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Abstract: Mining sectors require a continuous and reliable power supply; however, reliance
on traditional grid utilities results in high costs and disruptions and increases extreme carbon
emission. The Merredin WA sector seeks to resolve critical energy challenges affecting mining
operations in Western Australia. Thus, this research proposes an optimal solar PV system
with battery storage and backup generation for the mining sector to ensure a stable and
cost-effective power supply that reduces harmful environmental effect. A hybrid data-driven
long short-term memory (LSTM)-classical optimization framework is designed here, thereby
optimizing PV-battery storage operational cost savings and energy usage. The optimization
results indicate that approximately 57% of load demand can be fulfilled by the proposed
optimal PV system with future cost savings of USD $8627.53 per annum. The optimization
method also resulted in the lowest computation time of 1.153 s and highest accuracy 99.247%
when compared with other existing algorithms. Furthermore, the integration of renewable
energy (RE) technologies within mining operations substantially reduces carbon emissions
by 67%, thus contributing to broader global sustainability purposes. The study presents a
sustainable and economically viable energy solution for mining operations, setting a precedent
for RE adoption in remote and energy-intensive industries.

Keywords: Merredin WA; mining energy solutions; renewable energy; cost-effective power
supply; energy optimization

1. Introduction

The Merredin region of Western Australia holds strategic importance due to its signif-
icant mining operations, which contribute to regional employment and economic devel-
opment. However, the high energy demands of mining sectors present a major challenge
requiring a stable and continuous power supply in remote areas where grid connectivity
can become limited and unreliable [1,2].

Hydrogen-based hybrid energy system was proposed in [3] considering Pakistan’s
Bannu district. The applied method was able to decrease the total net present cost (NPC)
and cost of energy (COE) by 21.7% and 19.8%, correspondingly. It further recommended to
study on the global applicability. In [4], hydrogen-based solar-powered energy system was
studied for Balochistan, Pakistan region. The implemented optimal framework reduced
COE and NPC by 26.9% and 3.0% respectively that recommended to study on other rural
areas for future research. The technical and financial feasibility of PV-wind-hydrogen
system installed in Cooma, Australia was analyzed in [5]. The authors concluded that
around 9.2% efficiency can be found from the hybrid system whereas hydrogen subsystem
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was expensive compared to other sources. It further recommended to investigated on other
Australia regions.

Traditionally, Western Australia’s mining sectors have relied on grid electricity systems
for large-scale operations, where this has considerable limitations. Firstly, due to voltage
fluctuations, supply shortages, and network failures, grid power in remote areas such
as Merredin can be inconsistent, leading to operational disruptions. Secondly, the high
cost of purchasing electricity from the grid places a significant financial burden on mining
companies, particularly given the energy-intensive nature of their activities [6]. Moreover,
reliance on conventional energy sources, such as fossil fuels, contributes to substantial
carbon emissions, which conflict with growing environmental and sustainability concerns
in the industry.

The Merredin WA Solar Project aims to address these challenges by providing a clean,
reliable, and cost-effective alternative energy sources for the region. At the core of this
initiative is the development of a solar photovoltaic (PV) system designed to harness the
region’s abundant solar energy resources [6]. Merredin receives exceptionally high leveled
solar radiation, making it an ideal location for large-scale solar power generation. With
this, the study seeks to integrate advanced battery storage technology to ensure continuous
power availability in the region, including during nighttime hours and periods of low
sunlight. This hybrid system enhances energy reliability and minimizes dependence on the
conventional power grid [7,8]. Since energy security is a key operation in mining industries,
the Merredin WA Solar Project can reduce the mining sector’s vulnerability to grid power
disruptions [9,10]. This self-sufficiency of energy also provides long-term economic benefits
by insulating mining companies from fluctuations in electricity prices and potential cost
increases associated with fossil fuel-based power generation [11,12].

However, using data pre-processing subsequent to data collection to obtain the opti-
mal solutions regarding cost savings remains a challenging objective. The collected data
from remote and harsh environments indicate that mining sectors are susceptible to system
instability that may result in blackouts. Therefore, recent studies in mining energy sys-
tems [13-16] highlighted data analytics of mining industries and suggested pre-processing
to achieve a global optimization result. The authors recommended to apply machine
learning algorithms for data processing and obtain the optimal solution in mining industry.

Similarly for mining operations, the Merredin WA mining sector can serve as a model
for other industries and regions, demonstrating the feasibility and advantages of renewable
energy solutions for energy-intensive operations [17,18]. The project’s scalability and repli-
cability can make it a significant case study in the broader transition towards sustainable
energy sources, particularly in areas where conventional grid electricity is unreliable or
prohibitively expensive [19,20]. However, no research is still found based on the authors
knowledge about Merredin WA mining operations. Therefore, this research aims to present
a reliable, cost-effective, and environmentally sustainable energy solution for Merredin
WA mining sector. A hybrid data-driven long LSTM-classical optimization framework is
designed, that optimizes PV-battery storage operational cost savings and energy usage.
As the mining industry seeks to reduce operational costs and its harmful environmental
impact, this initiative stands as a pioneering effort for the integration of RE technologies.

The research paper is arranged as follows: Sections 2 and 3 detailed about the method-
ology and it’s produced results respectively. The conclusion is drawn in Section 4.

2. Methodology and Materials
2.1. Site Feasibility

For real-time application, site inspection of the Merredin WA Power Grid System was
initially performed to determine the optimal location for solar panel installation, consider-
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ing factors such as global horizontal irradiance (GHI), land availability, and proximity to
mining infrastructure. This inspection assessed current energy consumption, grid depen-
dency, and electricity costs for mining activities [2]. The study confirmed that Meredin’s
high solar radiation levels render it an ideal location for a large-scale solar PV power
project [21]. The findings indicated an average solar radiation level of 5.51 kWh/m?/day,
confirming the site’s potential for efficient solar energy generation [3]. Further, the as-
sessment indicated that the project posed minimal environmental risks while offering
significant sustainability benefits by reducing carbon emissions [22].

2.2. Solar PV Modeling

PV panels regulate power output through series or parallel-coupled solar cells. Two
main PV cell models exist: double-diode and single-diode. The high precision requirements
of power electronics applications necessitate accurate PV module modeling. This consists
of a current source (Isc) in ampere, diode (D), series (Rg) and shunt (Ry,) resistors in ohm.
As shown in Figure 1, Kirchhoff’s Current Law (KCL) provides the following expression
for the output current (Ipy) in ampere [23],

1%
Ipy=n,l; —Ip — — — — 1)
PV piL D Rsh
_/>

MN

IDl Ishl Rs +
Il YD §Rsh V[]Load

Figure 1. Single-Diode Model of a PV Cell.

Equation (2) provides the calculation for the diode current (Ip):

V + IR
Ip=nylos [exp(q(nsAKTs> — 1} )

In Equation (2), Ips, 9, V, Rs, ng, A, k, and T, represent reverse saturation current in
ampere, electron charge in coulomb, output voltage in volt, cell current in ampere, series
resistance in ohm, number of series-connected cells, ideality factor, Boltzmann constant,
and cell temperature in Kelvin respectively. With this, light-generated current (I;) and
reverse saturation current (Ipg) in ampere are affected by solar irradiance and atmospheric
temperature in Kelvin which are further determined using Equation (3) and Equation (4)

correspondingly.
_ ¥ _
I = Vs [ILref + plse (T Tref )] @3)
—qgE
los= DfT3exp (AIzT) 4)

Here, ¢ and ¢, represent the existing and reference irradiances respectively; u is
coefficient efficiency of temperature (0.004 K™; Iy #, T, Trer , Dy and E are light-current
in ampere at reference conditions, present temperature in Kelvin, reference temperature in
Kelvin, diode diffusion factor, and bandgap energy correspondingly [24].
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2.3. Battery Energy Storage System (BESS)

Battery systems ensure energy availability during low sunlight periods (e.g., nighttime
or cloudy days). Lithium-ion battery storage has been selected due to its high energy density,
long lifecycle, and cost-effectiveness. Battery models are mainly classified into two types:
electrochemical models and Equivalent Circuit Models (ECM). Whilst electrochemical
models analyze internal chemical reactions for high accuracy, they are complex. ECMs, in
contrast, focus on external characteristics, avoiding internal reaction details. This study
applied the Thevenin ECM (Figure 2), where V| is the terminal voltage and V¢ is the
open-circuit voltage (OCV) in volt, where their relationship is given by [25],

I

-1 Iy,
dt — dt

VL: VOC_IL XRo— /

Voc

Figure 2. Battery Model Using Thevenin Equivalent Circuit.

Where, I = V1/R; and I, = V,/R; in ampere. Additionally, BESS improves Self-
Consumption Rate (SCR) and Self-Sufficiency Rate (SSR), which are crucial for Behind-the-
Meter (BtM) systems. SCR measures the portion of PV production consumed locally, while
SSR represents the fraction of building consumption covered by PV energy [26],

SCR= {1, DPYit £ BCHLY/ L, 0

SR = {1, DPVa+ 1, BDS.}/ 1,4 G @)

where, 11 = Year, t = System lifetime, DPV}, = Annual direct PV consumption (kWh), BCH,
= Annual BESS energy charge (kWh), P, = Annual PV production (kWh), BDS,;, = Annual
BESS discharge (kWh) and C;; = Annual energy consumption (kWh).

2.4. Implementation Plan

The PV system design of the Merredin site is showed in Figure 3 where a 33-kW system
has been recommended after analyzing the mining site’s load profile [27]. The location
is -31.480950136511282, 118.29490272442759 measured by Google map. High-performance
monocrystalline panels, each with a power output of 400450 W, are selected to maximize
efficiency in varying weather conditions. Table 1 illustrates the properties of the solar panels.
A single-axis tracking system can be integrated to enhance energy output by 17-25% while
adjusting the panels’ tilt according to the sun’s position [28-30]. Installation of the solar PV
system and battery storage system are meticulously planned and executed in a phased manner
to minimize disruption to ongoing mining activities. A diesel generator is also included as a
fail-safe mechanism, automatically activating when battery charge levels drop below a critical
threshold or energy demand exceeds the solar and battery system’s capacity. A detailed
system block diagram illustrating the setup is provided in Figure 4.
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Figure 3. Overview of Solar Design Merredin WA [27].

Table 1. Solar Panel Properties [30].

Module Type SRP-425-BMZ-HV SRP-430-BMZ-HV SRP-435-BMZ-HV SRP-440-BMZ-HV

STC STC STC STC

Ppyax at STC 425 430 435 440

Voc 52.1 52.2 524 52.6

Isc 10.31 10.40 10.47 10.53

Vmax 43.8 439 441 443

Linax 9.71 9.80 9.87 9.93

Efficiency (um) 19.46 19.69 19.91 20.14

Tolerance Power (0, +4.99)

System Voltage (max) 1500 VDC

Series Fuse Rating (max) 20 A

PV Array

MPPT Solar
Charge
controller

Generator
—
Loads No Break Battery Bank

Figure 4. Components and interconnections of the system in block diagram.

EMS
Quattro-II
Inverter/Charger

Grid

2.5. Data Collection and Performance Monitoring
2.5.1. Performance Monitoring

A 27.7 kW inverter is deployed to convert solar-generated DC power into AC for mining
operations. An energy management system (EMS) is integrated to monitor energy production
and consumption in real-time, optimizing the use of stored energy during peak demand
periods. Additionally, real-time monitoring sensors are installed to track energy generation,
battery charge/discharge cycles, generator usage, and fuel consumption. The collected data
is analyzed to optimize system performance using smart energy management system and
identify areas for improvement. The analysis is performed with the assumption3% p.a.
escalation in power cost [31] and 0.8% p.a. degradation [32] in panel efficiency.
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2.5.2. Environmental Impact Monitoring

Greenhouse gas (GHG) emissions and fuel consumption data are recorded to quantify
the project’s sustainability benefits. The designed system can significantly reduce the
reliance on fossil fuels, lowering carbon emissions (Ec,p0,) in percentage and enhancing
environmental conservation using Equations (8) and (9) [33,34].

min Ecarbon = Y 1y Cbmg — ((t:)c“’(t) x 100%; (8)
ase
s.t. C(t Z F; x EF; )

Here, n is number of years, Cp,s, and Ceyr, F; and EF; = 2.69 are carbon emissions in
the baseline year and current year, fuel consumption and emission factor respectively.

2.6. Cost Savings

To maximize cost savings, classical optimization model in CPLEX solver software
environment is applied in this research. The optimization method minimizes the grid-
operational cost (Copt) by Equation (10) and calculates maximum cost savings (Scost) using
Equation (11),

t t
min Copt 2( grzd ) X quzd ) Z(CFzT X Pexport( )) (10)

i=1 i=1

s.t. Ppy (t) + Pyar(t) + Pyria(t) — Proaa(t) = 0
Scost( ) 21 1(Cmt( ) Copt( )

Here, Pgjq(t), Pexport(t), Pioaa(t) indicate power imported from grid, exported to grid
and load power at time ¢ respectively. With this, C,;s(t), Cp;(t) and Cip(t) symbolize for
grid tariff, feed-in-tariff and grid’s initial cost before optimization correspondingly. The

(11)

data information regarding the projection are collected from reference [35].

2.7. Optimization Method

The proposed data-driven optimization method is designed with data processing and
data optimization functions, as follows:

2.7.1. Data Processing

The data processing is performed by designing an LSTM model corresponding to
data sequence (x) and time step (t). The LSTM algorithm is chosen due to its memory
cell architecture that retains information over longer sequences and avoid issues such
as vanishing gradients, making it ideal for capturing long-term dependencies in highly
dynamic and nonlinear datasets. With this, the sampling frequency of LSTM input data
is specified ten second over one year. From Figure 5, data analysis is performed using
the LSTM parameters of operation block: memory cell ¢, and hidden cell &, input gate (i),
forget gate (f;), input node (g;), and output gate (0;). Output response o; is calculated by
Equations (12) to (16) at time ¢ [36].

ft = U(foxt + wfhhtfl + bf) (12)
iy = U(wixxt + wihi_q + b,‘) (13)
gt = T(Z/ngxt + wghl’lt,1 + bg) (14)

G=C10fi+8 00 (15)
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ht = T(ct) © o4 (16)

'
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| LSTM LSTM LSTM
|| Operation | 1, Operation | »| Operation R
h

—_——— o — o — — o — — — — — — — —

-
/

Output

| /
Gate

Figure 5. Schematic diagram of LSTM layer and the operation block.

Here, w and b are weighted vectors and bias of the particular gates, ® presents
elementwise/dot multiplication; ¢ and 7 are sigmoid and tangent activation functions
respectively.

2.7.2. Data Optimization

Data processed by the abovementioned LSTM model is employed to design the
optimization model. In this research, the classical optimization method is implemented
using CPLEX solver to achieve a global solution from the designed optimization model,
using Equations (17) to (18). The time step is specified ten second over one year. The
approached mixed-integer nonlinear programming optimization method is presented in
Figure 6. This results to minimize cost and carbon emission values using Equations (1)
to (16) considering decision variables grid power consumption and carbon emission of
the present year; and associated parameters load power, initial grid cost, operational cost,
grid tariff, feed-in-tariff, fuel consumption, emission factor and so others. Accordingly,
the optimal cost savings and carbon emission are obtained. The optimization formula is
presented in Algorithm 1. Additionally, the accuracy of the results is determined using
mean absolute percentage error (MAPE) metric using Equation (19),

t t

)3 (Cgrid(i) X Pgrid(i)) - Z (CFiT(i) X Pexport(i))

; ’ 1:'1 (17)
Y M*(CSW(Z) x 100%

i=1 Cbase !

min{ i=1

PPV(t) + Pbat(t) + Pgrid(t> - Pload(t) =0
t
.t Scost(t) = Z (Cint(i) - Copt(i) (18)

n
C(t)= ¥ F X EF
i=1

100% — MAPE;
Accuracy = MAPE — %Z?:l’A’;iPi

Here, n is number of iterations, A; and P; are actual and predicted values of the

(19)

datasets respectively.
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Figure 6. Proposed optimization framework.

Algorithm 1: Optimization Formula

Input: Merredin WA Power Grid information
Output: Cost savings optimal results and carbon emission reduction
Begin optimization method:

Start analysis and checking parameters
Analyze performance

Data Processing

LSTM model:

fi = U'(Zfoxt + wfhhtfl + bf)

it = o (wWixXxt + wiphi—1 + b;)

Q= T(ngxt + wghht_l + bg)
CG=C10ft+8 Ol

hy = T(Ct) ® o

Optimization Model

Fitness function:

Zf:1 (Cgrid(i) X Pgrid(i)) - 2521 (CFiT(i) X Pexport(i))

min n Cbase(i)—ccur(i) % 100%
1= pase (1)
Constraints:
Ppy (t) + Pyat(t) + Pgrid(t) — Proga(t) =0
t
s.t. Scost(t) = igl(cint(i) - COPt(i)

C(t) = 3. F x EE;
Optimization complete =
if
Constraints are satisfied
then
Update parameters from the optimization models
Calculate Cyp¢(t) and Ecgypon (%)
if constraints suit the optimization problem
then
return Cop¢(t) and Ecgrpon (%)
end if
end if

3. Results and Discussion

Below are the results produced from the proposed research with regard to energy in-
dependence, cost savings, environmental sustainability, system performance and resilience,
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energy consumption reduction, future savings estimations, cash flow and investment
analysis, as well as long-term cost projection analysis:

3.1. Energy Independence

The optimal installation of a 33-kW solar PV array, coupled with lithium-ion battery
storage, enabled the site to generate and store its own energy. Since the primary objective
of this research is to reduce the mining site’s dependence on grid power, the designed
system is able to meet a significant portion of the site’s energy demands using EMS during
daylight hours and to provide stored energy during non-solar periods, such as at nighttime.
Accordingly, Table 2 shows the system’s energy consumption split where the solar PV
system generated approximately 31,132 kWh annually, significantly reducing reliance on
grid electricity. Here, peak grid power consumption dropped by 87%, indicating the pro-
ductivity of the PV-battery hybrid system in meeting site demand. Further, Figures 7 and 8
present the customer’s weekly consumption profile and maximum demand respectively.
This shows that the demand from the grid side can be reduced significantly following the
solar project installation system.

Table 2. Breakdown of energy sources within the system.

Energy-Consumption Split

Total Solar Grid
kWh 35,694 31,132 4561
% 100% 87% 13%

Electricity Consumption
(kwh)

Sun Mon Tue Wed Thu Fri Sat

Figure 7. Customer’s energy consumption patterns over a week.

Nov
Oct

Sep M=
Aug T —

Jul  —

Jun M Post Solar
May | u Pre Solar
Apr R
Mar
Feb

Jan

0 20 40 60 80 100

Demand (kWh)

Figure 8. Yearly maximum demand.

3.2. Cost Reduction

Reducing energy costs is another key objective for the mining operation. Prior to
implementing the solar hybrid system as illustrated in Figure 9a, the site incurred annual
electricity costs of approximately USD $15,375.39 due to high energy consumption and
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fluctuating grid electricity prices. However, from Table 3, the proposed hybrid LSTM-
classical optimization method presents the system’s cost savings approximately USD $2769
with least computation time 1.153 s and high accuracy 99.247% when compared with
existing other algorithms. The results are derived from rigorous simulations ensuring
fair comparison. The details of the applied existing algorithms are given in Appendix A.
Further, Figure 9 shows the distributed grid power cost, finance cost and net savings before
and after the optimization method. Subsequent to the applied optimization, the grid power
cost is reduced from USD $15,375 to USD $6747. Accordingly, after implementing the
optimal solar PV and battery system, annual electricity costs are reduced by 57%.

® Grid Power Cost ($)
™ Finance Cost ($)

Net Savings ($)

(@) (b)

Figure 9. Projected cost savings of the system (a) Without optimization (b) With optimization.

Table 3. Optimal cost savings.

Optimization Method Cost (USD$) Computation Time (s) Cost Reduction (%) Accuracy (%)
LSTM-Classical 2769 1.153 57.03 99.247
TF 2733 1.164 56.21 99.015
RL 2681 1.169 55.67 98.832
GA 2643 1.172 55.28 98.541
TS 2591 1.181 54.71 98.043
PSO 2583 1.972 54.21 97.682
GWO 2547 2.014 53.89 97.429
ACO 2522 2.029 53.31 97.156
BA 2499 2.048 52.95 95.025

TF = Transformer, RL = Reinforcement learning, GA = Genetic Algorithm, TS = Tabu Search, PSO = Particle Swarm
Optimization, GWO = Grey Wolf Optimizer, ACO = Ant colony optimization, BA = Bat Algorithm.

3.3. Environmental Sustainability

An additional goal of this research is to reduce the environmental impact of mining
operations by lowering carbon emissions and the reliance on fossil fuels. Transitioning
from conventional grid power (primarily generated from coal and gas) to solar energy
significantly decreased the site’s carbon footprint. Figure 10 provides an overview of the
project’s carbon emissions. The key results are as follows:

e  The project achieved a 67% reduction in carbon emissions, primarily due to the shift
from fossil fuel-based electricity to solar power.

e  Although diesel-powered, the backup generator, was used sparingly, further minimiz-
ing greenhouse gas emissions.

e By utilizing RE for the majority of its power needs, the mining site positioned itself as
a leader in environmental responsibility within industry.
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&> Do

55.43+ 2,546

Figure 10. Project’s carbon emission profile over time.

3.4. System Performance and Resilience

The integration of a solar PV-battery storage hybrid system, along with a backup gen-
erator created a resilient energy system that adapts to concerns in power demand and solar
unavailability. The EMS plays a crucial role in optimizing the energy distribution system.
Further, Figure 11 illustrates the typical summer and winter weekdays grid consumption
pattern, where net grid consumption, as proposed in this study, is reduced significantly in
all seasons. The lithium-ion battery system performed as expected, providing consistent
energy storage and discharge during peak demand periods and at nighttime. The advanced
thermal management system-maintained healthy battery performance despite the high
temperatures of Merredin WA site. Overall, the proposed approach outperformed initial
projections, particularly in reducing grid dependence and ensuring operational continuity.

Boe NN W
1) [SERVERS)

BN
« o oS

summer Electricity (kWh)
I
Winter Electricity (kWh)
.
5

o w
o

-

1 3 5 7 9 11 13 15 17 19 21 23 3 5 7 9 11 13 15 17 19 21 23
Daily Weekday Hours Daily Weekday Hours

——Total Cons ——PV production ——Net Grid Consumption ——Total Consumption ——PV production ——Net Grid Consumption
(a) (b)
Figure 11. Weekdays profile of grid consumption at (a) Summer and (b) Winter.

3.5. Energy Consumption Analysis

A breakdown of the site’s monthly energy consumption has been conducted, taking
into account, electricity consumption from the grid before and after solar integration and
load usage. The detailed analysis of Figure 12 provides a clearer picture of how solar power
impacts overall electricity costs. The monthly energy consumption data reveals the proportion
of electricity supplied by solar power versus grid electricity. Analysis of yearly trends indicates
that energy consumption from grid before and after solar projection are 54, 196 kWh and
23,781.1 kWh respectively. It signifies that 57% of the site’s total energy demand can be
fulfilled using solar power system. The remaining 43% must still be sourced from the grid.
This breakdown demonstrates the substantial impact of solar power on reducing reliance on
grid electricity while acknowledging that some level of grid support is still necessary.

— 6000 70%
£
60%

(kwi

5000

on

9
S 4000 ot

40%
3000
30%

e
2000 | ‘ | _—
= [ it -

0 0%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Energy Consumpt
Load from Solar Power System

Before Solar  mmmmm After Solar % Load from Solar

Figure 12. Energy Mix Contribution—Energy consumption before and after the installed solar power
system in kWh, load conducted using solar power system in %.
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3.6. Future Savings Estimations

A detailed electricity solar projections analysis has been performed to assess how
energy costs would be changed after implementing the solar system. The results for future
solar savings projections are presented in Table 4. The solar energy projections for the site
indicate that with this system in place, the total estimated annual savings on electricity
costs would be $8628.73. This financial benefit further strengthens the case for renewable
energy integration, highlighting its long-term cost-effectiveness.

Table 4. Future savings estimations.

Solar Projections Value (kWh) Cost from Grid ($)
System Suggested 33 kW -
33 kW solar system annual energy production (CEC Average) 31,132 -
Conservative annual estimate at site due to PV system orientation 54,240 -

Usage estimates based on a 5.5-day week with some standing power usage

Peak Usage substituted by Solar 27,373 7765.87
Off-Peak Usage substituted by Solar 3041 862.86
Potential excess solar production feed in 23,825 -

Total Savings 54,240 8627.53

3.7. Cash Flow and Investment Analysis

A detailed cash flow analysis has been conducted to compare different purchasing
models for implementing the solar system. This includes both cash purchase and financing
options, allowing decision-makers to evaluate the financial feasibility of the project under
different investment strategies. The cumulative cash flow projections for each approach:
cash purchase and finance are outlined in Figure 13a,b correspondingly, demonstrating
long-term financial benefits and payback periods. For a cash purchase model, the return
on investment (ROI) has been calculated based on electricity cost savings over time. The
analysis indicates that the system will achieve payback in approximately 3.5 years as pre-
sented in the red color, after which the site will continue to benefit from free solar-generated
electricity. Accordingly, the cash purchase and finance can be increased approximately up
to US $209 k and US $213 k over the 25 years respectively.
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Figure 13. Future Cost Consumption Projection (a) Cash purchase cumulative cashflow (b) finance
cumulative cashflow.

3.8. Long-Term Cost Projection

A 25-year cost projection has been generated to compare the financial impact of using
solar power versus relying solely on grid electricity. The future energy projections indicate
sustained cost reductions and an increasing reliance on solar power. The cumulative cash
flow analysis and cost projection over 25 years demonstrate long-term financial benefits,
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reinforcing the project’s economic viability. The ability to fulfill 57% of the site’s electricity
needs through solar energy highlights the potential for further expansion. With techno-
logical advancements in battery storage and solar efficiency, future projects may achieve
even higher levels of grid independence and cost savings. The results are summarized in
Figure 14. In a finance term, approximately $23,470 can be saved, with projections to reach
USD $241,600 over 25 years.
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Figure 14. Long-term cost projection.

3.9. Sensitivity Analysis

A sensitivity analysis of the Merredin WA mining sector considering different parameters
such as RE sources (RESs) size, annual cost escalation, load demand, solar panel degradation
and battery efficiency are measured. As illustrated in Figure 15, cost savings of the studied
mining site is significantly affected by the considered parameters. It indicates that cost savings
can be changed from USD $5.41 to USD $11.92 when varied the relevant factors.

RESs Size (MW) [ ]
Cost Escalation ($) |
Load Demand (MW) | |
Low Input
Panel Degradation (%) || = High Input
Battery Efficiency (%) |
5 7 9 11

Cost Savings (USDS)

Figure 15. Sensitivity analysis of the Merredin WA mining sector.

4. Conclusions

This research investigates the grid connected Merredin WA mining sector that has
demonstrated the effectiveness of integrating solar PV systems with battery storage to
address the energy challenges faced by mining operations in Western Australia. By lever-
aging advanced RE technologies, this research delivered a reliable, cost-effective, and
environmentally sustainable solution, significantly reducing reliance on conventional grid
power. This study initially selected the site Merredin WA, planned and designed system
using PV and BESS model and optimized energy solution. It considered cost savings,
cash flow and long-term cost projection analysis. The hybrid data-driven LSTM-classical
optimization method is applied to determine cost savings value and compared with the
existing algorithms. Accordingly, the energy consumption from grid system can be reduced
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in both summer and winter weekdays that shows yearly 54,196 kWh to 23,781.1 kWh when
implemented the proposed solar projection system. Hence, around 57% load demand can
be fulfilled by the proposed PV project using the optimization method that saves annually
approximately USD $8627.53 for future projection. With this, the cash purchase and finance
can be improved up to USD $209 k and USD $213 k over the 25 years correspondingly. The
applied optimization method resulted least computation time 1.153 s and high accuracy
99.247% when compared with existing other algorithms. The proposed research is further
capable of reducing carbon emissions by 67% to meet net zero carbon emission target.

Beyond the mining industry, the Merredin WA Solar Project serves as a model for
other sectors and regions. Therefore, for future research, the grid stability considering
higher penetration of RESs, and Al-driven hybrid control systems will be investigated to
enhance system efficiency.
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Appendix A

Parameters applied in the optimization algorithms of Table 3 are presented in Table Al.

Table Al. Parameters of optimization algorithms compared in Table 3.

Methods Parameters

Layers: 2
Neurons: 69
Training Epochs: 107
LSTM Learning Rate: 0.0014
Dropout Rate: 0.3
Batch Size: 41
Optimization Method: Adam optimizer

Layers: 2

Neurons: 76
Training Epochs: 125
Learning Rate: 0.0013

Dropout Rate: 0.17
Batch Size: 49
Model Size: 128
Feed-forward Network Size: 512

TF

Layers: 2
Neurons: 79
Training Epochs: 137
Learning Rate: 0.0019
Batch Size: 51
Entropy Coefficient: 0.015

RL
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Table Al. Cont.

Methods Parameters

Population size: 170
Number of Iterations: 125
GA Selection method: Tournament
Crossover rate: 0.71
Mutation rate: 0.0085

Tabu list size: 30
Number of iterations: 155
TS Aspiration criteria: Fitness Threshold
Neighborhood size: 65
Stopping criteria: 155 (iterations)

Swarm size: 45
Inertia weight: 0.83
Cognitive Coefficient: 2.31
Social Coefficient: 2.19
Velocity Limits: 7
Maximum iterations: 160

PSO

Number of wolves: 70
Encircling behavior (Decreasing A Parameter): [1.93, 0]
Wolves” movement (Increasing C Parameter): [0, 2.17]
Maximum iterations: 130

GWO

Number of ants: 95
Pheromone evaporation rate: 0.31
Pheromone deposit amount: 2.75

Exploration vs exploitation: 5
Importance of pheromone: 3
Maximum iterations: 155

ACO

Population size: 80
Initial loudness: 0.63
Initial pulse rate: 1
Frequency range: [0, 1]
Velocity: 5
Maximum iterations: 140

BA
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