN settings, which gives information about the col- 

ective outliers and label noise distribution of sets. 

The main contributions of this work are threefold. 1) We pro- 

ose a simple yet effective robust learning method leveraging a 

ixture-of-experts model on various noise settings. 2) The pro- 

osed method can not only robustly learn from noisy data but 

an also discover the underlying set-dependent noise pattern (i.e., 

he noise transition matrix) as well as the two types of predic- 

ive uncertainties (i.e., aleatoric and epistemic uncertainty) within 

he dataset. 3) Finally, we present a novel evaluation scheme for 

alidating the set-dependent corruption pattern estimation perfor- 

ance. 

. Related work 

In the context of robust learning, the label noise patterns can be 

oughly categorized into two groups, Class-Conditional Noise (CCN) 

nd Instance-Dependent noise (IDN) settings, based on which in- 

ormation the label corruptions are made. Note that the IDN set- 

ing is much more practical as it is more natural to assume that 

he label noise pattern is a function of inputs. Furthermore, the 

DN setting can inherently incorporate the CCN setting. Our pro- 

osed method can cope with both CCN and IDN settings. While 

ost of the robust learning literature focuses on simply estimat- 

ng the clean target distribution, a number of works have been re- 

ently made on achieving both robustness and the ability to esti- 

ate the label noise patterns. 

One possible approach is to extract a clean subset, then uti- 

ize the set to learn the clean target signal. Co-Teaching [6] utilizes 

wo separate networks (a teacher network and a student network) 

y teaching the student network using the teacher network. Co- 

eaching+ [8] extends Co-Teaching by further leveraging the dis- 

greement strategy. JoCoR [9] is based on Co-Teaching+, which uses 

 joint loss function of minimizing cross-entropy while maximizing 

he agreement between two networks to achieve better robustness. 

ivideMix [24] leverages a hybrid approach by fitting the loss us- 

ng a GMM to divide the dataset into the clean labeled set and 

oisy unlabeled set, then utilizes MixMatch [2] with divided sets 

or training two separate networks. WarPI [3] achieves its robust- 

ess by adaptively rectifying the training procedure for the classi- 

cation network within the meta-learning scenario. 

The other approach is learning the label transition matrix (noise 

atterns) from noisy data to estimate the clean-class posterior. F- 

orrection [7] estimates the noise transition matrix and applies it 

o loss function correction. Dual-T [17] incorporates a matrix fac- 

orization method to avoid directly estimating a noisy class pos- 

erior without any anchor points (i.e., clean data). Total variation 

egularization [18] effectively regularizes the predicted probability 

o be more distinguishable by restricting the total variance distance 

esulting in a better estimation of the noise transition matrix. 

The IDN setting is more practical than the CCN setting in that 

t is more natural to assume that the annotator gets confused by 

mbiguous instances leading to mislabeling. Only recently, a few 

apers have incorporated confidence estimation and noise tran- 

ition matrix prediction to handle confusing instances. However, 

ost of the work only uses the confidence estimation to robustly 

earn clean target distribution in instance-dependent noise set- 

ings. Cheng et al. [19] present confidence regularization to prevent 

verfitting in multi-class classification problems [19] . is further ex- 

ended in [21] by designing a sample sieve method to get clean in- 
2 
tances from the noisy dataset, using confidence regularized cross- 

ntropy loss. The confidence regularized method gives information 

bout the corruption of each instance but does not provide infor- 

ation about label noise patterns. Another approach is to estimate 

he noise transition matrix instance-wise to correct the loss func- 

ion. Part-dependent noise (i.e., PDN) was introduced by Xia et al. 

22] which approximates the transition matrix by the combination 

f transition matrices for each instance. Yang et al. [23] first col- 

ect a predicted clean set to learn the noise transition matrix and 

hen train a classifier with a corrected loss function based on the 

stimated noise transition matrix. 

Perhaps, the most similar setting to ours is [10] which intro- 

uced a confidence-scored Instance-Dependent Noise (IDN) set- 

ing; a label noise is given based on prior information about 

onfidence score by annotators. It uses both confident estima- 

ion and noise transition matrix estimation for robust learning. 

hen, the model utilizes the corrected loss function using the 

onfidence-based noise transition matrix. However, the proposed 

et-Dependent Noise (SDN) setting differs from the confidence- 

cored Instance-Dependent Noise (IDN) setting in that the anno- 

ators can divide the set by the ambiguity measure of each in- 

tance, making it more intuitive and straightforward. Furthermore, 

he proposed method directly estimates both corruption informa- 

ion and the noise distribution without the necessity of training 

ultiple networks. The categorization of robust learning papers is 

hown in Table 1 . 

The mixture-of-experts models have been widely used in ro- 

ust learning [5,27,28] . SsSMM [27] incorporates a student-teacher 

odel similar to MentorNet [6] , but employs a finite mixture mod- 

ls for student networks, updating via an EM algorithm [29] in 

emi-supervised manner. For robust learning for language domains, 

rie et al. [28] proposed a recurrent adaptive mixture model to 

epresent diverse outputs. ChoiceNet [5] utilizes a mixture density 

etwork to model the correlated outputs where the correlation be- 

ween the target and noisy distributions is estimated in an end-to- 

nd manner. Our proposed method is also based on a mixture-of- 

xperts model; however, a novel uncertainty-aware regularization 

ethod is presented. 

. Problem formulation 

.1. Training data generation process 

In this paper, we focus on the classification task of finding a 

apping from an instance x (e.g., an RGB image) to an output y 

e.g., an one-hot vector) where the input x and the output y are 

ampled from the input distribution p(x ) and the clean target dis- 

ribution p(y | x ) . We assume that some noise patterns can be in-

uced to both input and output where we denote ˜ x and 

˜ y as the 

orrupted input and output, respectively. The input noise pattern, 

˜ 
 ∼ p( ̃ x , x ) ,can be adding more blur to the instance so that the re-

ulting image is obscured or applying artificial manipulation to the 

mage (e.g., CutMix [30] ). 

Roughly speaking, the output corruption process can be divided 

nto twofold: the Class-Conditional Noise (CCN) and the Instance- 

ependent Noise (IDN) settings. For the CCN setting, it is assumed 

hat the training label information is corrupted via a single label 

ransition matrix T ∈ R 

C×C where C is the number of classes and 

 T ] i j = p(y j | y i ) is the probability of a label i being shifted to a la-

el j. For example, we can simply select a certain portion of the 

raining data and shuffle the labels uniformly randomly or shift 

he labels by assigning label 1 to 2, label 2 to 3, and so forth. In

he robust learning literature, the formal and the latter are often 

eferred to as symmetric and asymmetric noise patterns, respec- 

ively. On the other hand, the ICN assumes that the noise pattern 

s a function of an instance (i.e., T (x ) ∈ R 

C×C ). However, as a single
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Table 1 

Categorization of robust learning papers. 

Class-Conditional Noise (CCN) Instance-Dependent Noise (IDN) 

Robsut Learning [5,6,8,9,14–16,24] [10,19] 

+ Noise Transition Matrix Prediction [17,25] [22,26] , Ours 

Fig. 1. General process of the proposed method. 
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nstance can only have a single target label, it would be unrealistic 

o have the whole label transition matrix T per instance. 

Throughout this paper, a Set-Dependent Noise (SDN) setting is 

tilized where we assume that the training dataset is partitioned 

nto subsets where each subset contains its own label corruption 

atrices. This assumption is rather more practical in that it is 

ore natural to assume that the annotators will be more likely to 

ake mistakes on a specific subset consisting of hard instances. 

e would like to stress that our proposed method can estimate 

he label noise patterns in both CCN and SDN settings without the 

ecessity of additional clean data. 

.2. Robust learning and corruption pattern estimation 

The main objectives of the proposed method are twofold: the 

rst is to robustly learn the underlying clean target signal out 

f noisy training data, and the other is to gain the explainabil- 

ty of the prediction via estimating the label corruption informa- 

ion as well as the predictive uncertainty. Specifically, we disentan- 

le the total uncertainty into aleatoric and epistemic uncertainty 

imilar to Kendall et al. [31] and will be explained in the next 

ection. Aleatoric uncertainty corresponds to the irreducible part 

f the uncertainty, which is inherent in the data generation pro- 

ess (e.g., measurement noise). On the other hand, epistemic un- 

ertainty captures the model uncertainty, which may reduce as we 

ave more training data. 

With respect to the label corruption information, we estimate 

he Set-Dependent Noise (SDN) pattern of the training dataset 

ithout the necessity of a clean validation dataset. Note that the 

DN inherently handles the CCN as it can simply condition the 

hole data. Specifically, we estimate the label transition matrix 

onditioned on the subset of training of test data where the cor- 

uption rates and the noise patterns, symmetric or asymmetric, can 

e estimated from the transition matrix. 

. Proposed method 

We present a robust learning method via a mixture-of-experts 

odel for a classification task named mixture logit networks 

MLN) and a noise pattern estimation method utilizing the out- 

uts of the MLN. To fully utilize the multiple mixtures, we further 

ropose an uncertainty-aware regularization method. We empiri- 

ally show that this regularization method plays an influential role 
3 
n achieving both robustness and explainability. The intuition be- 

ind leveraging the mixture model is that, when given corrupted 

raining data, the noise pattern will give rise to the discrepancy 

f the prediction outputs, where a single deterministic model (e.g., 

 ResNet) often fails to correctly capture the clean target signal. 

owever, as a mixture model, when adequately trained, can better 

apture the inconsistent output patterns (including both clean and 

oisy distributions), it not only can robustly learn the underlying 

arget distribution but also can model the noise patterns injected 

n the data generating process. The overall process of the proposed 

ethod is illustrated in Fig. 1 . 

The MLN architecture is illustrated in Fig. 2 . Suppose that the 

umber of mixtures is K, then the MLN outputs consist of mixture 

eights { πk } K k =1 
, logits { μk } K k =1 

where μk ∈ R 

C and C is the number 

f classes, and Mixture standard deviations (Mixture STD) { σk } K k =1 
. 

ote that only the uppermost layer is modified. Hence the total 

umber of parameters does not change significantly. 

.1. Uncertainty estimation using the MLN 

We first present ways to estimate two types of uncertainties 

ith the MLN: epistemic (model) uncertainty and aleatoric (data) 

ncertainty. We denote σe as epistemic uncertainty and σa as 

leatoric uncertainty. Fist, epistemic uncertainty is computed as 

ollows. 

2 
e = 

K ∑ 

j=1 

⎛ ⎝ 

C ∑ 

c=1 

π j 

∥∥∥∥∥μ(c) 
j 

(x ) −
K ∑ 

k =1 

πk μ
(c) 
k 

(x ) 

∥∥∥∥∥
2 
⎞ ⎠ (1) 

here μc 
k 

is logit of label c in k th mixture. 

On the other hand, epistemic uncertainty ( σe ) indicates how 

uch the model is uncertain about its prediction. (1) corresponds 

o the weighted average variance of each mixture’s predicted log- 

ts, which can be seen as disagreements between { μk } K k =1 
.On the 

ther hand, aleatoric uncertainty ( σa ) is computed as follows. 

2 
a = 

K ∑ 

k =1 

πk σk (x ) (2) 

leatoric uncertainty captures noise inherent in observation and 

ow much the model is uncertain about its data. (2) indicates the 

eighted average of each mixture’s predicted STD of the given 

nput. Mixture STD { σk } K k =1 
denotes predicted noise by mixtures, 
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Fig. 2. The proposed mixutre of logit network architecture. 
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lso can be used as attenuation factor for loss function, similar to 

endal et al. [31] . 

.2. Mixture of the attenuated losses 

We present a Mixture of the Attenuated Cross-Entropy (MACE) 

oss for effectively training the MLN. We denote the target as y i , 

hich can either be clean or noisy (i.e., ˜ y i ) depending on the 

ataset. The proposed loss function consists of cross-entropy loss 

ivided by the standard deviation of each mixture (i.e., loss atten- 

ation) and then a weighted summation of the attenuated loss for 

ach mixture. Mixture standard deviation { σk } K k =1 
corresponds to 

he expected measurement noise of each instance. 

The MACE loss function is defined as follows: 

 MACE = 

1 

N 

N ∑ 

i =1 

K ∑ 

k =1 

πk (x i ) 
l( μk (x i ) , y i ) 

σk (x i ) 
(3) 

here l( μk (x i ) , y i ) is the cross entropy loss. 

If an input is ambiguous or corrupted, it becomes more likely to 

ake a false prediction. Then σk will increase to reduce the over- 

ll loss function of the prediction. As a result, this attenuated fac- 

or prevents the overfitting of the model to the corrupted dataset, 

aking the proposed model more robust. 

.3. Uncertainty-aware regularization method 

We observe that there could exist two possible problems when 

raining only with the original MACE loss function: a simple incre- 

ent of the mixture standard deviation will minimize the loss and 

he insufficient usage of mixtures. To resolve these issues, we pro- 

ose a novel regularization method utilizing predictive uncertainty 

easures. Let us first present the proposed loss function utilizing 

he uncertainty measures: 

 (D) = L MACE − λ1 σe + λ2 σa . (4) 

The first problem is that { σk } K k =1 
in (3) will simply grow to min-

mize the total loss. To prevent this, we need the regularization 

erm, { σk } K k =1 
. This is inspired by Kendall et al. [31] , where the loss

unction is based on the Gaussian likelihood and is the sum of at- 

enuated regression loss and regularization of { σk } K k =1 
. We present 

 parameter λ2 as a weight. 

Next, it is known that the mixture-of-experts model is prone to 

se only one or few components, incapable of capturing the var- 

ous data distributions. Moreover, we observe that different mix- 

ures are easily agreeable with each other, which is inappropriate 

o represent a multi-modal distribution. Due to this property, the 
4 
hole model often fails to learn both clean and corrupted data dis- 

ribution, leaving the model vulnerable to noisy data. To this end, 

e regularize epistemic uncertainty to be large, which naturally 

ncentives to utilize more mixtures where λ1 is the weight param- 

ter. 

We illustrate effect of this regularizer in Fig. 3 . The synthetic 

ataset consists of two-dimensional inputs (i.e., x 0 and x 1 ) for a 

inary classification problem where we assign label 0 to instances 

n the upper moon and label 1, otherwise. We corrupt the label 

nformation by flipping the labels at the rate of 30% and train- 

ng the MLN with three mixtures. In the first column, we illustrate 

he clean half-moon dataset, noisy half-moon dataset, and decision 

oundary trained by the clean half-moon dataset. The second and 

hird columns present the effect of the regularizer. The first row 

resents the estimated flipping rate, computed from (14) , which 

ill be discussed in the later section. The result indicates that the 

roposed regularizer helps the better prediction of the noise dis- 

ribution. The second row of Fig. 3 shows that the output of each 

ixture disagrees with each other, making a better representation. 

urthermore, the third row illustrates that the proposed regularizer 

mooths the decision boundary in the presence of outliers. 

.4. Corruption pattern estimation 

We further use the output of the MLN to gain information 

bout the noise corruption pattern. This can be done by estimat- 

ng the noise transition matrix. The noise transition matrix T i j (x ) 

17,25] indicates the probabilities of the clean labels flipping to 

oisy labels. The notation represents the probability that the in- 

tance x with the clean label y = i will have a noisy label ˜ y = j.

ormally, the noise transition matrix is defined as follows. 

 i j (x ) = P ( ̃  y = j| y = i, x ) (5)

Capturing multi-modality is one of the strengths that the mix- 

ure model possesses. This property leads the MLN to model a 

ulti-modal distribution on a noisy instance, representing both the 

lean and noisy label distribution. As the label corruption patterns 

an be regarded as a multi-modal distribution, we introduce an 

uxiliary random variable z to estimate the noise transition matrix. 

 i j (D l ; z) = 

1 

|D l (i ) | 
∑ 

x ∈D l (i ) 

P ( ̃  y = j| x ) (6) 

ere, D l denotes the set indexed l and D l (i ) = { x | y = i, (x , y ) ∈ D l } .
or SDN setting set index can be 0 (clean) or 1 (ambiguous) and 



J. Park, S. Shin, S. Hwang et al. Pattern Recognition 138 (2023) 109387 

Fig. 3. Effect of the Regularizer On half-moon dataset. 

Fig. 4. Noise Transition Matrix on MNIST. 
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or CCN set index will be 0 (total). 

 i j (D l ; z) = 

1 

|D l (i ) | 
∑ 

x ∈D l (i ) 

K ∑ 

k =1 

P (z = k ) P ( ̃  y = j| z = k, x ) (7) 

here K is total number of mixtures, z is latent variable, and P (z =
 ) is weight of component distribution denoted as πk above. 

Starting from (7) , we denote the ̂ P (y | x ) as the soft-max out-

ut vector approximating P (y | x ) by parametrized model and es- 

imator for the noise transition matrix as ̂ T . In addition, since 

e cannot observe clean y , we assume y as Bayes optimal la- 
5

els, the class labels that maximize the clean class posteriors 
ˆ f (x ) := argmax 

y 

ˆ P (y | x ) . Furthermore, we define a subset ̂ D l (i ) with

he Bayes optimal label index i in the set ̂ D l , as we do not have

ny prior knowledge about the clean y . 

̂ 

 l (i ) = { x | ̂  f (x ) = i, x ∈ D l } (8)

hen, the (7) can be modified as follows. 

 

 i j (D l ; z) = 

1 

| ̂  D l (i ) | 
∑ 

x ∈ ̂  D l (i ) 

K ∑ 

k =1 ̂

 P (z = k ) ̂  P ( ̃  y = j| z = k, x ) (9) 
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Fig. 5. Noise Transition Matrix on CIFAR10. 
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he Lemma 4.1 shows (9) is a valid transition matrix, since the 

ow-wise sum of predicted transition matrix becomes one. 

emma 4.1. The row wise sum of the proposed transition matrix es- 

imation in (9) becomes one. 

C 
 

j=1 ̂

 T i j (D l ; z) = 1 (10) 

roof. The row wise sum of the proposed estimated noise transition 

atrix becomes as follows. 

C 
 

j=1 ̂

 T i j (D l ; z) = 

C ∑ 

j=1 

1 

| ̂  D l (i ) | 
∑ 

x ∈ ̂  D l (i ) 

K ∑ 

k =1 ̂

 P (z = k ) ̂  P ( ̃  y = j| z = k, x ) 

(11) 

ince j is not dependent to | ̂  D l (i ) | and ̂ P (z = k ) , the equation can be

ewritten as follows. 

C 
 

j=1 ̂

 T i j (D l ; z) = 

1 

| ̂  D l (i ) | 
∑ 

x ∈ ̂  D l (i ) 

K ∑ 

k =1 ̂

 P (z = k ) 
C ∑ 

j=1 ̂

 P ( ̃  y = j| z = k, x ) 

(12) 

y the definition of the categorial distribution and mixture weight, 
 C 
j=1 ̂

 P ( ̃  y = j| z = k, x ) = 1 and 
∑ K 

k =1 ̂
 P (z = k ) = 1 . 

C 
 

j=1 ̂

 T i j (D l ; z) = 

1 

| ̂  D l (i ) | 
∑ 

x ∈ ̂  D l (i ) 

1 = 1 (13) 

s we define the set ̂ D l (i ) as (8) , the proposed noise transition matrix

olds 
∑ C 

j=1 ̂
 T i j (D l ; z) = 1 . �

As the confidence of the softmax-output decreases on the noisy 

ataset, the predicted transition matrix often suffers from being 

oo smooth. To better estimate the noise transition matrix, inspired 

y Liang et al. [32] , we apply temperature scaling for the softmax 

ctivation. We set the temperature to zero, which makes the soft- 

ax function an indicator function, driving to the predicted noise 

ransition matrix inherent to the confidence score. ˆ P scaled is defined 

s follows. 

ˆ 
 scaled ( ̃  y = j| z = k, x ) = I j ( argmax 

c 

ˆ P ( ̃  y = c| z = k, x )) (14)
6 
The scaled transition matrix is defined by replacing ˆ P to ˆ P scaled 

n (9) . 

. Experiments 

In this section, we present experimental results of validating 

he robustness of the proposed method. We first describe the im- 

lementation details for experiment settings, including datasets, 

orruption patterns, and hyperparameters. Next, we present the re- 

ults in the CCN setting and compare them with benchmarks. Fur- 

hermore, we utilize the estimated uncertainty measures to distin- 

uish the collective outliers in the SDN settings, where the noise 

ransition matrices of each partition are estimated and compared 

ith the ground truth. 

.1. Implementation details 

Class-Conditional Noise (CCN) Setting We first construct a Class- 

onditional Noise (CCN) dataset with clean instances and noisy la- 

els whose corruption rate is solely a function of class informa- 

ion. We evaluate the proposed method on four different datasets, 

NIST, CIFAR10, and CIFAR100. These datasets are popularly used 

or evaluating the robustness of the image classification algo- 

ithms. Following JoCoR [9] , we conduct experiments on four dif- 

erent label corruption patterns: Symmetry-20%, Symmetry-50%, 

ymmetry-80%, and Asymmetry-40%. 

Set-Dependent Noise (SDN) setting 

A Set-Dependent Noise (SDN) setting is utilized where the 

ataset is partitioned into two subsets: clean set and ambiguous 

et. In particular, we define an ambiguous set as a set contain- 

ng a pair of corrupted instances and noisy labels. We experiment 

n two different datasets: Dirty-MNIST and Dirty-CIFAR10. Dirty- 

NIST, proposed by Mukhoti et.al. [33] is formed as the union 

f MNIST set and Ambiguous-MNIST set. Ambiguous MNIST con- 

ains corrupted instances where it has multiple plausible labels 

ut contains only one GT label. To conduct set-dependent noise on 

he Dirty-MNIST dataset, we added label noise on the Ambiguous- 

NIST set. We validate on four different label noise patterns: 

ymmetry-20%, Symmetry-50%, Symmetry-80%, and Asymmetry- 

0%. We define the Dirty-CIFAR10 dataset, which contains half of 

he original CIFAR10 dataset and the other half ambiguated with 
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Table 2 

MNIST Test Accuracy in CCN setting. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Noise Adaptation [1] 89.0 ± 0.05 98.75 ± 0.05 14.08 ± 0.59 60.08 ± 0.01 

F-correction [7] 98.37 ±0.28 95.70 ±0.6 85.33 ±2.28 95.19 ±1.29 

Co-teaching [6] 99.08 ±0.04 98.19 ±0.09 85.26 ±0.11 96.69 ±0.70 

Co-teaching + [8] 99.00 ±0.10 98.83 ±0.11 86.24 ±0.16 98.65 ±0.18 

JoCoR [9] 99.20 ±0.07 98.76 ±0.06 86.00 ±0.15 98.46 ±0.21 

MLN (ours) 98.97 ±0.01 98.32 ±0.01 93.49 ± 0.21 97.13 ±0.10 
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1 We call Dual for two mislabeled classes and Tridiagonal for three mislabeled 

classes 
he CutMix [30] method. We choose the CutMix method to main- 

ain the scheme that samples on ambiguous sets should have mul- 

iple possible labels but has one GT label. Again, to form the SDN 

etting, we added label noise on the ambiguous set. 

Hyperparameters 

We use a three-layer CNN for MNIST and a seven-layer CNN 

or both CIFAR10 and CIFAR100 following JoCoR [9] . For the Cloth- 

ng1M dataset, we use ResNet50 as a backbone. We set the batch 

ize as 128 and use an Adam optimizer with the learning rate 10 −3 

nd train the model with 200 epochs for CIFAR10, CIFAR100, and 

0 epochs for MNIST. The learning rate is decayed 0.2 times for 

very ten epochs for CIFAR10, and CIFAR100 and 0.2 decay rate for 

very five epochs on the MNIST dataset. On Clothing1M, we use 

 SGD optimizer with a learning rate of 10 −3 , decaying 0.1 times 

or every 30 epochs. The weight decay rate is set to 10 −3 , and we

rain the model for 80 epochs. We set the minimum of { σk } K k =1 
s one and maximum as ten by using a sigmoid function except 

or the IDN setting and MLN+MixUp on Section 5.2.3 . In these set- 

ings, where { σk } K k =1 
is set the minimum as 0.1 and maximum as 

. In addition, we set the number of the mixtures to be 20 for all

xperiments, which should be large enough to cover all the noise 

istribution. In addition, when using MixUp [4] augmentation, we 

une α as four. Furthermore, we set regularizer hyperparameters 

s λ1 = 1 , λ2 = 1 except for CIFAR100, where we scale the param-

ter to λ1 = 0 . 1 , λ2 = 1 , and the IDN setting where λ1 = 10 . Reg-

larizer parameters are selected using cross-validation results. On 

ross-validation, we assume there exists a small clean set and use 

0% of the clean test set as the validation set. 

.2. Class-Conditional noise (CCN) setting 

This section first shows the robust learning performance of 

NIST, CIFAR10, and CIFAR100 in CCN settings and compares them 

ith supervised-learning methods. Next, we prove the validity of 

he estimated noise transition matrix on the CCN setting. Further- 

ore, as state-of-the-art models deploy semi-supervised methods 

o deal with noisy labels, we combine the proposed method with 

 semi-supervised method to observe the effectiveness of the pro- 

osed method. 

.2.1. Robust learning accuracy 

We conduct robust learning experiments with the Class- 

onditional Noise (CCN) setting to investigate the performance of 

he MLN. We evaluate the test accuracy on four datasets with 

our different noise patterns and compare with Noise Adaptation 

1] , F-correction [34] , Co-teaching [6] , Co-teaching+ [8] and JoCoR 

9] . The test accuracy on MNIST is shown in Table 2 . The pro-

osed method outperforms on the Symmetry-80% setting, and on 

ther noise settings, it is compatible with the compared meth- 

ds. However, the results on CIFAR10 in Table 3 show that our 

ethod outperforms the compared methods on Symmetry-80% 

nd Asymmetry-40%, with the second-best performance on other 

oise patterns. Furthermore, Table 4 presents the test accuracy on 

IFAR100 dataset. The MLN outperforms on Symmetry-80% and 

symmetry-40% noise patterns and performs second-best on the 
7

est of the noise patterns. We would like to note that the pro- 

osed method shows its strengths in heavy corruptions, such as 

ymmetry-80% and Asymmetry-40%. The proposed method shows 

 significant performance margin on large corruption rates, such as 

ymmetry-80% and Asymmetry-40%. 

.2.2. Noise transition matrix estimation 

In this section, we evaluate the noise transition matrix esti- 

ation on the Class-Conditional Noise (CCN) setting. We estimate 

he noise transition matrix using (14) , which is an anchor-free 

ethod that does not require a clean validation set. We evalu- 

te the noise transition matrix on MNIST and CIFAR10 datasets 

ith Symmetry-20%, Symmetry-50%, Symmetry-80%, Asymmetry- 

0%, Dual-40%, and Tridiagonal-60% noise patterns 1 . 

We report the average total variation (ATV) and Kendall Tau 

ank distance (KTD) [35] to evaluate the transition matrix estima- 

ion, which are defined as follows: 

verage total variance = 

1 

C 

C ∑ 

i =1 

1 

2 

C ∑ 

j=1 

| T i j − ˆ T i j | (15) 

verage Kendall Tau Distance = 

1 

C 

C ∑ 

i =1 

∑ 

j,k 

K̄ j,k (t i , ̂  t i ) (16) 

here t i denotes for i -th row vector of transition matrix T and 

ˆ t i 
or i -th row vector of ̂ T . 

The function K̄ for two arbitrary vectors t 1 and t 2 is defined as 

ollows: 

¯
 j,k (t 1 , t 2 ) = 

{
0 if j and k are in same order of ranking 
1 if not 

(17) 

he total variance is an average l1 norm between two matrices, 

hich denotes the absolute difference between the estimated and 

round-truth matrices. Kendall-tau rank distance is defined as a 

etric that counts the number of pairwise disagreements between 

wo ranking lists, which means comparing the ranking of two ma- 

rices. 

We measure ATV and KTD with comparison to Noise Adap- 

ation [1] . We set compared method to Noise Adaptation since 

t estimates the noise transition matrix per image, which can 

e further expanded to Set-Dependent Noise (SDN) settings on 

ection 5.3.3 . The result is shown in Table 5 , indicating that the 

roposed method outperforms the compared method except for CI- 

AR10 Asymmetry-40% with ATV. However, the proposed method 

utperforms on KTD measure, meaning that the proposed method 

aptures the rank of the ground-truth noise transition matrix more 

recisely. 

.2.3. Comparison with semi-supervised method 

For combating noisy labels, the state-of-the-art methods deploy 

emi-supervised methods with additional augmentation methods, 
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Table 3 

CIFAR10 Test Accuracy in CCN setting. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Noise Adaptation [1] 82.03 ± 0.1 39.88 ± 0.21 10.0 ± 0.0 72.44 ± 0.1 

F-correction [7] 68.74 ±0.20 42.71 ±0.42 15.88 ±0.42 70.60 ±0.40 

Co-teaching [6] 78.23 ±0.27 71.30 ±0.13 26.58 ±2.22 73.78 ±0.22 

Co-teaching + [8] 78.71 ±0.34 57.05 ±0.54 24.19 ±2.74 68.84 ±0.20 

JoCoR [9] 85.73 ±0.19 79.41 ±0.25 27.78 ±3.06 76.36 ±0.49 

MLN (ours) 84.20 ±0.05 77.88 ±0.07 41.83 ±0.10 76.62 ±0.07 

Table 4 

CIFAR100 Test Accuracy in CCN setting. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Noise Adaptation [1] 30.14 ± 0.09 2.83 ± 0.05 1.0 ± 0.0 22.23 ± 0.1 

F-correction [7] 37.95 ±0.10 24.98 ±1.82 2.10 ±2.23 25.94 ±0.44 

Co-teaching [6] 43.73 ±0.16 34.96 ±0.50 15.15 ±0.46 28.35 ±0.25 

Co-teaching + [8] 49.27 ±0.03 40.04 ±0.70 13.44 ±0.37 33.62 ±0.39 

JoCoR [9] 53.01 ±0.04 43.49 ±0.46 15.49 ±0.98 32.79 ±0.35 

MLN (ours) 51.60 ±0.08 42.22 ±0.07 19.88 ±0.14 36.36 ±0.10 

Table 5 

Evaluation of Noise Transition Matrix ATV in CCN setting (average total varia- 

tion)(x100), KTD(Kendall-Tau distance). 

Noise Adaptation [1] MLN(Ours) 

Noise Rate ATV KTD ATV KTD 

MNIST 

Symmetry-20% 22.19 0.4472 15.40 0.4472 

Symmetry-50% 48.67 0.4472 8.46 0.4472 

Symmetry-80% 3.41 0.4472 2.33 0.4472 

Asymmetry-40% 13.36 0.5237 10.19 0.5349 

CIFAR10 

Symmetry-20% 23.15 0.4472 20.71 0.4472 

Symmetry-50% 34.36 0.4472 9.69 0.4472 

Symmetry-80% 6.86 0.4472 5.85 0.4472 

Asymmetry-40% 14.18 0.5236 16.81 0.4948 
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.g., Dividemix [24] . On the other hand, the proposed method fo- 

uses on robust architecture and loss function to deal with this 

roblem. As mentioned in Xia et al. [20] , to make the compari- 

on fair, we combine our method with semi-supervised learning. 

aking the architecture and loss function robust to label noise in 

 semi-supervised framework will prevent the model from learn- 

ng the wrong target signal when the estimated clean set is still 

oisy. 

Instead of a linear classification head, we added a Mixture of 

ogit network heads to predict the label. To fit per-sample loss dis- 

ribution, we set the selection function as follows 

 (θ ) = { � i } N i =1 = { 
C ∑ 

c=1 

p( ̃  y = c| x ) log ( ̂  p (y = c| x , z = k ; θ )) } (18)

here k = arg max k p(z = k | x ; θ ) . 

In addition, for making the pseudo-label, we replace 

p model (x ; θ ) as ˆ p (y = c| x , z = k ; θ ) where k = arg max k p(z = k | x ; θ ) .

or updating the model, we replace cross-entropy loss in labeled 
Table 6 

Comparison with SSL. 

Method Symmetry-2

CIFAR10 

DivideMix [24] 85.06 ± 0.09

MLN (Ours) 84.20 ± 05 

MLN (Ours) + MixUp [4] 87.77 ±0.08 

MLN + DivideMix [24] 86.82 ± 0.16

CIFAR100 

DivideMix [24] 62.29 ± 0.17

MLN (Ours) 51.60 ± 0.08

MLN (Ours) + MixUp [4] 55.15 ±0.22 

MLN (Ours) + DivideMix [24] 62.70 ± 0.05

8 
et with the mixture cross-entropy loss function with epistemic 

ncertainty regularizer. The labeled loss is as follows: 

 X = − 1 

| ˆ X 

′ | 
∑ 

(x ,y ) ∈ ̂  X ′ 

[ 

K ∑ 

k =1 

ˆ p (z = k ) 
C ∑ 

c=1 

y c log ( ̂  p (y = c| x , z = k ; θ ) − λ · σe ) 

] 

(19) 

here σe is same as Eq. 1 and we set λ = 1 . We did not learn

he { σi } K i =1 
in this architecture. This is because as the DivideMix 

24] framework first has a warm-up phase with a noisy set and 

hen divides the set with an estimated clean labeled set, learning 

 σi } K i =1 
will be unstable as the training set becomes relatively clean 

fter warm-up phase during training. 

The clean test set accuracies in CIFAR10 and CIFAR100 datasets 

re shown in Table 6 . First of all, we observe that using additional

ata augmentation and regularizer like MixUp [4] would lead to 

 performance increase. In addition, on the CIFAR10 dataset, we 

ound out that the hybrid method of DivideMix and MLN out- 

erforms naive DivdeMix with the gap of 1.66%, 3.58%, 11.67%, 

.08% for each noise setting. In the CIFAR100 dataset, the proposed 

ethod outperforms DivideMix except for the Symmetry-50% noise 

ate. In Table 7 , we measure the AUROC of the partitioning clean 

abeled set and noisy unlabeled set during training. We observe 

hat when the noise is heavy, DivideMix fails to divide the clean 

et. If we use DivideMix with MLN, then the model tends to learn 

obustly even when the estimated clean sets are still dirty. We 

ound out that this property leads to better performance. 

.3. Set-Dependent noise (SDN) setting 

In this section, we show the effectiveness of the MLN on SDN 

ettings. We use the Dirty-MNIST and Dirty-CIFAR10 datasets ex- 

lained in Fig. 6 . These datasets contain a clean set and an am- 
0% Symmetry-50% Symmetry-80% Asymmetry-40% 

 85.08 ± 0.09 53.24 ± 0.41 76.32 ± 0.17 

77.88 ± 0.07 41.83 ± 0.10 76.72 ±0.11 

84.59 ±0.09 42.38 ±0.21 75.35 ±0.12 

 88.76 ± 0.11 64.91 ± 0.3 82.40 ± 0.21 

 58.17 ± 0.16 40.28 ± 0.17 46.83 ± 0.21 

 42.22 ±0.07 19.88 ±0.14 36.36 ±0.10 

46.75 ±0.17 26.17 ±0.21 41.38 ±0.19 

 57.68 ± 0.13 40.55 ± 0.24 49.22 ± 0.34 
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Table 7 

AUROC of Dividing Train set on CIFAR10. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

DivideMix [24] 0.979 0.982 0.635 0.872 

MLN + DivideMix 0.987 0.977 0.909 0.934 

Fig. 6. Example of Set-Dependent Noise Dataset. The arrows denote the label corruption. 

Table 8 

Dirty-MNIST Test Accuracy in SDN setting. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Noise Adaptation [1] 79.17 ± 0.02 89.31 ± 0.03 89.14 ± 0.02 79.12 ± 0.02 

F-correction [7] 99.17 ± 0.04 99.14 ± 0.04 99.18 ± 0.04 99.26 ± 0.02 

Co-teaching [6] 99.32 ± 0.02 99.04 ± 0.03 90.93 ± 0.57 98.68 ± 0.07 

Co-teaching + [8] 98.67 ± 0.06 99.00 ± 0.06 99.06 ± 0.07 98.78 ± 0.08 

JoCoR [9] 98.81 ± 0.06 98.13 ± 0.01 98.09 ± 0.0 98.77 ± 0.03 

DivdeMix [24] 98.11 ± 0.01 98.46 ± 0.01 98.81 ± 0.0 97.94 ± 0.01 

MLN (ours) 99.26 ± 0.01 99.45 ± 0.01 99.40 ± 0.02 99.31 ± 0.01 

Table 9 

Dirty-CIFAR10 Test Accuracy in SDN setting. 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Noise Adaptation [1] 72.35 ± 0.06 62.94 ± 0.13 72.29 ± 0.13 72.5 ± 0.09 

F-correction [7] 81.55 ± 0.27 77.93 ± 0.4 79.74 ± 0.24 82.73 ± 0.15 

Co-teaching [6] 87.64 ± 0.12 83.09 ± 0.13 56.08 ± 0.14 81.33 ± 0.11 

Co-teaching + [8] 86.02 ± 0.11 84.89 ± 0.16 71.55 ± 0.06 85.96 ± 0.19 

JoCoR [9] 87.75 ± 0.08 82.72 ± 0.08 48.19 ± 0.07 87.46 ± 0.05 

DivideMix [24] 80.10 ± 0.11 84.46 ± 0.15 85.34 ± 0.15 73.72 ± 0.1 

MLN (ours) 86.24 ± 0.06 86.59 ± 0.07 87.45 ± 0.05 87.79 ± 0.04 
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iguous set, where an ambiguous set is composed of ambiguous 

nstances with corrupted labels. We first show that the robust 

earning performance on the SDN setting outperforms the previ- 

us method, including a semi-supervised method with an addi- 

ional regularizer like DivideMix [24] . Next, we validate proposed 

ncertainty measure can partition the clean and ambiguous set. 

hird, we evaluate the estimated noise transition matrix as well. 

inally, we experiment on the Instance-Dependent Noise setting, 

hich can be seen as an extreme case of the Set-Dependent Noise 

etting where the number of the set is the same as the number of 

nstances. 

.3.1. Robust learning accuracy 

First, we evaluate the accuracy of clean test set of Dirty-MNIST 

ataset and Dirty-CIFAR10 dataset, shown in Table 8 and 9 respec- 

ively. We observe that the proposed method outperforms com- 

ared methods except for Symmetry-20% noise rate, where the 

oise ratio is small. We would like to emphasize that the pro- 

osed method works better than the semi-supervised method like 

ivideMix [24] even without any data augmentation like MixUp 
9 
4] or MixMatch [2] . This is because, in the SDN setting, the model 

as to be robust not only to label corruption but also to noisy in- 

ut as well. MLN obtains its robustness on both label corruption 

nd input noise by mixture-of-experts architecture and its uncer- 

ainty. We would like to emphasize that MLN has its strength in 

obust learning on the corruption of output is dependent on qual- 

ty of input. SDN setting can be more practical in that it is more 

atural to assume that the annotators will be more likely to make 

istakes on a specific subset consisting of hard instances. 

.3.2. Partitioning sets 

Next, we show the ability of the proposed method to parti- 

ion the dataset leveraging aleatoric uncertainty estimated from 

he MLN. In particular, the collective outliers, partitions of training 

ata with corrupted labels, are well captured via aleatoric uncer- 

ainty. 

We measure AUROC of partitioning two sets, compared with 

oise Adaptation [1] and state-of-the-art method DivideMix [24] . 

etric for partitioning set on Noise Adaptation [1] is KL divergence 

etween identity matrix and instance wise estimated noise transi- 



J. Park, S. Shin, S. Hwang et al. Pattern Recognition 138 (2023) 109387 

Table 10 

Measured AUROC for Partioning Sets. 

Noise Rate Noise Adaptation [1] DivideMix [24] MLN (Ours) 

Dirty MNIST 

Symmetry-20% 0.3549 0.8859 0.9895 

Symmetry-50% 0.5778 0.9161 1.0000 

Symmetry-80% 0.5544 0.9269 1.0000 

Asymmetry-40% 0.3901 0.8714 0.9895 

Dirty CIFAR10 

Symmetry-20% 0.5396 0.6017 0.9061 

Symmetry-50% 0.8353 0.6378 0.9924 

Symmetry-80% 0.9932 0.6751 0.9985 

Asymmetry-40% 0.4500 0.5085 0.7117 

Fig. 7. Aleatoric uncertainty along each label on Dirty MNIST and Dirty CIFAR10. 
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ion matrix, since the estimated noise transition matrix of clean 

nstances will be close to identity matrix if trained properly. In 

ddition, we use soft-max entropy as a metric on DivideMix [24] . 

he result are shown in Table 10 . We have found out that the pro-

osed aleatoric uncertainty measure outperforms all of the com- 

ared methods, indicating that aleatoric uncertainty from MLN is 

alid for capturing collective outliers in the noisy datasets. 

Fig. 7 shows the average of aleatoric uncertainty for both clean 

nd ambiguous sets among each class. The result first shows that 

he aleatoric uncertainty is higher in ambiguous instances. Further- 

ore, shown in the symmetric noise cases, a heavy label corrup- 

ion rate leads to higher aleatoric uncertainty. Finally, Dirty-MNIST 

ith Asymmetry-40% label noise case shows that aleatoric uncer- 

ainty increases in the corrupted labels compared to clean labels 

n ambiguous instances. This demonstrates that both corruption in 

nstances and corruption in the label are related to aleatoric uncer- 

ainty. 

.3.3. Noise transition matrix estimation 

We then examine the ability of our method to estimate noise 

ransition matrices per each group where we partition the train- 

ng data into multiple sets using the predicted aleatoric uncer- 

ainty in Section 5.3.2 . We first evaluate Average total variance and 

endall-Tau distance on estimated ambiguous set comparing with 

oise-Adaptation [1] and DivideMix [24] same as Section 5.3.2 . 

or Noise-Adaptation [1] , we average the estimated noise transi- 

ion matrix on the estimated set. For DivideMix [24] we average 

he softmax output to obtain the estimated noise transition ma- 

rix since the softmax output can be seen as a confidence score 

hat can be interpreted as a noise ratio. We cannot use a confusion 

atrix for this setting because the noise transition matrix is esti- 

ated on an unseen test set. The noise transition matrix is defined 

s follows: 
10 
 

DivideMix 
i, j = 

ˆ P (y = j| x , f (x ) = i ) (20) 

here f (x ) is a prediction, ˆ P is a soft-max output. 

The experimental results shown in Table 11 . Except for 

ymmetry-20% on the Dirty-MNIST dataset, the proposed method 

utperforms the compared method. The gap increases as the noise 

atio increases since other methods have a tendency to have over- 

onfident estimates even if the noise ratio is high. 

Furthermore, the estimated noise transition matrix is illustrated 

n Fig. 8 and 9 on the Dirty-MNIST and Dirty-CIFAR10 datasets 

espectively. Each quarter of the figure denotes a single experi- 

ent for each corruption pattern, with the upper and lower rows 

howing the predicted noise transition matrix and the ground 

ruth, respectively. Here, clean labels on the ambiguous set de- 

ote the ground-truth label of each instance after ambiguating 

he instances. We can see that our proposed method is able to 

orrectly estimate the noise transition matrix for both clan and 

mbiguous sets in terms of a row-wise ranking manner. Further- 

ore, Fig. 9 suggests that our proposed method can also capture 

he noise-induced in inputs (i.e., CutMix [30] ). In other words, the 

mages of cats are cut-mixed with the images of dogs (and vice 

ersa), and these corruption patterns are well captured by the 

oise transition matrix. 

.3.4. Instance-dependent noise 

We further experiment on the Instance-Dependent Noise set- 

ing, which can be seen as an extreme version of the Set- 

ependent Noise (SDN) setting where the number of the set is the 

ame as the number of instances. We measure clean test accuracy 

n noise ratio of 20% and 40% on MNIST and CIFAR10 datasets, re- 

pectively. The result are shown in Table 12 . 

We observe that MLN with MixUp augmentations has a sig- 

ificant performance increase compared to MLN without any ad- 
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Table 11 

Evaluation of Noise Transition Matrix on SDN setting only with estimated ambiguous set Average total 

variation(x100)(Kendall-Tau distance). 

Method Symmetry-20% Symmetry-50% Symmetry-80% Asymmetry-40% 

Dirty MNIST 

Noise Adaptation [1] 
25.68 45.83 73.11 25.42 

(0.4472) (0.4472) (0.4472) (0.5164) 

DivideMix [24] 14.00 21.12 46.88 33.02 

(0.4472) (0.4472) (0.4472) (0.4875) 

MLN (Ours) 22.43 13.70 7.99 21.63 

(0.4472) (0.4472) (0.4472) (0.5326) 

Dirty CIFAR10 

Noise Adaptation [1] 29.22 49.29 66.26 20.15 

(0.4472) (0.4472) (0.4472) (0.5230) 

DivideMix [24] 17.74 19.06 46.12 33.60 

(0.4472) (0.4472) (0.4472) (0.5237) 

MLN (Ours) 21.14 14.59 7.94 18.93 

(0.4472) (0.4472) (0.4472) (0.5090) 

Fig. 8. Noise Transition Matrix on Dirty-MNIST. 

11 
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Fig. 9. Noise Transition Matrix on Dirty-CIFAR10. 

Table 12 

Instance-Dependent Noise (IDN) Setting. 

MNIST CIFAR10 

Noise Rate 20% 40% 20% 40% 

Noise Adaptation [1] 99.24 ± 0.03 91.03 ± 0.86 68.9 ± 0.2 45.8 ± 0.14 

F-correction [7] 89.65 ± 1.54 68.66 ± 0.68 71.84 ± 2.74 48.58 ± 1.43 

Co-teaching [6] 98.03 ± 0.31 95.31 ± 0.49 82.5 ± 0.11 61.33 ± 0.28 

Co-teaching + [8] 98.57 ± 0.14 98.58 ± 0.07 85.79 ± 0.16 33.76 ± 0.11 

JoCoR [9] 98.94 ± 0.11 98.46 ± 0.25 85.45 ± 0.14 55.88 ± 0.23 

DivdeMix [24] 99.05 ± 0.03 98.97 ± 0.03 83.77 ± 0.27 61.03 ± 2.01 

MLN (ours) 98.36 ± 0.0 92.65 ± 0.01 77.18 ± 0.23 55.38 ± 0.11 

MLN + MixUp (ours) 98.58 ± 0.03 96.44 ± 0.12 85.09 ± 0.58 61.44 ± 0.16 

12 
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Table 13 

Clothing 1M Test Accuracy. 

Noise Adaptation [1] F-correction [7] Co-teaching [6] Co-teaching + [8] JoCoR [9] MLN (ours) 

67.3 ± 0.12 68.0 ± 0.10 70.33 ± 0.12 68.85 ± 0.35 71.92 ± 0.14 71.56 ± 0.05 

Fig. 10. Clothing1M test set samples with low aleatoric uncertainty (left) and high aleatoric uncertainty (right). Pred denotes the predicted label and GT for the ground-truth 

label. ’A’ denotes aleatoric uncertainty, and ’E’ denotes epistemic uncertainty. 
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itional augmentations. Although the proposed method does not 

utperform on noise settings except for CIFAR10 40%, the gap is 

mall. At MNIST 20%, the gap is 0.66%, 2.53% for 40% and 0.60% for 

IFAR 20%. 

.4. Experiments on real-world dataset 

In this section, We evaluate the MLN on a real-world dataset, 

.e., Clothing1M. We first show the test accuracy compared with re- 

ated work. Then, we qualitatively show the proposed uncertainty 

an divide the whole test set into clean and ambiguous sets. 

We measure the test set accuracy, shown in Table 13 . The pro- 

osed method works second-best compared to other methods with 

 0.36% gap. However, some instances on test set shown in Fig. 10 

nd 11 are still ambiguous and noisy. From this, we would like to 

laim that this minor gap is not significant in measuring the per- 

ormance of robust learning since there still exists some noisy in- 

tances and labels in the test set. 

We then sample instances from the test set, with high uncer- 

ainty instances and low uncertainty. We sample top 15 and low 

5 instances for aleatoric uncertainty and epistemic uncertainty re- 

pectively, shown in Fig. 10 and 11 . We first observe that set with

ow aleatoric uncertainty and with low epistemic uncertainty has a 

lean background with a relatively clean image in common. How- 

ver, both a set with high aleatoric and a set with epistemic un- 

ertainty contains some wrongly predicted instances and relatively 

omplicated images. We observe that low aleatoric uncertainty can 
13 
apture the images containing a single object and are well cen- 

ered. In addition, images with multiple clothes, i.e., wearing T- 

hirts inside the jacket on the fourth row in the first column, tend 

o have high aleatoric uncertainty. On the other hand, instances 

hat can be interpreted as two categories, i.e., shirted style dress 

n the first row in the second column, tends to report high epis- 

emic uncertainty. 

.5. Ablation studies 

In this section, we conduct ablation studies on MLN. We first 

how how the performance of MLN varies with uncertainty reg- 

larizers ( λ1 , λ2 ) on the Dirty-CIFAR10 dataset. Then, we explore 

ow other uncertainty measures perform in partitioning sets on 

DN settings. 

.5.1. Effects of λ
We show how performance varies on different uncertainty reg- 

larizer ( λ1 , λ2 ), on Dirty-CIFAR10 dataset with Symmetry-50% and 

symmetry-40% noise ratio. The result is shown in Table 14 , the 

alue NaN happens when there do not exist any instances with the 

articular row. We found out that decreasing λ1 slightly increases 

he accuracy of the model with the cost of degrading the perfor- 

ance of noise transition matrix estimation. On the other hand, 

ncreasing λ1 may harm the model to capture the clean target sig- 

al. In addition, decreasing λ2 decrease the accuracy of the model 

lightly and fails to estimate the noise distribution. Increasing λ
2 
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Fig. 11. Clothing1M test set samples with low epistemic uncertainty (left) and high epistemic uncertainty (right). Pred denotes the predicted label and GT for the ground- 

truth label. ’A’ denotes aleatoric uncertainty, and ’E’ denotes epistemic uncertainty. 

Table 14 

Ablation Study on λ on SDN CIFAR10. 

Symmetry 50% Asymmetry 40% 

λ1 λ2 ACC ATV AUROC ACC ATV AUROC 

λ1 = 1 λ2 = 1 86.59 ± 0.07 14.59 0.9924 87.79 ± 0.04 18.93 0.7117 

λ1 = 0 . 1 λ2 = 1 87.15 ± 0.07 49.38 0.9964 87.34 ± 0.05 20.04 0.7385 

λ1 = 10 λ2 = 1 76.35 ± 0.11 NaN 0.9844 77.83 ± 0.06 NaN 0.6665 

λ1 = 1 λ2 = 0 . 1 85.53 ± 0.05 26.79 0.5828 86.74 ± 0.04 63.20 0.6206 

λ1 = 1 λ2 = 10 85.42 ± 0.03 39.41 0.9515 87.2 ± 0.07 19.75 0.5284 
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lso drops the model’s accuracy slightly and fails to partition a 

lean and ambiguous set. As a result, we propose best choice is 

1 = 1 , λ2 = 1 . 

.5.2. Partioning set with different uncertainties in SDN 

There exist different uncertainty measures than the ones ex- 

lained in (1) and (2) , for example, it can be measured by 

ax-softmax [36] , softmax entropy, or from the entropy of mix- 

ure weights. The Pi-entropy denotes the entropy of the mixture 

eights. As bigger entropy can be interpreted as a lower weight 

f target distribution, this can be seen as the uncertainty of the 

nputs. In this experiment, we assume the size of two sets is the 

ame and set threshold as the median of the uncertainty measures 

o partition these sets. The uncertainty measures are as follows. 

ax-softmax = 1 − max 
c 

μ(c) 
k 

(x ) where k = argmax 
i 

πi (x ) 

(21) 

softmax-entropy = −
C ∑ 

c 

μ(c) 
k 

(x ) log 
(
μ(c) 

k 
(x ) 

)
where k = argmax 

i 

πi (x ) (22) 
14 
i-entropy = −
K ∑ 

k 

πk (x ) log ( πk (x ) ) (23) 

As the observation noise is an exemplar case of aleatoric uncer- 

ainty, instance corruption patterns can be captured by aleatoric 

ncertainty. Table 15 reports the aleatoric uncertainty measure can 

artition clean and ambiguous sets on symmetric noise compared 

o other uncertainty measures except for Symmetry-20% noise rate 

n Dirty-CIFAR10 and Asymmetry-40% noise rate in Dirty-MNIST, 

ut with a small gap. We observe that the measure AUROC in- 

reases as the noise rate increases, indicating higher noise on the 

abel can also increase uncertainty. 

.6. Limitations 

In this section, we will discuss the limitations of the proposed 

ethod. While combining the proposed method with the semi- 

upervised method result in an improvement in the classification 

erformance, the proposed method does not perform as effectively 

s the semi-supervised method on CCN settings. In addition, the 

ap of clean test set accuracy is small with JoCoR [9] in the CCN

etting except for symmetric 80% noise rate. However, we observe 

hat further combining the small-loss selection method with small 
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Table 15 

Measured AUROC over different uncertainty measures. 

Noise Rate Aleatoric Epistemic π Entropy Max Softmax Softmax Entropy 

Dirty MNIST 

Symmetry-20% 0.9998 0.9986 0.9935 0.9930 0.9958 

Symmetry-50% 1.0000 0.9999 0.9996 0.9957 0.9994 

Symmetry-80% 1.0000 1.0000 0.9993 0.9959 0.9988 

Asymmetry-40% 0.9895 0.9605 0.9581 0.9898 0.9909 

Dirty CIFAR10 

Symmetry-20% 0.9061 0.6718 0.7614 0.9026 0.9130 

Symmetry-50% 0.9924 0.8913 0.9600 0.9588 0.9729 

Symmetry-80% 0.9985 0.9896 0.9906 0.9449 0.9765 

Asymmetry-40% 0.7117 0.5747 0.6364 0.7100 0.7047 
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odification or additional augmentation like MixUp [4] can im- 

rove the performance. We would like to claim that the proposed 

ethod is complementary to the small-loss selection methods to 

ain further robustness when the selected small-loss set is still 

oisy. Furthermore, although the proposed method does not out- 

erforms state-of-the-art method on CCN and IDN settings, we 

ould like to claim that SDN setting are more pratical than CCN 

r IDN, because the annotator tends to mislabel the corrupted or 

mbiguous data. 

. Conclusion 

We have introduced an uncertainty-aware robust learning 

ramework by leveraging a mixture of the experts’ model named 

ixture logit networks (MLN). The MLN can estimate two differ- 

nt types of uncertainty, epistemic and aleatoric, where the pre- 

ictive uncertainty is further utilized to define a novel regular- 

zation method. We showed that the MLN could represent multi- 

odal distributions, making the model not only robust to outliers 

ut also able to estimate noise patterns. In addition, we found out 

hat combining the proposed method with a semi-supervised small 

oss selection method can lead to further improvement. In particu- 

ar, we presented a Set-Dependent Noise (SDN) learning problem 

here multiple corruption patterns exist per partition and pro- 

osed a novel validation scheme for estimating the corruption pat- 

erns. To tackle this problem, we leveraged aleatoric uncertainty to 

etect the corrupted partition and estimated the SDN patterns us- 

ng the multi-modal target distribution computed from the MLN. 

e would like to note that uncertainty estimation on the robust 

earning framework plays a significant role in providing informa- 

ion about the corruption of each instance. The current evaluation 

cheme for the SDN setting relies on two assumptions: the col- 

ective outliers can be separated via the estimated aleatoric uncer- 

ainty, and a particular label transition matrix exists per each par- 

ition. One promising future research direction could be examining 

ur proposed method to real-world datasets without applying arti- 

cial noises to both inputs and outputs. 
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