
1 

 

An explicit formula of powers of the 2 × 2 

quantum matrices and its applications 

Genki Shibukawa1 

MSC classes:16T20, 33C45, 81R50 

Abstract 

We present an explicit formula of the powers for the 2×2 quantum 
matrices, that is a natural quantum analogue of the powers of the usual 
2 × 2 matrices. As applications, we give some non-commutative relations 
of the entries of the powers for the 2 × 2 quantum matrices, which is a 
simple proof of the results of Vokos-Zumino-Wess (1990). 

1 Introduction 

Let A be a 2×2 matrix over a fixed base field k and a,b,c,d ∈ k are entries of A: 

 . 

For any positive number n, the following explicit formula of An holds: 

. 

 
1 Dedicated to T. Umeda and M. Wakayama for their 66th birthdays. 
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Here fn(x) is the polynomial of degree n defined by 

, (1.2) which is 

the Chebyshev polynomial of the second kind: 

. 

In fact this formula is well-known in linear algebra, and its proof is easy by 

induction and the recurrence relation for fn(x): 

 fn+1(x) = xfn(x) − yfn−1(x). (1.3) 

In this note, we give a quantum analogue of the formula (1.1) and its 

applications. First, we review some fundamental objects and facts on 

quantum matrix or groups [M], [T] relevant to the main results of this paper. 

We call A a 2 × 2 (q-)quantum matrix if its entries satisfy the following 

relations: 

 ab = qba, ac = qca, ad − da = (q − q−1)bc, 

 bc = cb, bd = qdb, cd = qdc, (Rq) 

Here q is a central indeterminate. A quantum analogue of the coordinate ring 

Aq(Mat(2)) is the algebra generated by a,b,c,d and q which is a typical example 

of quantum groups. 

The quantum adjoint matrix of any quantum matrix A is defined as 

  . (1.4) 

By the definition of Aˆ and the relations (Rq), the quantum adjoint matrix Aˆ 

satisfies the relations (Rq−1): 

 aˆˆb = q−1ˆba,ˆ aˆcˆ= q−1cˆa,ˆ aˆdˆ− dˆaˆ = (q−1− q)ˆbc,ˆ 

 ˆbcˆ= cˆˆb, ˆbdˆ= q−1dˆˆb, cˆdˆ= q−1dˆc.ˆ 
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Hence, the relations (Rq) are equivalent to 

 , (1.5) 

where E2 is the 2×2 identity matrix, and δ := ad−qbc = da−q−1bc is the quantum 

determinant of A which is a central element of Aq(Mat(2)). 

For convenience, we introduce a 2 × 2 matrix 

! 

and put 

 

Our main results are following. 

Theorem 1.1. For any positive integer n, we have 

An = AC−n+1fn−1(τ) − C−nδfn−2(τ) (1.6) 

= fn−1(τ′)Cn−1A − fn−2(τ′)δCn, (1.7) 

where 

. 

Let us put 

 . 

By comparing the entries of An and (1.6), (1.7), we obtain the following explicit 

formulas of the entries of An. 

Corollary 1.2. For any positive integer n, we have 

 n−1 n n−1 n 

an = q− 2 afn−1(τ) − q− 2δfn−2(τ) = q 2 fn−1(τ′)a − q 2δfn−2(τ′), 

(1.8) 
 n−1 n−1 
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 bn = q 2 bfn−1(τ) = q 2 fn−1(τ′)b, (1.9) 
 n−1 n−1 

 cn = q− 2 cfn−1(τ) = q− 2 fn−1(τ′)c, (1.10) 

n−1 n n−1 n dn = q 2 dfn−1(τ) − q 2δfn−2(τ) = q− 2 fn−1(τ′)d − q− 2 

δfn−2(τ′). 

(1.11) 

As applications, we give the following results, in particular Theorem 1.4. 

Corollary 1.3. For any positive integer m, we have 

 m−1 m 
aˆm = q 2 afˆ m−1(τ) − q 2 δfm−2(τ) 

 m−1 m 

, (1.12) 

, (1.13) 

 m−1 m−1 

cˆm = q 2 cfˆ m−1(τ) = q 2 fm−1(τ′)cˆ= −qmcm, dˆm = 

q− m2−1dfˆ m−1(τ) − q− m2 δfm−2(τ) 

(1.14) 

. (1.15) 

Theorem 1.4 ([VZW]). For any non-negative integers m and n, we have 

δma 

 dman − q−mbmcn = andm − qmbncm = (δndmn−−nm ((m < nm ≥ n)) , (1.16) 

δmb 

 dmbn − q−mbmdn = −q−manbm + 

bnam =− nn−−mmδnbm−n ((m < nm ≥ n)) , 

q 

(1.17) 

 m  mδmcn−m

 (m < n) 

 −q cman + amcn = cndm − q dncm =−qn−mδncm−n (m ≥ n) , 

(1.18) 

( 

ˆ b m = q − m − 1 
2 ˆ bf m − 1 ( τ )= q − m − 1 

2 f m − 1 ( τ ′ ) ̂ b = − q − m b m 

= q − m − 1 
2 f m − 1 ( τ ′ ) ̂  d − q − m 

2 δf m − 2 ( τ ′ )= a m 

( 
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 m −mδmdn−m  (m < n) 

 −q cmbn + amdn = −q cnbm + dnam =δnam−n  (m ≥ n) , (1.19) 

bncm − qn−mcnbm = 0. (1.20) 

2 Proof of Theorem 1.1 

To prove Theorem 1.1, we need a quantum analogue of Cayley-Hamilton 

theorem. 

Lemma 2.1 ([UW] Lemma 3). The following formula holds. 

 A2 = AC−1τ − C−2δ = τ′CA − δC2. (2.1) 

Proof of Theorem 1.1 Since (1.6) and (1.7) can be similarly proved, we 

only prove (1.6). These formulas are proved by induction on n. 

The n = 1 case is trivial. Assume the case of n holds. Hence, from the 

induction hypothesis we have 

 

By Cayley-Hamilton theorem (2.1) and the recursion (1.3), we have 

An+1 = (AC−1τ − C−2δ)C−n+1fn−1(τ) − AC−nδfn−2(τ) 

= AC−n(τfn−1(τ) − δfn−2(τ)) − C−n−1δfn−1(τ) = AC−nfn(τ) 

− C−n−1δfn−1(τ). 

The formula (1.7) can be proved by the similar argument for An+1 = AnA. 

 

Corollary 1.2 follows from comparing the entries of An and (1.6), (1.7) 

immediately. 

Remark 2.2. (1) By consider the classical limit q = 1 in Corollary 1.2, we 

recover the classical result (1.1). 

(2) From the recursion (1.3), we derive other expressions of an and dn: 

( 
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 n n+1 n n+1 

 an = q− 2 fn(τ) − q− 2 dfn−1(τ) = q 2fn(τ′) − q 2 fn−1(τ′)d, (2.2) 
 n n+1 n n+1 

 dn = q 2 fn(τ) − q 2 afn−1(τ) = q− 2fn(τ′) − q− 2 fn−1(τ′)a. (2.3) 

Since these expressions (2.2), (2.3) (and (1.9), (1.10)) hold for n = 0, Corollary 

1.2 is also true for the case of n = 0. (3) Umeda-Wakayama [UW] considered 

 n n  n −n 
 τn := tr A C = q2 an + q 2bn, 

τn′ := tr C−nAn = q− n2 an + q n2 bn, 

and pointed out that τn and τn′ satisfy the following Fibonacci type equations: 

  (2.4) 

These equations (2.4) are equal to the recursion (1.3) of fn(τ) exactly. Hence 

by τ1 = τ and  we have 

 . (2.5) 

3 Applications 

We point out that quantum adjoint matrix Aˆ is a q−1-quantum matrix and 

τˆ := q−21aˆ + q12dˆ= q12a + q−21d = τ τˆ′ 

:= q21aˆ + q−21dˆ= q−12a + q21d = τ′, δˆ := 

aˆdˆ− q−1ˆbcˆ= da − q−1bc = δ. 

Then we prove Corollary 1.3. 

From (1.5), Corollary 1.2 and Corollary 1.3, we obtain the proof of 

Theorem 1.4 which is a simple prood of Vokos-Zumino-Wess [VZW]. 

Proof of Theorem 1.4 For any non-negative integers m,n, from Corollary 

1.3 we have 
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  (3.1) 

and 

 . (3.2) 

On the other hand, by applying AAˆ = AAˆ = δE2 we obtain 

AˆmAn = AnAˆm 

δmAn−−m =  δmcn−n−−mm− δδm−mdbnn−−mm!− −

 − ! (m < n) δma 

 = . 

 nAˆm n = −qmδndnmδncnm n −qnδnmamδnbnm n (m ≥ n) δ 

 (3.3) 

By comparing the entries of (3.1), (3.2) and (3.3) we have (1.16), (1.17), (1.18) 

and (1.19). 

Finally, the relation (1.20) follows from the explicit formulas (1.9) and 

(1.10): 

 n−1 m−1 

bncm = q 2 fn−1(τ′)bq− 2 cfm−1(τ) 

 n−m − n−1 ′ m −1 

 = q q 2 fn−1(τ )cq 2 bfm−1(τ) 

= qn−mcnbm. 

 



8 

If we set m = n in (1.16), (1.17), (1.18), (1.19) and (1.20), then we obtain 

an interesting Corollary which means that An is a 2×2 qn-quantum matrix. 

Corollary 3.1. For any non-negative integer n, we have anbn = qnbnan, ancn 

= qncnan, andn − dnan = (qn − q−n)bncn, 

bncn = cnbn, bndn = qndnbn, cndn = qndncn and (Rqn) 

andn − qnbncn = dnan − q−nbncn = δn. i.e. 

(3.4) 

(the quantum determinant of An) = (the quantum determinant of A)n 

Originally, Theorem 1.4 was proved by Vokos-Zumino-Wess [VZW] and 

its proof was a brute force approach using double induction on m and n. Later, 

Corrigan-Fairlie-Fletcher-Sasaki [CFFS] and Umeda-Wakayama [UW] gave 

some simple proofs of Corollary 3.1 which is the case of m = n in Theorem 1.4 

independently. Our proof of Theorem 1.4 is different from any of them. 

In particular, it is desirable to extend Theorem 1.1 and Corollary 1.2 to n 

× n quantum matrices. 
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