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Abstract: The relative velocity between objects with finite velocity affects the reaction 

between them. This effect is known as general Doppler effect. The Laser Interferometer 

Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their 

speed to be equal to the speed of light c. Gravitational waves are generated following a 

disturbance in the gravitational field; they affect the gravitational force on an object. Just 

as light waves are subject to the Doppler effect, so are gravitational waves. This article 

explores the following research questions concerning gravitational waves: Is there a linear 

relationship between gravity and velocity? Can the speed of a gravitational wave represent 

the speed of the gravitational field (the speed of the action of the gravitational field upon 

the object)? What is the speed of the gravitational field? What is the spatial distribution of 

gravitational waves? Do gravitational waves caused by the revolution of the Sun affect 

planetary precession? Can we modify Newton’s gravitational equation through the 

influence of gravitational waves? 

Keywords: Newtonian gravity; Doppler effect; gravitational wave; gravitational field; 

LIGO; gravitational constant; precession of the planets 

1 Introduction 

Newtonian gravity[1][2] is a force that acts at a distance. No matter how fast an object 

travels, gravity acts upon the object instantaneously. Gravity is only related to the mass 

and distance of the object, equal to , of which the universal gravitational constant[3] 

G0 = 6.67259 × 10−11 Nm2/kg2. G0 is measured when two objects are relatively stationary. 

This can be regarded as a static gravitational constant. Newtonian gravity states that the 

speed of the gravitational field on an object is infinite, therefore, whether two objects are 

relatively stationary or moving, both can be considered unchanged, so there is no general 

Doppler effect[4]. The Laser Interferometer Gravitational-Wave Observatory (LIGO)[5] first 

discovered gravitational waves[6][7] and measured their speed. This discovery thus leads 

us to consider whether the speed of gravitational field[8] is the same as that of the 

gravitational wave. We know that when we put a stone into the water, in addition to 

causing slow water waves, it will also cause 
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sound waves in the water, the speed will be much greater than that of water waves. So the 

speed of the water waves we observe cannot represent that of sound waves in the water. 

Will gravitational waves be like this? 

General relativity (GR), it’s view on the speed of gravity is different from that of Newton 

and Laplace. GR also believes that the speed of gravity is equal to the speed of light, but 

until now, scientists have been unable to prove this view. But we know if the gravitational 

field has a finite speed, there will be a general Doppler effect between the gravitational 

field and the object. To determine the speed of the gravitational field, we assume the speed 

of the gravitational field is equal to the speed of light. For the convenience of analysis, we 

use X to represent the speed of the gravitational field. If the planetary motions of the solar 

system calculated under this hypothesis are consistent with astronomical observations, 

the correctness of this hypothesis can be proved, otherwise it is proved that the speed of 

the gravitational field is not equal to that of light. 

Since we need to analyze the speed of gravity, so we must first figure out what is the 

relationship between gravity and velocity? 

2 Derivation of the Relationship between Gravity and Velocity based on 

Newton’s Gravity Equation 

In a very short time slice dt, we can assume that m is stationary and the gravity received 

is constant. We can then accumulate the impulse generated by the gravity on each time 

slice and find the average relating to the entire time period to obtain effective constant 

gravitation and determine the relationship between the equivalent gravitation and 

velocity. 

Consider the influence of velocity on gravity when the moving velocity of object m 

relative to M is not 0. 

 

Figure 1: Gravity model 

As shown in Figure 1, there are two objects with masses M and m, the distance between 

them is r, m has a moving velocity relative to M, the speed is v and the direction of the 

velocity is depicted by the straight line connecting them.  



 

 

represents the gravity on m at time t. The Newtonian equation of gravity is used here. In 

any small time dt, m can be regarded as stationary. An accumulation of the impulse dp is 

obtained by multiplying the gravity and time in these small time slices. Then, the sum of 

the gravitational impulse received by m within a certain period can be obtained. Supposing 

that the gravitational impulse obtained by m is p after time T has passed, the gravity is 

integrated into the time domain: 

  (1) 

, 

. 

For an object m with a speed of v, the accumulated impulse p during time T can be 

expressed by an equivalent constant force multiplied by time T. For the convenience of 

description, we use F(v) to express this equivalent force. 

 

There is an inverse proportional relationship between the equivalent gravitational 

force and the speed v. The larger the v, the smaller the F(v); the smaller the v, the larger 

the F(v). When v = 0, it is Newtonian gravity. When v tends to infinity, F(v) = 0. The 

Newtonian gravitational equation is based on the premise that the gravitational field 

speed is infinite. Now, we may assume that the gravitational field has a finite speed X, 

therefore, the Newtonian gravitational equation is no longer applicable and need to be 

modified. 

Let us continue to think about the difference in the average gravitational force received 

by two objects at different speeds during time T? Assuming that two objects have different 

velocities, v1 = v0 − δv, v2 = v0 + δv, their average gravity: 

. 

When T is infinitesimal close to 0, . 

Assume , so the following formula is obtained: 

), we can see that there is a linear relationship between 

average gravity and velocity, when T is infinitesimal close to 0, the average gravity is the 

instantaneous gravity. 

However, we also know that if there is relative velocity between any two objects, there 

will be a general Doppler effect between them. According to this general Doppler effect 



 

 

between the object and the gravitational field, two Doppler effect boundary conditions are 

introduced: 

1. When an object’s velocity relative to the source of gravity is 0, it is 

Newtoniangravity. 

2. When an object’s velocity relative to the gravitational field is 0, the 

gravitationalforce no longer acts on the object. 

As shown in the Figure 2, according to the general Doppler effect (chase effect), using 

boundary conditions  and F(X) = 0, it can be easily calculated: 

. 

 

Figure 2: Linear relationship between gravity and velocity 

From the above analysis, the formula of universal gravitation with parameter v is as 

follows: 

 . (2) 

If it is necessary to preserve the form of Newton’s gravity equation, we may write it as 

follows: 

 . (3) 

That is, the gravitational constant becomes a function of v, G(v). Thus, we may 

understand that when the gravitational field has a different speed relative to m, the 

gravitational constant is also different. Next, we apply the new gravitational equation to 

the planetary orbit calculation to determine whether it is consistent with actual 

observations. 



 

 

3 Calculation of the Influence of the New Gravitational Equation on 

Earth’s Orbit 

From the above derivation, we get the gravity formula with v as a parameter: 

. 

Considering that the velocity direction of the object m may have an angle with the 

gravitational field, we define vr as the component of the speed in the direction of the 

gravitational field and then obtain a general formula: 

. 

The equation shows that when an object has a velocity component in the direction of 

the gravitational field, that is, there is a movement effect in the same direction between 

the gravitational field and the object, the gravitational force received decreases. When the 

object has a velocity component that is opposite to the direction of the gravitational field, 

that is, the two have the effect of moving towards each other, the gravitational force 

received increases. This leads us to thus consider what impact, under this general Doppler 

effect, it may have on the planet’s orbit. Can planets maintain the conservation of 

mechanical energy in their orbits? 

 

Figure 3: The velocity component of the planet’s gravitational field direction 

As shown in Figure 3, under the new gravitational equation, as the planetary velocity 

has the same direction component vr in the direction of the gravitational field in orbits A 

and B, the gravity decreases. Therefore, the planet gains extra force in the direction of the 

gravitational field. This force travels in the same direction as vr. According to the power 

calculation formula P = F × vr > 0, the planetary mechanical energy increases. 

Regarding regions C and D, as the planetary velocity has a reverse component vr in the 

direction of the gravitational field, the gravitational force increases. Therefore, the extra 

force gained by the planet moves in the opposite direction of the gravitational field. This 



 

 

force is in the same direction as vr. According to the power calculation formula P = F × vr > 

0, the planetary mechanical energy increases. 

Therefore, under the new gravitational equation, the mechanical energy of the planet 

in the entire orbit continues to increase and the mechanical energy becomes larger and 

larger. This would cause the planet to gradually move away from the Sun and eventually 

the solar system. Taking Earth as an example, using the new gravitational equation, after 

how many revolution cycles would Earth begin to move away from the solar system? 

Below we include our theoretical analysis and calculations. 

3.1 Introduction of Polar Coordinates 

Let the Sun, mass M, lie at the origin. Consider a planet, mass m, in orbit around the Sun. 

Let the planetary orbit lie in the x − y plane. Let r(t) be the planet’s position vector with 

respect to the Sun. The planet’s equation of motion is 

 , (4) 

where er = r/r and vr = er.r˙.Let r = |r|and θ = tan−1(y/x) be plane polar coordinates. The 

radial and tangential components of (4) are 

  (5) 

 rθ¨+ 2r˙θ˙ = 0 (6) 

(6) can be integrated to give 

 r2θ˙ = h (7) 

where h is the conserved angular momentum per unit mass. (5),(7) can be combined to 

give 

  (8) 

3.2 Energy Conservation 

Multiply (8) by ˙r. We obtain 

  (9) 



 

 

or 

 0 (10) 

where 

  (11) 

is the energy per unit mass. (10) demonstrates that the Doppler shift correction to the law 

of force causes the system to cease conserving energy. The orbital energy grows without 

limit. This means that the planet will eventually escape the Sun’s gravitational pull (when 

its orbital energy becomes positive). 

3.3 Solution of Equations of Motion 

Let 1/r = u[θ(t)]. It follows that 

 , (12) 

 , (13) 

thus, Eq. (8) becomes 

 , (14) 

where 

 , (15) 

is a small dimensionless constant. To first order in γ, an appropriate solution of (14) is 

 , (16) 

where e is the initial eccentricity of the orbit. Thus 

 , (17) 

where 



 

 

 . (18) 

It can be observed that the orbital eccentricity grows without limit as the planet orbits 

the Sun. Eventually, when the eccentricity becomes unity, the planet will escape the Sun. 

3.4 Estimation of Escape Time 

The planet escapes when its orbital eccentricity becomes unity. The number of orbital 

revolutions, n, required for this to happen is 

 eexp(γn2π) = 1, (19) 

where e is the initial eccentricity. Thus, ), 

 , (20) 

where a is the initial orbital major radius and T is the initial period. Hence, 

 . (21) 

For Earth, T = 3.156 × 107 s, X = c = 2.998 × 108 m/s, a = 1.496 × 1011 m, and e = 0.0167. 

Hence, Earth would escape from the Sun’s gravitational influence after 

 , (22) 

revolutions. If each revolution takes approximately 1 year, then the escape time is a few 

thousand years. However, the age of the solar system is 4.6×109 years. The escape time is 

smaller than this by a factor of approximately one million. Therefore, the speed of 

gravitational waves cannot represent the speed of the gravitational field. From equation 

(22), the speed of a gravitational field X must be much greater than the speed of light c[10]; 

this is more in line with Newton’s argument that the force of gravity acts at a distance. 

We may consider the following analogy: we use a rope to pull a kite. When we shake it 

hard, the rope will fluctuate and pass to the kite at a certain wave speed, however, when 

we loosen the rope, the kite instantly loses control. It is inappropriate to use the wave 

speed of the rope to represent the speed of the force of the rope on the kite. With this 

considered, how do gravitational waves affect gravity? Since the revolution speed of the 

Sun will cause gravitational waves, how are gravitational waves distributed around the 

Sun? 



 

 

4 The Influence of Gravitational Waves Produced by the Sun on the 

Surrounding Gravity 

Gravitational waves caused by the movement of the Sun are akin to water waves caused 

by ships. For the convenience of explanation, we have turned the three-dimensional space 

problem into a two-dimensional problem. The gravitational influence caused by 

gravitational waves is different in the direction of the Sun’s velocity and the vertical 

direction, as shown in Figure 4. 

 

Figure 4: The gravitational wave model generated by the Sun’s movement. 

Assuming that, without considering the general Doppler effect, the ratio of the 

gravitational increase caused by gravitational waves to Newtonian gravitation is rw, we 

introduce a gravitational wave influence factor of fw. Figure 4 shows that, due to the 

general Doppler effect of gravitational waves, the energy of gravitational waves is largest 

in the direction of the Sun’s velocity and the impact on gravity is the greatest. The planet’s 

orbital surface is perpendicular to the direction of the Sun’s velocity and the gravitational 

wave is relatively small. 



 

 

 

Figure 5: The solar gravitational wave calculation model 

4.1 Calculation of the Influence Factor of Gravitational Waves in the Direction of the 

Sun’s Velocity 

We know that the revolution speed of the Sun is vs. Assuming that the Sun moves from 

position O to position O0 after time T, the gravitational waves generated in the direction of 

the Sun’s velocity during this period are all located between O0B. According to the general 

Doppler effect of gravitational waves, the influence factor of gravitational waves in this 

direction is as below: 

 . (23) 

4.2 Calculation of the Influence Factor of Gravitational Waves in the Vertical Direction 

of the Sun’s Velocity 

The gravitational waves in the direction perpendicular to the Sun’s velocity are located 

between O0A; it is only necessary to calculate the ratio between O0B and O0A to determine the 

gravitational wave density relationship in the two directions. 

 O0B = cT − vsT, (24) 

 , (25) 



 

 

thus: 

 . (26) 

Substituting the solar revolution speed vs = 240 × 103 m/s and the gravitational wave 

speed c = 2.998 × 108 m/s, we get 9992. Figure 4 shows that the density 

of gravitational waves in the vertical direction is smaller than that in the direction of the 

Sun’s velocity. The density of gravitational waves gradually decreases from the direction 

of the Sun’s velocity to the vertical direction. If the gravitational wave density is equivalent 

to the level of the depression in the plane, then this gravitational wave density model is 

somewhat similar to the space-time depression model described by general relativity 

(GR). As shown in the Figure 6, the gravitational wave density presents a non-uniform 

distribution; gravitational waves have the highest density in the direction of the sun’s 

velocity (bottom of Figure 6), and gradually decrease upwards. 

 

Figure 6: Gravitational wave density model 

4.3 Calculation of the Influence Factor of Gravitational Waves on the Planetary Orbital 

Surface 

We know that the planet’s orbital plane is approximately perpendicular to the direction of 

the Sun’s motion; thus, the red line in Figure 5 represents the ideal orbital plane of the 

planet (completely perpendicular to the direction of the sun’s velocity). According to 

formula (26), we can calculate the influence factor of gravitational waves on the orbital 

surface and thus determine that this value will be less than 1.0. 

4.4 Calculation of the Influence Factor of Gravitational Waves on the Reverse of the Sun’s 

Velocity 

Behind the vertical plane (to the left of the red line in Figure 5), shows that the density of 

the gravitational waves will continue to decrease and reach a minimum in the opposite 

direction of the Sun’s velocity. At this time , the gravitational wave influence 

factor is as below: 



 

 

 . (27) 

Substituting vs = c into (26) and (27), it can be determined that when the speed of the 

Sun reaches c, the orbital surface of the planet perpendicular to the Sun’s velocity (the 

position of the red line) and the position behind it (the left side of the red line) is no longer 

affected by gravitational waves. 

4.5 Calculation of the Influence Factor of Gravitational Waves at any Position 

As shown in Figure 5, assuming that the angle between O0D and the red line is θ (with D at 

any position), then 

 , (28) 

we get: 

, 

then, 

 , (29) 

thus: 

 . (30) 

4.6 The Influence of Gravitational Waves on Gravity 

Assuming that the gravitational force of an object under the influence of gravitational 

waves is Fw, Fw can be regarded as two parts: 

Part 1: Newtonian gravity . 

Part 2: The gravity contributed by the gravitational wave rwfwF, where rw is the ratio of 

the gravitational increase caused by gravitational waves to Newtonian gravitation. 

Thus, we get: 

 Fw = F + rw × fw × F. (31) 

Let us take the orbital position as an example to illustrate the calculation of gravity 

under the influence of gravitational waves: 

 . (32) 



 

 

As there is also a general Doppler effect between planets and gravitational waves, it is 

also necessary to consider the influence of this factor. Assuming that the speed of the 

planet is vp and the speed of the planet in the direction of the gravitational wave is vpw, then 

the chase factor  between the planet and the gravitational wave can be obtained and 

this factor is put into (32) to get: 

 , (33) 

substituting F, we get: 

 , (34) 

here rw ≈ 0.00058; this value was derived from a program simulation. 

In the same way, the gravity of other positions can be calculated. We write the gravity 

equation of any position: 

 

4.7 Gravitational Waves Caused by the Rotation of the Sun 

The Sun’s rotation can also cause gravitational waves, however, the Sun’s revolution speed 

of 240 km/s is much greater than its rotation speed of 2 km/s. As such, this physical model 

does not consider the influence of gravitational waves caused by rotation. To obtain more 

precise calculations, we must consider this factor. 

5 Analysis of the Influence of Gravitational Waves on Planetary Orbits 

If the planet’s orbital surface is not completely perpendicular to the velocity of the Sun and 

the orbit is split over both sides of the red line, then the impact of gravitational waves on 

planets is also irregular, which affects the orbit and contributes part of the force to 

planetary precession[9]. The closer the planet’s orbit is to the Sun, the greater the 

gravitational wave density gradient and the more obvious the effect of precession; the 

farther the distance, the less obvious. Similarly, the larger the angle between the real 

planetary orbit surface and the red line in Figure 5, the more obvious the precession. 

In 1915, Albert Einstein published in [1915, p. 839][9] a formula for the relativistic 

perihelion shift, for one period, of 

 , (36) 



 

 

where according to contemporary data T is the orbital period of planet, e is the 

eccentricity of its elliptical orbit, a is the length of its corresponding semimajor axis, and c 

is the speed of light in vacuum. 

 , (37) 

here τ = 3155814954 s is the number of seconds in one century. We can also use a 

simplified calculation formula of GR. 

 . (38) 

From the formulas (37) and (38), GR does not consider the angle between the real 

planet’s orbital plane and the Sun’s vertical plane (the red line in Figure 5), and the 

eccentricity of the orbit is not the main factor either, when calculating the planetary 

precession. However, we must consider them as the main factors in the data calculated by 

formula (35). These may be the biggest differences between the two. Below, we substitute 

the R and T values of each planet (see Figure 7) for GR calculation. 

 

Figure 7: Data for the major planets in the solar system, giving the planetary mass relative 

to that of the Sun, the orbital period in years, and the mean orbital radius relative to that 

of Earth. 

The calculated precession data of each planet per century is as follows: 

Mercury 41.06” 

Venus 8.6” 

Earth 3.83” 

Mars 1.34” 



 

 

Jupiter 0.062” 

Saturn 0.0136” 

Uranus 0.00238” 

But we must note that when GR calculates the planet precession deviation, it ignores 

the rotation of the Sun around the center of mass of the solar system and the influence of 

planets on the Sun’s gravity. GR constructs an idealized 1-body model. 1-body means there 

is only one planet in the solar system. 

In order to maintain consistency with GR, we also made the same omission, 

constructed the same 1-body ideal model, and calculated the precession of each planet. If 

we want the calculated results to be closer to the real 1-body system, we cannot ignore the 

influence of the planets on the Sun, nor the rotation of the Sun around the center of mass 

of the 1-body system. We have made a clear comparison of all calculated data in the table 

below. We can see that the gravitational model constructed according to formula (35), 

without considering the influence of gravitational waves (that is, classical Newtonian 

mechanics), the planet precession is zero. And considering the influence of gravitational 

waves, the planet precession in the 1-body system is relatively close to the results 

calculated by GR. We did not find the data of GR in the real 1-body system, but according 

to the analysis of GR, the changes in the data are very small. The data we calculated using 

the gravitational wave theory also reflected this.(The precession data in the paper are all 

calculated after the perihelion is projected onto the x-y plane.) 

 

Figure 8: 1-body planetary orbit precession per century 

Except for Venus’s precession data of 169” vs 8.6”, the data of other planets are 

relatively close to GR. 

Let us examine the characteristics of Venus: Venus’s eccentricity is abnormally low (e 

= 0.0068), which makes its perihelion extremely sensitive to small disturbances. However, 

the angle between its orbit and the vertical plane of the Sun is very large (3.39 ); thus, we 

have reason to believe that gravitational waves will have a significant influence on the 

orbital precession of Venus. 



 

 

Why is the data of Venus (169” vs 8.6”) so different? From formulas (37) and (38), it 

can be determined that GR does not take eccentricity as the main factor and does not 

consider the angle between the orbital surface and the vertical surface of the Sun. Under 

different eccentricities and angles, the precession data calculated by GR remains the same. 

This may be the reason for the large difference between the two. 

We know that the famous Mercury Precession 43” comes from the comparison 

between the calculated data of the planetary orbit of the solar system by Newton’s classical 

mechanics and the astronomical observation data. This requires the calculation of all the 

planets in the solar system, the gravitational force between the planets and the Sun, the 

gravitational force between the planets, and the rotation of the Sun around the center of 

mass of the solar system to construct a real N-body system. Then it is necessary to 

calculate the planet precession data under and without the influence of gravitational 

waves. Since GR does not provide planetary precession data under the N-body system, it 

cannot be compared with GR. We can see that the data under the action of gravitational 

waves are different. For Mercury, the difference between the two is close to the data under 

the 1-body model 43”. (The initial coordinates (x, y, z) and initial velocity (vx, vy, vz) datas 

of the planets and the Sun used in this paper are all from NASA’s Horizons System 

https://ssd.jpl.nasa.gov/horizons/.) 

 

Figure 9: N-Body planetary orbit precession per century 

In addition, we must emphasize that the common period of the orbits of the eight 

planets in the solar system is very huge, so it is difficult for us to obtain the orbital 

precession laws of planets with very small eccentricities through short-term calculations. 

Through 200 years of astronomical observations, we also cannot get the periodic 

precession laws of all planets, and it takes longer to observe. But for Mercury and Mars, 

their eccentricity is relatively large, and we can easily get their approximate general laws 

through calculations or astronomical observations. 



 

 

Since the orbital data is obtained through integration in the time domain, the averaged 

precession data obtained in each orbital period has a certain range of variation. The data 

in the following table is a piece of data randomly selected after 4000 Mercury cycles. We 

can see that the precession data is changing. As time increases, this change will be further 

statistically averaged and gradually reduced. We can see that the influence of gravitational 

waves on Mercury’s precession also changes around 39”. 

 

Figure 10: Mercury precession data per century 

In addition to causing planetary precession, gravitational waves also cause planets to 

move away from the Sun. We know there is also a general Doppler effect between the 

planet’s revolution velocity and the gravitational waves caused by the Sun. The previous 

3.2 ”Energy Conservation” has analyzed the influence of the general Doppler effect on 

orbital energy. Gravitational waves also cause the planetary orbital mechanical energy to 

continue to increase; this causes planets to gradually move away from the Sun. 

We applied this gravitational theory to calculate the detailed planetary orbit data (x, y, 

z), and used 3D technology to draw these data, as shown in Figure 11 and Figure 12, we 

can clearly observe the orbits of the Sun and planets around the center of mass of the solar 

system. As shown in Figure 13, when we magnify the z-axis data by 10 times, we can clearly 

see the angle between the planetary orbital surfaces. 



 

 

 

Figure 11: Sun rotation orbit 

 

Figure 12: Planetary orbit 



 

 

 

Figure 13: The angle between the planetary orbital surfaces 

GR believes that the speed of gravity is equal to the speed of light. If this is true, then 

the orbits of the planets and the Sun in the solar system should at least remain stable. We 

have added the gravitational speed parameter to the program, which can be set arbitrarily, 

such as equal to 0.1c, equal to c, equal to 100c, and so on. Especially in a binary star system 

(1-body), when the gravitational speed parameter is set to c, we can clearly observe that 

the orbits of the planets and the Sun will no longer be stable. As shown in Figure 14(a), the 

solar orbit will spiral in a certain direction. By simulating different gravitational speeds, 

we have come to the conclusion that the lower the gravitational speed, the more unstable 

the solar system. The theoretical basis of GR is that the speed of gravity is equal to the 

speed of light, but the accuracy of the orbit simulation is not reflected. Even if the space-

time is curved, the orbit will not remain stable. 

 

Figure 14: The orbit of the Sun at different gravitational speeds. 

As shown in Figure 15, we have built a very simple Sun-Earth model. If the 

gravitational speed is equal to the speed of light, the gravitational force of the Sun will be 

delayed for 8 minutes, then the gravitational force of the Sun on the Earth will come from 

S1 instead of the true position S0, so there will be a component F1 that is opposite to the 

orbital velocity of the Sun, under the action of F1 , The Earth will move to the left, as shown 

in Figure 16(a). Finally, the earth will follow S1, as shown in Figure 16(b), which is 

inconsistent with the real solar system. 



 

 

 

Figure 15: Sun-Earth model at the gravitational speed equal to the speed of light 

6 Einstein–Infeld–Hoffmann Equations 

The Einstein–Infeld–Hoffmann equations[11] of motion, jointly derived by Albert Einstein, 

Leopold Infeld and Banesh Hoffmann, are the differential equations of motion describing 

the approximate dynamics of a system of point-like masses due to their mutual 

gravitational interactions, including general relativistic effects. It uses a first-order post-

Newtonian expansion and thus is valid in the limit where the velocities of the bodies are 

small compared to the speed of light and where the gravitational fields affecting them are 

correspondingly weak. Given a system of N bodies, labelled by indices A = 1, ..., N, the 

barycentric acceleration vector of body A is given by: 



 

 

 

Figure 16: Einstein–Infeld–Hoffmann equations 

The coordinates used here are harmonic. The first term on the right hand side is the 

Newtonian gravitational acceleration at A; in the limit as c → ∞, one recovers Newton’s 

law of motion. It seems that this equation is perfect. 

The Einstein-Infeld-Hoffmann equations are a weak field linearized version of GR that 

are appropriate when the curvature of spacetime is not too severe. This is certainly the 

case in the Solar System. The full nonlinear version of GR is only needed in situations in 

which the curvature of spacetime is severe, such as in the immediate vicinity of a black 

hole. The speed of gravitational effects in the Einstein-Infeld-Hoffmann equations is the 

speed of light, which is why c appears in these equations. However, the corrections to 

planetary orbits, relative to Newtonian dynamics, predicted by the Einstein-

InfeldHoffmann equations are very minor. 

We can simplify this equation. We only consider the binary star system. There are only 

two objects A and B. When the mass of B is much greater than the mass of A, vB is 

approximately equal to 0, so the equation is simplified to an equation with only A. 



 

 

When the speed of the gravitational field is much greater than c, then it is Newtonian 

gravitation. c → ∞, one recovers Newton’s law of motion, there seems to be no problem. 

When the speed of the gravitational field is much smaller than c, then the result of this 

equation has almost nothing to do with Newtonian gravity. c → 0, force on A and B will 

both be very huge, which is very illogical! 

The equations in question are the first few terms on an expansion, so obviously the 

equations do not give a sensible answer when c goes to zero because the expansion breaks 

down. Therefore, I believe that the equation is a mathematical model established under 

the assumption that the gravitational speed is equal to c to describe the planetary orbit 

under N-BODY. But it does not really describe the physical properties of gravity. 

7 Conclusion 

The discovery of gravitational waves provides a new way for us to understand the 

universe, however, the speed of gravitational waves does not represent the speed of 

gravitational fields. The speed of action of gravitational fields is much greater than the 

speed of gravitational waves. As stated by Newton: Gravity is an action-at-a-distance force. 

Gravitational waves caused by the revolution of the Sun affect the orbits of planets and 

provide some planetary precession data. The general Doppler effect of gravitational waves 

also causes the planetary orbital mechanical energy to continue to increase slowly until 

the planet escapes from the solar system. Gravitational waves exist; the gravitational 

model under the influence of gravitational waves that we constructed was a physical 

model. Through the calculation of planetary orbital precession, the correctness of the 

gravity equation under the action of gravitational waves is verified, indicating that the 

gravitational physical model has research value. From Newton to Pierre-Simon Laplace 

have realized that the speed of gravity on objects is very huge. But this view is not 

consistent with GR. I don’t know if GR is the only solution to gravity. If not, then the gravity 

model under the influence of gravitational waves provides a new way for humans to study 

the universe. 

Finally, we also ask the following questions: 

Is the acceleration of planetary orbits caused by the gravitational wave general 

Doppler effect related to the accelerated expansion of the universe? 

Is there an association between the action-at-a-distance of the gravitational field and 

that in quantum mechanics? 
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