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Abstract: In earlier work, we previously established a formalism that allows to express the exchange energy 

J vs. fundamental molecular integrals without crystal field, for a fragment A–X–B, where A and B are 3d1 ions 

and X is a closed-shell diamagnetic ligand. In this article, we recall this formalism and give a physical 

interpretation: we may rigorously predict the ferromagnetic (J < 0) or antiferromagnetic (J > 0) character of 

the isotropic (Heisenberg) spin-spin exchange coupling. We generalize our results to ndm ions (3 ≤ n ≤ 5, 1 ≤ 

m ≤ 10). By introducing a crystal field we show that, starting from an isotropic (Heisenberg) exchange coupling 

when there is no crystal field, the appearance of a crystal field induces an anisotropy of exchange coupling, 

thus leading to a z-z (Ising-like) coupling or a x-y one. Finally, we discuss the effects of a weak crystal field 

magnitude (3d ions) compared to a stronger (4d ions) and even stronger one (5d ions). In the last step, we 

are then able to write the corresponding Hamiltonian exchange as a spin-spin one. 

Keywords: superexchange; magnetic orbital; Anderson model; isotropic and anisotropic spin-spin exchange 

couplings 

 

1. Introduction 

It was necessary to wait until the end of the 1950s to achieve a good understanding of 

superexchange interactions, when Anderson first proposed the theory of coupling between 

identical ions, characterized by a 3dm electronic configuration without orbital degeneracy (m = 1) 

[1,2], later generalized to m > 1. In this case, the exchange Hamiltonian is of the Heisenberg–

Dirac type: Js1.s2. Anderson’s publication has become the starting point for generalizations, 

notably with the introduction of orbital degeneracy [2–9]. 

We have proposed a first generalization of the various mechanisms involved in 

superexchange for identical 3d1 ions: the exchange energy constant J has been expressed vs. 

fundamental molecular integrals, characterizing each of the σ–type bonds created by the 

presence of a diamagnetic ligand and a similar (or different) magnetic ion [10]. 

What is new in this paper? So far, no physical interpretation has been brought. In this 

article, we give the physical interpretation, and we generalize to ions ndm (3 ≤ n ≤ 5, 1 ≤ m ≤ 10). 

In addition, we rigorously show for the first time that the Hamiltonian is given by Jsi.sj, where J is 

the “exchange constant”. The key physical points are as follows: 

• J is expressed vs. fundamental molecular integrals in the absence of a crystal field, uniquely, 

for the sake of simplicity; we show that the introduction of a crystal field may be achieved 

very easily, thus allowing us to discuss further the notion of anisotropic couplings; 

• For the first time, we may rigorously predict the ferromagnetic (J < 0) or antiferromagnetic 

(J > 0) character of spin-spin couplings whereas, so far, we have dealt with empirical rules, 

i.e., the Goodenough–Kanamori rules published between the middle of the 1950s and the 

beginning of the 1960s [11–14]. 

At that time, the magnetic compounds of interest were essentially the oxides and fluorides 

of transition elements, as well as “natural” garnets, notably ferrites. The Goodenough– Kanamori 

rules gave satisfactory results regarding the sign of J but there were some failures. 
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Indeed, although these rules can predict ferromagnetic and antiferromagnetic arrangements, they 

do not give the magnitude of J. Experimental works have pointed out that superexchange could 

also lead to ferromagnetic spin arrangements but with a magnitude of J not predicted by 

Anderson’s model, which mainly predicted antiferromagnetic arrangements [11]. As a result, the 

first improvements to Anderson’s model have consisted of taking into account polarization effects 

[3], thus leading researchers to introduce perturbation expansions of the initial model; however, 

this turned out to be insufficient. 

In addition, at the beginning of the 1990s, new magnetic compounds that did not exist in 

nature were synthetized [15–18]. These “synthetized” compounds were in opposition to the 

“natural” ones encountered until they were characterized by the introduction of organic ligands 

of variable length between magnetic cations. Their introduction deeply undermined the previous 

interpretation of the J sign. This is the reason for which: 

• Here, without a crystal field, we deal with a theoretical model, from which we derive the 

conclusion that when coulombic interactions are dominant, our model follows Hund’s rule 

and we explain why couplings are automatically ferromagnetic; when coulombic interactions 

are no longer dominant, our model is equivalent to the molecular orbital one and couplings 

are always antiferromagnetic (except in a particular case, where couplings are ferromagnetic 

but present a small absolute value of J); 

• By introducing the notion of a crystal field, we discuss how passing from an isotropic 

(Heisenberg) coupling to an anisotropic one (z-z, i.e., an Ising-like coupling or an x-y one); in 

addition, from the theoretical expression of J, we may also predict the ferromagnetic (J < 0) 

or antiferromagnetic (J > 0) character of spin-spin couplings as in the absence of a crystal 

field, which is the key finding of this article. 

In addition, in each case, the model allows us to express the magnitude of J for any sign. In 

this review article, we do not consider the polarization effect of the involved bonds. 

As a result, the paper is ordered as follows. Section 2 is devoted to the microscopic 

mechanisms involved in superexchange. We consider the most general case of two different 

magnetic 3d1 ions, A and B, characterized by σ–type bonds on each side of the diamagnetic 

bridge, X. The cationic orbitals are of a d-type for A and B, whereas that of the diamagnetic ligand 

X is of the s- or p-type. We notably define and justify the general assumptions used for 

developing our theoretical model. 

Under these conditions, we show that this general treatment allows the researcher to 

calculate superexchange interaction within the isolated fragment A–X–B through the construction 

of the intermediate cationic states, which leads to the determination of the collective state. The 

matrix associated with the corresponding Hamiltonian is logically derived, as well as the energy 

spectrum. By doing so, the corresponding exchange energy J is expressed vs. the key molecular 

integrals characterizing the two σ bonds of A–X–B. 

In Section 3, we give a full closed-form expression for J vs. key molecular integrals as well as 

physical interpretations. As a result, it becomes possible to predict and interpret the sign of J as 

well as its magnitude. 

Finally, we introduce the important concept of crystal field theory. We do not discuss the 

effect of the crystal field in the splitting of orbital degeneracy. We exclusively discuss its effect on 

the nature of exchange energy J involved in the coupling of first-nearest spin neighbors. We show 

that, starting from an isotropic (Heisenberg) exchange coupling when there is no crystal field, the 

appearance of a crystal field induces an anisotropy of exchange coupling thus leading to a z-z 

(Ising-like) coupling or a x-y one. For the sake of simplicity, we do not consider the other cases. 

Thus, we only discuss the effects of a weak crystal field magnitude (3d ions) compared to a 

stronger (4d ions) and even stronger one (5d ions). 

In a final step, without a crystal field (isotropic couplings) or with a crystal field 

(anisotropic couplings), we are then able to write the corresponding Hamiltonian exchange as a 

spin-spin exchange. 

2. Microscopic Mechanisms Involved in Superexchange 

2.1. Basic Physical Considerations 



 

2.1.1. Generalities and Hund’s Rules 

When considering lattices composed of transition ions, there is a more or less important 

effect coming from the electrostatic potential due to the ionic environment: this effect is well 

known as that of the “crystal field”. It, finally, describes the coulombic interactions inside the ionic 

cage in which the transition ion is inserted. When considering the electronic shells responsible for 

the magnetic properties, d orbitals are the most external shells of the ion. As a result, d orbitals 

are more “sensitive” to an external potential i.e., the crystal field. 

Thus, for 3d orbitals, we deal with a (more or less) weak crystal field. Oppositely the crystal 

field is strong when dealing with 4d and 5d orbitals. This can be simply explained by the fact that, 

when passing from a 3d ion to a 5d one, the mean radius of the ion increases, whereas the same 

surrounding cage under consideration, in which the ion is inserted, shows similar dimensions. As 

a result, the magnitude of coulombic interactions also increases. These findings allow us to directly 

lead to the determination of adequate orbitals describing the ion’s magnetic properties. 

Hund’s rules allow the determination of the orbital and spin momenta characterizing the 

ion’s ground state. In fact, these rules try to explain how Coulomb repulsion and Pauli’s exclusion 

principle must be considered simultaneously [10]. If S = Smax, L = Lmax 

(for S = Smax) compatible with the exclusion principle are the respective values of the spin and orbit 

momenta along a z-axis of reference, the total momentum is J = L + S. If the external electronic 

shell is at most half-filled (L and S are antiparallel) J = |L − S|. If the shell is more than half-filled (L 

and S parallel)J = L + S (the unoccupied orbitals being considered as holes). 

In Figure 1, we have reported the values of spin and orbital momenta characterizing a 

3d, 4d or 5d external shell. The simplest situation is the electronic configuration 3d1 (ions V4+ and 

Ti3+), where a single orbital is filled. Thus, according to Hund’s rules, the orbital momentum 

vanishes (L = 0, S = 5/2) at mid-filling of the 3d shell (case, 3d5, the ions, Fe3+ and Mn2+). As a 

result, the configuration 3d6 (the ion, Fe2+, L = 2, S = 2) is equivalent to the case 3d4 (the ions Mn3+ 

and Cr2+). Similarly, the configuration 3d1 (ions V4+ and Ti3+, L = 2, S = 1/2) is equivalent to the case 

3d9 (ion Cu2+), and so on. 

 

Figure 1. Values of spin S and orbital L momenta of an isolated transition ion, characterized by electronic 

shells 3dm, 4dm or 5dm (1 ≤ m ≤ 10). 

It is well known that for transition ions considered in the ground state, the orbital momentum 

is quenched. As a result, the magnetic properties of such a kind of ion are exclusively due to its spin 

momentum. Thus, when considering the formal coupling of two spins, each one belonging to a 

magnetic center, one can speak about direct exchange. If these ions are isolated, we deal with an 

isotropic (Heisenberg) coupling. If a diamagnetic ligand, X, is inserted between two magnetic 

centers, A and B, the entity A–X–B also shows magnetic properties. In that case, we have an 

indirect exchange between A and B through X, also known as superexchange. 

In this article, in a first step, we exclusively consider the “toy model” of two magnetic centers, 

A and B, i.e., two transition ions, 3d1, characterized by a single spin, , and coupled through a 

diamagnetic ligand X without a crystal field. Then we introduce a crystal field contribution. As it is 

one of the main sources of anisotropy for exchange, we shall discuss its influence on the nature of 

anisotropic couplings (z-z – Ising-type – or x-y couplings). 



 

In a second step, we generalize the corresponding results in the case of 3dm ions 

(1 < m ≤ 10), i.e., ions such as S > . In both cases, we consider a situation in which there is no 

crystal field and one for which a crystal field is introduced. 

2.1.2. The First “Historical” Model Proposed by Anderson for Superexchange 

In order to explain the magnetic properties of a wide class of materials, such as oxides and 

fluorides of transition elements and also including “natural” garnets (notably ferrites), Anderson 

proposed a model explaining the “indirect” exchange phenomenon arising between magnetic 

centers, in spite of the fact that they were surrounded by nonmagnetic entities: this is the 

superexchange phenomenon [1–4]. According to Anderson [4], “superexchange acquired its name 

because of the relatively large distances over which the exchange effect was often found to act 

between ions, radicals or molecules”. 

However, he knew that superexchange never occurs in a classical ferromagnet, i.e., a medium 

in which the magnetic centers are characterized by a spin quantum number, S, such as S ≥ 5/2, 

even if it is diluted inside a paramagnetic metal where there are long distances between the 

ferromagnetic and paramagnetic entities characterized by d orbitals. Why? Taking into account 

this important experimental observation, Anderson concluded that the origin of this phenomenon 

was purely quantum because any classical interpretation failed. 

As a result, in a first step, Anderson made the following “reasonable” assumptions: 

• The direct overlap of the involved wave functions characterizing the pair of magnetic sites A 

and B separated by the non-magnetic ligand X vanishes; 

• The ligand wave function is weakly modified by the presence of magnetic ions; 

• This modification confers a magnetic character that is the origin of the exchange interactions 

between the pair of magnetic ions through the non-magnetic ligand. 

In a second step, Anderson considered the simplest modification for describing the 

unavoidable exchange between magnetic sites A and B through the non-magnetic ligand X: the 

transfer of one electron of the ligand X characterized by a full s- or p-external shell into the d-

external shell of the magnetic ion A (or B) (cf. Figure 2). This assumption was based on the 

following results: 

• Experimental measurements confirmed the transfer while examining the hyperfine 

interaction between the ligand nuclear spin and that of the magnetic ion; 

• It has been graphically demonstrated that the ligand wave function is partially magnetic with 

the expected degrees; 

• The electronic transfer of the up (or down) spin of ligand X to the empty left (or right) d orbital 

must remain ballistic, i.e., it conserves the spin so that it leads to an antiferromagnetic 

coupling; 

• The comparison between experimental results obtained for a diluted or a concentrated 

sample of the same compound shows that the electronic transfer is weak so that the involved 

wave functions are weakly disturbed [19–25]. 



 

 

Figure 2. “Ground” and “excited” configurations in the original superexchange process for the sequence A–

X–A; the electronic configuration of the valence shell has been added for each ion (in our case, A = Mn, X = O, 

for instance); due to the weak overlap, coefficients a and b are small. In the present case, the electronic 

transfer is from X to A but it can also occur from X to B, indifferently (here, B = A). 

As a result, if ψionic(Stot) and ψexcited(Stot) are the respective wave functions of the starting ionic 

configuration and the excited one, the final state of the entity A–X–A is described via the global 

wave function ψ(Stot) = aψionic(Stot) + bψexcited(Stot), where a and b are small. 

Anderson has defined the electronic transfer by the integral 
b

mm  

(T + V)ϕm0(r − (n + τ)), m and m’ labeling the corresponding involved orbitals, with one electron 

per d orbital. H = T + V is the electronic Hamiltonian, where T is the kinetic energy and V, the 

potential one. The variables r and n allow us to define the position of the concerned electron(s) 

and the τ’s represent the fundamental translations of the lattice. Due to lattice periodicity, the 

function ϕm is a Wannier function. This contribution has been called kinetic exchange because, 

during the formation of the weak chemical bond between A and X, the antiferromagnetic 

coupling of electronic spins is characterized by a gain in kinetic energy. If U is the coulombic 

repulsion energy, Anderson has defined the corresponding exchange energy as Jm,m’ (kinetic) = 

−2b m,m’ (τ)2/U. 

When the unpaired electrons belong to orthogonal orbitals spins are coupled 

ferromagnetically, the corresponding contribution is given by an integral of the type 

Jmm0(potential) = . It is 

positive because the electrons “try” to avoid themselves through the Fermi hole that appears 

when spins are parallel (this hole becomes less repulsive when electrons are “closer”). Anderson 

called this contribution potential exchange. 

The total exchange is finally Jmm’ = Jmm’(potential) + Jmm’(kinetic), with the conventional writing 

of an exchange Hamiltonian, −2Jm,m0sA
m.sB

m0 for a couple of d bands (m,m’), with one d band per 

ion [2,3,24]. 

Finally, one may search for the physical origin of the electronic transfer occurring between 

species A (or B) and X. It is correlated to the creation of a hole in the external electronic shell that 

the electron has left behind, so that we have to consider an electron-hole couple when describing 

the electronic transfer. At this stage, we may guess, from now on, that coulombic interactions are 

going to play a fundamental role. Under these conditions, we deal with a Mott-Wannier exciton 



 

because it must occur not only on the whole dimer A–X–B but also over a long distance in a crystal 

composed of unit cells A–X–B. 

2.2. Starting Assumptions 

2.2.1. Assumption 1 

In this section, we detail the general formalism allowing us to describe the superexchange 

phenomenon for a centrosymmetric entity AXB, where A and B are two magnetic sites and X is a 

closed-shell diamagnetic ligand (with one unpaired electron labeled 1, belonging to A, and electron 

2 for the one transferred from X to A, for the fragment A–X). In our case, as we deal with a linear 

entity, A–X–B, we have no Jahn–Teller effect [26,27] and no polarization of the bonds A–X and X–

B. 

This model is built without the presence of a crystal field and exclusively concerns the case 

of 3d ions (3d1 in a first step, then 3dm ions, 1 < m ≤ 10). Regarding the compounds whose magnetic 

properties may be described, we have “natural” compounds, such as oxides, fluorides, and garnets 

(notably ferrites), that we call “Class I compounds”. In these compounds, the average size of the 

ligand orbital (p orbital) is close to that of the magnetic cation (d orbital). With the appearance of 

new “synthetized” magnetic compounds at the beginning of the 1990s, the magnetic cations are 

well separated by more or less long organic ligands [15–18]. In other words, the average size of a 

cation orbital is plainly lower than that of a ligand. We call these compounds “Class II compounds”. 

From a physical point of view, for “Class I compounds”, the coulombic interactions between 

magnetic cations are dominant but in the case of “Class II compounds”, their influence becomes 

negligible. In both cases, we shall fix the common physical limit that allows the separation of both 

magnetic regimes. 

As a result, the fragment A–X is characterized by the following two-particle Hamiltonian: 

e2 

 HAX = T1 + V1 + T2 + V2 + , r12 = |r1 − r2|. (1) 

4πε0r12 

Ti = −}2∇2
i /2me is the electronic kinetic energy operator, where me is the electron mass. The 

potential operators V1 = V(r1) and V2 = V(r2) include all the nucleus and extra electron contributions 

to the Coulomb field acting on electrons 1 and 2, involved in the σ bond of the fragment A–X. The 

unique electron 1 comes from the 3d1 external shell of the magnetic ion A, and electron 2 comes 

from the full external electronic shell of ligand X. As a result, we work within the framework of the 

Hartree–Fock approximation, i.e., the action of extra electrons over electrons 1 and 2 is taken into 

account through a mean-field approximation. 

A similar Hamiltonian HXB may be written for the fragment X–B (with HAX = HXB when A = B). 

The electron coming from the external shell of X is labeled 3, and the one coming from B is labeled 

4. All the physical quantities derived from the Hamiltonian HAX (respectively, HXB) are labeled QAX 

for part A–X (respectively, QXB for part X–B). 

2.2.2. Assumption 2 

The potential operator V(r) commutes with any symmetry operator O whose action is 

described by the properties of a double group G with the identity operation 1. As we deal with a 

two-electron problem on both sides of ligand X, separately, the two low-lying states of the bonds 

A–X and X–B are a spin-singlet and a spin-triplet. Indeed, if the spin wave function

 > describes the spin states, 

we have four possible pairings: |↑↑>,|↑↓>, |↓↑> and |↓↓>. If S  we have two 

classes of possibilities for writing the spin wave function: 

• |0, 0> =√1  (|↑↓> − |↓↑>), S = 0 (singlet state), 
2 

•  S = 1 (triplet state). 



 

The singlet state is odd with respect to the interchange of s1 and s2, while the triplet state is 

even. 

2.2.3. Assumption 3 

If Φa(r1), respectively, Φb(r2) describes the eigenstate of the Hamiltonian H1 = T1 =p1
2/2me, 

where me is the electron mass, respectively, H2 = T2 = p2
2/2me, the secular equation det(H−E1) = 0 

(where 1 is the identity matrix and H = T1 + T2 + U(r1,r2)) can be solved (cf. Equation (1)). The 

solutions are spatially symmetric and antisymmetric wave functions,√ 

 

i.e., ΦS/A(r1, r2) = (Φa(r1)Φb(r2) ± Φa(r2)Φb(r1))/ 2, with <ΦS(r1,r2)|ΦA(r1,r2)> = 0 by 

construction. 

2.2.4. Assumption 4 

As there is no spin-orbit coupling, the collective wave function describing the coupling of a 

pair of electrons is as appears in Ψ(u1,u2) = Φ(r1,r2)χ(s1,s2), where ui = (ri,si). When combining the 

respective parity properties of functions Φ(r1,r2) and χ(s1,s2) with Pauli’s exclusion principle, we 

must have: 

• S = 0 χ(s1,s2) = |s1,s2> odd, Φ(r1,r2) = ΦS(r1,r2) even, • S = 1 

χ(s1,s2) = |s1,s2> even, Φ(r1,r2) = ΦA(r1,r2) odd. 

It means that a singlet state (S = 0) is a non-magnetic state (i.e., a purely diamagnetic state) 

whereas the triplet state (S = 1) is a magnetic one. 

2.2.5. Assumption 5 

If Γ1/2 is the representation of a spin , and if coupling a pair of these spins, we then have to 

consider the operation Γ1/2 ⊗ Γ1/2 = Γ0 ⊕ Γ1, where ⊕ is the direct sum symbol. Γ0 and Γ1 are the 

corresponding irreducible representatives (irrep) with dim Γ0 = 1, dim Γ1 = 3 and dim (Γ1/2 ⊗ Γ1/2) = 

4. 

2.2.6. Assumption 6 

If considering the energy levels of the entity A-X-B they are sufficiently close in energy to be 

both populated at room temperature. In Figure 3 we have reported the radial behavior of V(r) as 

well as that of energy for the AXB entity. The three corresponding atomic orbitals which are 

magnetic orbitals [28–30] are ΦA and ΦB centered on A and B, respectively, and ΦX centered on 

the bridge, X. The corresponding states are |A>, |B> and |X>. ΦA, ΦB and 

ΦX are assumed to be real and are considered as starting (non-disturbed) wave functions 

i.e., free atomic wave functions that give a spatial description of each of the states |A>, |B> or 

|X>. In the present case, ΦA and ΦB are cationic d-orbitals and ΦX is an anionic (s or p) orbital. 

 

Figure 3. Radial behavior of energy for the centrosymmetric entity AXB in the general case of different 

magnetic sites (A 6= B) on both sides of ligand X. 

2.2.7. Assumption 7 

The following treatment is based on the symmetry group of the entity under consideration. 

The determination of this group is essential to find the relevant atomic orbitals which are 



 

permitted to combine in order to form “molecular” orbitals. Let us recall that the electrons that 

are important are those belonging to the valence shell of A, B and X, respectively. 

2.2.8. Assumption 8 

We have the following properties based on the symmetry problem, notably on the fact that 

A and B are far apart and without interaction. 

 • The states are normalized but not orthogonal (except |A> and |B>): 

 <A|A> = 1, <B|B> = 1 , <X|X> = 1, <A|B> = <B|A> = 0. (2) 

As |A> and |B> are orthogonal (i.e., without overlap) there is no π bond between 

 A and B (but this could be taken into account in the present model). As noted after 

Equation (1), only two unpaired electrons belonging, respectively, to cations A and B participate in 

the creation of a bond on each side of the central ligand X, the other electrons being considered 

as passive. This is the active-electron approximation, which is plainly justified from an 

experimental point of view. 

• The overlap between A and X on the one hand, and X and B on the other one, are defined as 

follows: 

 <A|X> = sA, <X|B> = sB, sA > 0, sB > 0. (3) 

In the particular case where A = B (degenerate case), then sA = sB = s > 0. 

• Both magnetic sites A and B have a cationic energy level higher than the anionic one, as is 

generally the case for transition metal compounds; the energy difference between A and X 

levels (respectively, X and B levels) is 2δAEA, with EA > 0 (respectively, 2δBEB, with EB > 0), so 

that we have for the fragment A–X linked to X–B: 

<A|(T1 + V1) |A> = − (1 − δA)EA, <B|(T4 + V4)|B> = − (1 − δB)EB, 

<X|(T2 + V2)|X> = − (1 + δA)EA, EA > 0, <X|(T3 + V3)|X> = − (1 + δB)EB, EB > 0¸ A 6= B, 

(4) 

<A|(T1 + V1)|A> = <B|(T4 + V4)|B> = − (1 − δ)E, 

<X|(T2 + V2)|X> = <X|(T3 + V3)|X> = − (1 + δ)E, E > 0, A = B. δA < 1 for fragment A–X (respectively, δB 

for fragment X−B) but is not necessarily small. δi > 0 (with i = A or B) is a very common scenario, 

and δi < 0 corresponds to the particular case of the dihydrogen molecule (with A = B, X being absent 

in that particular case). 

A similar remark may be made for δAB, which is defined by an analogy with respect to δA and 

characterizes the link between fragments A–X and X–B. In Figure 3, we also note that, due to the 

stabilization of AXB during the creation of the bonds A–X and X–B, we do have −(1 + δA)EA = −(1 + 

δB)EB. Of course, when A = B, δA = δAB = δB. 

• The transfer integrals between |A> and |X> on the one hand, and |X> and |B> on the other 

hand, are given by: 

 <A|(T2 + V2)|X> = − tAXEA, <X|(T3 + V3)|B> = − tXBEB, <A|(Ti + V i)|B> = 0, i = 1,4. (5) 

If A = B, tAX = tXB > 0, but when A 6= B, tAX 6= tXB > 0. The previous equation, stating that 

there is no transfer between A and B but exclusively between A and X or X and B, is a 

consequence of the condition imposed by Equation (2). However, as previously noted, the case 

<A|(T1 + V1)|B> 6= 0 may be introduced in a more general model, without difficulty, notably by 

the bias of an π orbital between A and B. 

• sA, tAX and tXB are small compared to unity, and tAX or tXB is mainly related to the potential 

interaction between the anion and the cation, so that: 

 −tAXEA  EA, (6) 



 

where ∆0A is as defined in Figure 3. A similar relationship may be written for X−B, with ∆0B also 

defined in Figure 3. 

2.3. Expression of the Intermediate “Cationic” States 

In this subsection, we exclusively consider the orbital (radial) part of the total wave 

function. As there is no direct overlap, i.e., no direct transfer between A and B, any exchange 

interaction between electrons belonging to the magnetic sites A and B automatically occurs 

through the anionic intermediate bridge, X. We use the starting rules suggested by Anderson 

[10]: 

• The first rule consists of treating the extra electrons in terms of the simple one-electron 

Hartree–Fock functions; 

• The second rule is treating them as excitations of a many-body system; this operation is 

achieved while keeping a constant value for the total spin involved, Stot; this leads us to 

consider an ionic part for centers A and B and an excited one for the ligand X; 

• As we deal with weak energies involved in the process of excitation, the orbital part ψ(Stot) 

may be written as the following hybridization: ψ(Stot) = aψionic(Stot) + bψexcited(Stot), where the 

coefficients a and b must remain small. 

We diagonalize the one-particle Hamiltonian Ti + Vi (i = 1,2) in the reduced basis {|A>, |X>} 

for the fragment A–X (respectively, Ti + Vi (i = 3,4) in the reduced basis {|X>, |B>} for the fragment 

X−B, separately). The goal of such an operation is to obtain the new cationic (antibonding) 

normalized eigenstates |A> and |B>, such as: 

 |A >= (1 − 
α

A)|A > +
β

A|X >, |B >= 
β

B|X > +(1 − 
α

B)|B > (7) 

where αi and βi (with i = A or B) are real numbers. As we deal with a weak chemical bond between 

A and X (respectively, between X and B), βi must remain small, and αi, close to unity. In addition, if 

using the normalization condition <A|A> = <B|B> = 1, as well as <A|X> = sA, <X|B> = sB (sA > 0, sB > 

0), the new normalization condition <A|A> = 1 and <B|B> = 1 leads to the following equation: 

  A or B, (8) 

characterized by the solution 1 –  (with i = A or B). If defining the 

new direct overlap S, we derive owing to Equation (2): 

S =< A|B >=< B|A >= βBsA(1 − αA) +2β>As0B, A(1 −=αB.B) + βAβB > 0 A 6= B, (9) S = 2βs(1 − 

α) + β 

Setting: 

 SA 0, SB 0, (10) 

where SA and SB are functionals of the various overlaps corresponding to the bonds A–X and X−B, 

respectively, we have: 

 S

  B SA (11) 
A 

and, by reporting in Equation (8), we have: 

 √ √ 

1 − αA = ± 1 − SA, 1√− αB = ± 1 − SB, A 6= B, (12) 1 − α = ± 1 − S, A = B. 



 

From now on, the + sign is conventionally adopted. The new energy is: 

EA =< A|(T1 + V1|)A >, EAB =< B|(T1 + V1)|B >, A 6= B, 

(13) 

 E = EA = EAB = A|(T1 + V1)|A, A = B. 

Thus, if A 6= B (general case), the system is non-degenerate (EA 6= |EB) but, if A = B, we are 

dealing with a degenerate state (E = EA = EB). Introducing the definition of |A> and |B> given by 

Equation (7), we may write, owing to Equations (4) and (5): 

EA tAXEA, 

 EAB tXBEB ,A 6= B, (14) 

E = EA = EAB = −[(1 − α)2(1 − δ) + β2(1 + δ)]E − 2β(1 − α)tE, A = B. 

The undetermined parameter, βi (with i =A or B), may now be chosen so that Ei is minimum, 

i.e., owing to Equation (14), the equation ∂Ei/∂βI = 0, after a few calculations, yields: 

 βA = ±(1 − αA) = ±p1 − SA, βB = ±(1 − αB) = ±p1 − SB (15) 

where SA and SB are given by Equation (10). Thus, βi and 1 − αi (with i = A or B) may show the same 

sign or opposite signs: if βi > 0 (respectively, βi < 0) the state |A > or |B> will be represented by a 

spatially symmetric wave function (respectively, spatially antisymmetric). In addition, as βi is small, 

1 − αi is also small, and αi is close to unity, as expected. Then, using the particular value of βi given 

by Equation (15), the ground state energy is: 

EA = −2 (1 − SA) (1 ∓ tAX)EA, 

EAB = −(1 − SB) [(1 − δAB)EB + (1 + δA)EA ∓ 2tXBEB] , A 6= B, (16) E = EA = EAB = −2(1 − 

S) (1 ∓ t)EA, A = B 

with t = tAX = tXB. The sign ± comes from that of β. We finally define the transfer integral 

TAB as: 

 TAB =< A|(T1 + V1)|B >=< B|(T1 + V1)|A > . (17) 

Proceeding as for S and E, we derive: 

TAB = −βB(1 − αA)tAXEA − βA(1 − αB)2t(XB1E+Bδ–)Eβ, AAβB=(1B,+ δA)EA, A 6= B, (18) T = −2β(1 

− α)tE − β 

with T= TAB = TBA. When A 6= B, we always have TAB = TBA on the condition that 

(1 + δA)EA = (1 + δB)EB (cf. Figure 3). This illustrates the principle of indistinguishability of electrons: 

the electronic transfer may indifferently occur not only from X to A (case 1) but also from X to B 

(case 2), with the same physical effect. However, in both cases, we deal with the coupling of 2 

electrons on the side of A or on the side of B. 

In the particular case where there is no superexchange, we must have S = <A|B> = 

<B|A> = 0, so that αA = αB = 0, βA = βB = 0. From Equations (14) and (18), we derive, as expected, EA 

= −(1 − δA) EA, EB = EAB = −(1 − δB) EB, TAB = 0 (no transfer between A and B). 

Then, using the particular value of βi, (with i = A or B) given by Equation (15), we 

 have: √ √ 

 TAB = − 1 − SA 1 − SB[(1 + δA)EA ± tAXEA ± tXBEB] , A 6= B, 

(19) 

 T = −(1 − S)(1 + δ ± 2t)E , A = B, 

where the + sign holds for βi > 0 and – holds for βi < 0. As Ei > 0, 1 − Si > 0, 1 + δi > 0 whatever the 

sign of δi EA ≈ EB > 0, and |t|<< 1, T AB (if A 6= B) or T (if A = B) is negative. Thus, before constructing 



 

the collective states, it is clear that SA, EA and TAB (respectively, SB, EB and TBA) appear as the basic 

parameters of the bond A–X (respectively, X−B) and finally characterize the collective states of AXB. 

2.4. Construction of the Collective States 

In this part, we wish to construct the wave function of the collective state describing the 

entity AXB. In the case of a fermionic assembly of N particles, the collective wave function must 

appear as an antisymmetric combination of current terms Ψp1 (u1)Ψp2 (u2) . . . ΨpN (uN), 

where ui = (ri,si) and p1, p2, . . . , pN characterize the states occupied by these fermions. It is given 

by the following Slater determinant: 

 Ψ(u1, u2, . . . , uN) = 

. (20) 

 ! . . . . . . . . . . . . 

  ΨpN (u1) ΨpN (u2) . . . ΨpN  

Thus, the permutation of two particles is assumed by exchanging two columns, so that the 

determinant changes the sign. In addition, if any couple of numbers, pi and pj, is as pi = pj, the 

determinant shows two identical lines and vanishes, in agreement with Pauli’s principle, which 

states that two identic fermions cannot occupy the same state. 

The “cationic” states |A> and |B> defined in the previous subsection may now give rise to 

four “cationic” spin-orbital states |A,+>, |A,−>, |B,+> and |B,−>, from which we may construct, 

in a first step, four “molecular” states characterizing the entity AXB obeying a G symmetry group, 

thus conditioning the nature of the involved “molecular” orbitals. 

Notably, owing to their behavior under the interchange of |A,σ> and |B,σ>, σ = ±1, we call 

them “gerade” (unchanged) or “ungerade” (sign change), labeled g and u, respectively: 

A, σ> +|B, σ>), 

  (21) 

where the overlap S is given by Equation (9). We here transpose the problem of sign change that 

was previously examined when interchanging 2 coupled fermions. Thus the property “gerade” 

(unchanged) is analogous to the triplet character when coupling two electrons whereas the 

property ”ungerade” (sign change) is analogous to the singlet character. 

The coefficients [2(1 ± S)]−1/2 are self-evident normalizing factors and σ = ± recalls the 

nature of the corresponding  spin state (“up” or “down”). At this point, due to the orthogonality 

condition <X ,σ|Y,σ’ > = δXY δσσ’ (with X = A or B), now, we must have <X,σ|X,σ’ > = δσσ’, with X = 

g or u. Then it is easily shown that the related energies are: 

EAg , 

EAu , A 6= B, 

(22) 

EAg, 

EAu , A = B, 

where E and T are defined by Equations (13) and (17), respectively, and the difference of energy 

between the “gerade” and “ungerade” states is: 

 EAg − EAu = 2TAB−1S−(ESA2+EAB), A 6= B, (23) 

 EAg − EAu , A = B, 

that is, as βi, si (with i = A or B), t, tAX, tXB (A = B or A 6= B) and S are small: 



 

EAg − EAu ≈ 2TAB − S(EA + EAB) ≈ 2TAB, A 6= B, 

(24) 

EAg–EAu ≈ 2(T − SE) ≈ −2β2(1 + δ)E ≈ 2T, A = B. 

Thus,EAg − EAu is independent of the sign of βi, as expected, and remains very small. In the 

particular case where there is no superexchange, we recall that S = 0 and T = 0, so that EAg = EAu. 

From a quantum point of view, with two pairs of electrons and four available spin orbitals 

|g,±> and |u,±>, 24 determinantal collective states may then be built on each side of the fragment 

A–X–B. However, due to Pauli’s exclusion principle, coupled to one of indistinguishability, when 

dealing with 4 fermions coupled in pairs (one per centers A and B, 2 for X with one electron possibly 

transferred to A, and one possibly transferred to B), the number of states reduces to  

It means that the collective wave function must automatically be composed of 6 different 

states, each one itself being a 2 × 2 Slater determinant or a linear combination of these 

determinants. 

As a result, let us label |XS,SZ> the collective states. We have X = U (ungerade) or X = 

G (gerade) if referring to the symmetry of the orbital part with respect to the interchange of |A> 

and |B>; S and Sz describe the total spin configuration. We define the collective basic state |X,σ; 

Y,σ’> as the corresponding Slater determinant: 

 

 X,.

 (25) 

Clearly, it is immediately apparent that a combination of a g-type orbital and a utype one 

allows us to obtain a U-type collective state, whereas combining two g- or two u-orbitals gives rise 

to a G-type orbital. As a result, we now may build the six following collective states: 

|U1,1 >=|u, +; g, + >, 

|U1,0 >= √1
2 (|u, +; g, − > +|u, −; g, + >),  

|U1,−1 >= |u, −; g, − >, 

|U0,0 >= √1  (|u, +; g, − > −|u, −; g, + >), 
(26) 

2 

, 

. 

It is very easily checked that these functions are orthogonal by construction. Their spin 

characters may be simply verified by applying to each of the previous collective states the 

convenient total spin operator. Then, introducing the expressions previously obtained for the 

molecular spin-orbital states (cf Equations (21) and (25)), we may ex- 

press |U > and |G0
u

,0> on the basis of the following Slater 

determinants for the fragment A–X−B: 

 , 

A, −; B, + > +|A, +; B, − >), 

 B, +; B, − >), (27) 

, 

. 

Concerning these latter states, it is useful to notice that they may be also expressed by p 

means of the polar and non-polar, normalized (but non-strictly orthogonal) states |G0,0> 
np 



 

and |G0,0>, respectively: 

G , 

(28) 

, 

with: 

B, +; B, − >), 

(29) 

G . 

2.5. The Hamiltonian Matrix and Energy Spectrum 
g 

Now, we calculate the elements of the Hamiltonian matrix in the new basis {|G0,0>, 

|G0
u

,0>, |U0,0>, |U1,1>, |U1,0>, |U1,−1>}. The non-vanishing terms are those existing between states 

belonging to the same irreducible representation (irrep) of the orbital G and spin R symmetry 

groups so that the final group is G ⊗R. As a result, one may expect: 

• Diagonal and off-diagonal terms between |G0
g

,0> and |G0
u

,0>; 

• Only diagonal terms for the states |US,SZ > with S = 0 (Sz = 0) and S = 1 (Sz = 0, ±1); 

• All the diagonal terms of the states |U1,SZ > are equal because we deal with the irrep Γ1⊗Γ3,u. 

Under these conditions, the Hamiltonian matrix is: 

 Gg  

 E0 K 0  0 0 0 

 K E0
Gu 0 0 0 0  

  0 0 E0
U 0 0 0  (30) 

H =  

  0 0 0 E 

 

  0 0 0 0 E1U 0  

 

 0 0 0 0 0 E 

with: 

Gg 

E0, 

 E
0Gu , (31) 

E1U  . 

For the sake of simplicity, we restrict the results to the fragment A1−X−A2 (A = B). 

Then, we define the following quantities: 

UA =< A1|< A1|U1,2|A1 >|A1 >, UB =< A2|< A2|U1,2|A2 >|A2 >= UA = U, A = B 

 C =< A1|< A2|U1,2|A2 > |A1 >, (32) 

γ1 =< A1|< A2|U1,2|A1 >|A2 >, γ2 =< A1|< A1|U1,2|A1 >|A2 > with: 

 < W  ) (33) 



 

0 12 

=|r1−r2|, where r12 

the electron labeled 1 is coming from A, the one labeled 2, from X. The physical meaning of the 

parameters U, C, γ1 and γ2 is simply the following one: 

• U is the Coulomb energy for an electron pair occupying the same site; 

• C is the Coulomb energy for two electrons occupying neighboring sites; 

• γ1 is the Coulomb self-energy of the exchange charge distribution −eΦA(r)ΦB(r) and is, thus, 

referred to as the exchange integral; 

• γ2 appears as the Coulomb energy between the exchange charge distribution and an electron 

charge localized on one site. γ2 is a transfer integral between two cationic orbitals, resulting 

from the effective coulombic potential created by the charge of another electron involved in 

the secular problem; 

• When there is no superexchange, i.e., no exchange between A and B through X, we have γ1 

6= 0 (the exchange charge distribution is restricted to the bond between A and X, X and B), 

γ2 = 0 as there are no more cationic orbitals and U 6= 0, C 6= 0 (the Coulomb energy for two 

electrons is restricted to first neighboring sites: A and X or X and B). 

When A 6= B, UA 6= UB. C, γ1 and γ2 conserve the same definition but not the same value as 

in the case where A = B. 

Under these conditions, the matrix elements given by Equation (31) may easily be calculated: 

 Gg U + C + 2γ + 4γ U + C + 2γ − 4γ 

 1 − S 1 − S 

where EAg, EAu are given by Equation (22) for A = B or A 6= B and U, C, γ1 and γ2 by Equation (32). 

When A 6= B U is replaced by (UA + UB)/2, the contribution of C, γ1 and γ2 is unchanged, though 

showing a different value than in the case where A = B. In addition, by diagonalizing the upper 2 × 
2 matrix in Equation (30), we have the following eigenvalues: 

! 

 E

  (37) 

as well as the diagonal energy terms Ep and Enp for |G0
p

,0> and |G0
np

,0>, respectively: 

 Ep , Enp . (38) 

3. Physical Interpretation 

3.1. Expression of Jm,m0 

E0 = 2EAg + 1 22 , E0Gu = 2EAu + − S1)2 2 , 

 2(1 + S) 2(1 

(34) 

U − C 

 K = 2), 

2(1 − S 

(35) 

E0U = EAg + EAu + U  − γ21 , E1U = EAg + EAu + C − γ21 , A = B, (36) 



 

As just seen in the previous subsection, when comparing the formal coupling of two electrons 

initially isolated, here we deal with: 

• The states |US,SZ > with S = 1 (Sz = 0, ±1) that are associated with a “triplet state”, characterized 

by the eigenvalues E0
U and E1

U(three-times degenerated); and 

• The states |G0
g

,0> and |G0
u

,0> , with S = 0, are associated with a “singlet state”, characterized 

by the eigenvalues E0±,0. 

At this stage, when calling ES,0 and ET,0 the low-energy levels of the singlet and triplet spectra, 

respectively, it is worth recalling that the exchange energy may be defined according to two 

conventional writings: 

• Jm,m0 = ES,0 – ET,0 with the corresponding Hamiltonian exchange Hex = −Jm,m0s1.s2 (convention 1); 

in that case, J < 0 corresponds to an antiferromagnetic arrangement, with ET,0 > ES,0, whereas 

J > 0 corresponds to a ferromagnetic one, with ET,0 < ES,0, where m and m0 are the name of d 

bands located on each side of the ligand X. 

• Jm,m0 = ET,0 – ES,0 with the corresponding Hamiltonian exchange Hex = Jm,m0s1.s2 (convention 2); 

in that case, J > 0 corresponds to an antiferromagnetic arrangement, with ET,0 > ES,0, whereas 

J < 0 corresponds to a ferromagnetic one, also with ET,0 < ES,0. 

As often used by theoreticians, we here adopt convention 2. The spin-spin Hamiltonian Jsi.sj, 

here J = ET,0 – ES,0, is submitted according to a couple of conditions: 

• J << ∆ 

• kBT << ∆ 

where T is the absolute temperature, kB, the Boltzmann’s constant, and ∆ = ES,1 – ES,0; ES,1 is 

the first excited-state energy in the singlet spectrum. 

E0−,0 (respectively, E1
U) is the lowest energy of the singlet (respectively, triplet) spectrum (cf 

Figure 4). Under these conditions, we have: 

 Jm,m  0,0

 (39) 

where E0−,0 and E1
U are given by Equations (34)–(37). The resulting energy level scheme is 

reported in Figure 4. As a result, a general theoretical expression of Jm,m0 may be written for the 

fragment A–X−A: 

 Jm, 1−S 2(1−S2) 

  (40) 

EAg − EAu. 



 

 

Figure 4. Energy level scheme for the AXB centrosymmetric system (with here A = B for the sake of simplicity) 

in the case of dominant coulombic interactions; the difference |EAg−EAu| has been artificially zoomed for 

clarity. J is given by Equations (39) and (43). 

In the physical case of a small overlap S, the previous equation reduces to: 

 Jm,  EAg − EAu 

, (41) 

EAg − EAu ≈ 2(T − SE) ≈ 2T, S << 1 

where E, T, U, C, γ1 and γ2 are, respectively, given by Equations (16), (19) and (32). EAg − EAu ≈ 2T 

represents the electronic energy transfer between the magnetic cations and the non-magnetic 

ligand, in the case of weak overlap (S << 1). 

Now, the physical criterion that allows us to describe compounds for which coulombic 

interactions are dominant naturally appears, i.e., EAg − EAu ≈ 2T < U, and compounds for which 

coulombic interactions become negligible, EAg − EAu ≈ 2T > U. However, we shall see that this first 

classification must also be slightly refined. 

At this stage, it is worth noting that, in the absence of superexchange, there is no electronic 

transfer T = 0 and > EAg− > EAu  0. Let Jm,m0,0 be the corresponding exchange energy, always 

given by Equation (41), in which T = 0, U 6= 0, C 6= 0, γ1 6= 0 but γ2 = 0. We retrieve from Equation 

(41) that Jm,m0,0 = −2γ1, as expected. We just have an exchange between A and X on the one hand, 

and X and B on the other hand, without a connection between A and B. 

In a previous paper [31], we evaluated the exchange energy magnitude between two atoms. 

We have shown that, in the case of a small overlap between A and X, and, if adapting to our 

conventional writing for Hamiltonian (here Hex = Js1.s2), the exchange energy magnitude is J ≈ −(j 

– uS2), where u is the Hartree term (direct term) and j the Fock term (exchange term), respectively, 

defined as: 

u  

and similar expressions when A is replaced by B. If S << 1, on which we focus here, JAX = JXB ≈ j. The 

magnitude of JAX (respectively, JXB) reduces to the Fock (exchange) term, as expected, so that for 

the two bonds, A–X and X−B, considered separately, we have J0 ≈ −2j. If comparing with Equations 

(32) and (33), we have j ≈ 
γ

1 and u = U so that finally we retrieve: 



 

Jm,m0 ,0 = J0 ≈ −2γ1. 

thus, validating Equation (41). 

We derive the difference of exchange energy between the superexchange (J) and no 

superexchange (Jm,m0,0 = J0): 

 Jm,m0 − Jm,m EAg

 Au 0, 

S << 1. 

However, it is worth writing Jm,m0 for the most commonly encountered physical case. Indeed, 

from the definitions of γ2, C, γ1 and U, given by Equation (32), we have the following classification: 

 γ2 << C ≈ γ1 << U (42) 

where the corresponding “physical” values range from tenths of an eV to a few eV. In addition, 

from a mathematical point of view, this classification is also due to the respective values of r1 and 

r2 (cf. Equations (32) and (33)) appearing in the arguments of the functions, giving the spatial 

behavior of the involved atomic orbitals. 

Under these conditions, i.e., in the case of weak overlap, S << 1 on which we focus: 

Jm,m0 − Jm,m0,0 

 EAg  

As a result, the physical discussion exclusively concerns the classification of the coulombic 

terms U, C and γ1 with respect to the difference |EAg −EAu|, which is very small, γ2 being strongly 

negligible. Thus, two kinds of situations may occur: EAg − EAu  

2|T| << U or EAg − EAu . 

As a result, we derive the universal relationships if S << 1: 

Jm,m0 − Jm,m0,0 EAg U, 

 Jm,m0 − Jm,m0,0 EAg − EAu 2|EAg−EAu|

 4T , 

EAg − EAu . 

We conclude that it is the electronic transfer that enforces the superexchange. 

• Case 1: EAg − EAu  (see Figure 4). 

The coulombic interactions, U, dominate the term EAg − EAu , which represents the 

total electronic energy transfer between A and X, X and B. We are dealing with Class I 

compounds. For such materials, the size of the X-ligand orbital (s- or p-like) has the same order of 

magnitude as that of the A(B)-magnetic cation (d-like). We then have: 

 Jm,m0,1 0 (43) 

Jm,m0,1 may take values of order, varying between one eV to tenths of eV. We deal with 

ferromagnetic couplings. Thus, the coulombic interaction favors a ferromagnetic coupling. This is 

due to a subtle mechanism that is a consequence of the first Hund’s rule. This aspect is detailed 

in Section 3.2.1. 

• Case 2: EAg − EAu  (see Figure 5). 



 

 

Figure 5. Energy level scheme for the AXB centrosymmetric system (with, here, A = B for the sake of simplicity) 

when Coulomb interactions are negligible (molecular orbital model). J is given by Equations (39) and (44). 

 The contribution of coulombic interactions is now negligible vs. the small term 

EAg − EAu ≈ 2T, which represents the electronic transfer energy. When EAg − EAu ≈ 2T >> 2S(U + C + 

2γ1), we then have: 

  

   −  U − C

 ≈ U − C ≈ 0 (44) 

Jm,m ,2 EAg − EAu 1 

 EAu  

Jm,m’,2 shows a small value in eV, as suggested by Anderson’s model. We are dealing with 

antiferromagnetic couplings. This mechanism is detailed in Section 3.2.2. because we now deal 

with a molecular orbital model. We may deal with Class I compounds (S << 1). However, this is 

always the case with Class II compounds because, due to the more or less important length of 

ligand X, the involved electrons show a very small coulombic interaction magnitude. EAg 

 is greater now, with S < 1. 

When EAg − EAu EAu| is smaller and we again find case 1: the 

couplings are now ferromagnetic, but the corresponding value of J is very small. 

Here, there is an apparent contradiction with the experimental results. This would mean that 

there are no ferromagnets for Class II compounds characterized by a stronger magnitude of J. In a 

previous paper ([10] and the references therein), we explained the strategy for obtaining 

molecular organic ferromagnets, as well as the main models illustrating the charge transfer 

process. All these approaches are characterized by the introduction of excited (anomalously 

polarized) configurations in the Hamiltonian basis, similar to the polar states introduced in our 

model. In fact, they do not drastically differ from that scheme for the energy-lowering term 4(γ2 + 

T)2/(U – C), involving the transfer integral T. 

3.2. Physical Comments Regarding the Sign of J 

3.2.1. Hund’s First Rule 

Let us recall that the states |A> and |B> defined by Equation (7) are solutions of the same 

secular problem. We have a weak overlap, S. The eigenvalues of the 2 × 2 matrix appearing in the 

Hamiltonian expression given by Equations (30) and (34)–(37) may be written as: 

4γ 2 

 E0+,0 ≈ 2E + U + γ1 + U  −2 C, E0−,0 ≈ 2E + C + γ1 − U 4γ−22C, S << 1 (45) 

because EAg + EAu = 2E, E being given by Equation (16). For an atom, γ2 = 0 and, for a molecule or a 

polyatomic ion, 
γ

2 6= 0. These eigenvalues must be compared to E0
U and E1

U: 

 E0
U 1. (46) 



 

The order of magnitude of the coulombic terms has been pointed out in Equation (42). The 

ground level is the triplet state ET,0 and is stabilized by the factor 2γ1 (few eV for intra-atomic 

exchanges) with respect to the first excited level, ES,0, even in the presence of orbital degeneracy 

(cf. Figure 4). The ferromagnetic interaction based on the Coulomb exchange integral γ1 is called 

the Heisenberg exchange. 

As the Pauli exclusion principle stipulates that two electrons cannot occupy the same 

position, when characterized by the same spin number, the corresponding wave function 

vanishes due to its property of antisymmetry. In other words, this function shows smooth 

variations, as requested for avoiding too large a kinetic energy. 

Consequently, this keeps weak values when two electrons showing parallel spins are not too 

greatly separated. The probability density shows the same property, so that a hole appears in the 

up (down) spin distribution near one electron of the couple: this is the Fermi hole. In other words, 

the larger distance thus maintained between them allows us to explain that they are characterized 

by lower Coulomb energy compared to the scenario of antiparallel electronic spins. 

3.2.2. Molecular Orbital Model 

Here, the Coulomb interaction is small and, thus, plays a secondary role. The energy level 

scheme described in Figure 4 is replaced by that of Figure 5. Now, the ground state is given by 

one of the singlets |g,+; g,−> or |u,+; u,−>, if taking into account their relative stabilities (G-type 

collective state). As a result, the first excited state is the triplet |U1,Sz>, with Sz = 0, ± 1. 

This scenario occurs when the overlap between neighboring site orbitals is large (but 

S < 1), as it notably appears for C−C covalent bonds, for instance. Even in the case of orbital 

degeneracy, the low-lying state |g,σ> or |u,σ> is always available for the electronic pair, which 

may then couple in order to form a singlet or a triplet state. Finally, the first Hund’s rule informs 

us that the triplet is more stable, as often occurs. 

3.3. Superexchange Hamiltonian for a 3d1 ion. Generalization to an ndm ion (3 ≤ n ≤ 5, 1 ≤ m ≤ 10) 

Anderson has shown that, for d bands labeled m and m’, characterizing each ion on both 

sides of ligand X, the corresponding Hamiltonian may be written: 

 HCst

 (47) 

U 

(m, m0), 

n, τ 

where the τ’s represent the fundamental translations of the lattice. bm,m’(τ) is the transfer integral 

between d bands labeled m and m’; (m,m’) is the corresponding pair of involved bands; U > 0 is 

the Coulomb repulsion energy. Anderson has called this contribution the “kinetic” part of the 

exchange Jm,m’((kinetic). The “potential” part of the exchange, Jm,m’(potential), is defined at the end 

of Section 2.1.2, and the total exchange is given by 

Jm,m’ = Jm,m’((kinetic) + Jm,m’(potential). 

The formalism that describes the superexchange phenomenon, according to Anderson, 

exclusively reduces the Hamiltonian to the transfer integral, i.e., the kinetic contribution. In our 

model, we have seen that we have a more general formalism. We wish to show that the 

Hamiltonian may be written in the formula: 

 H . (48) 

where PT and PS are projectors: 

 PT = 1+ s1.s2, PS  (49) 

acting in the triplet and singlet subspaces, respectively. K is a constant by which to determine 

values. 



 

After a few algebraic calculations, it is easy to show that the projectors have the following 

properties: 

 PT + PS = 1, PT·PS = PS·PT = 0; PTt = PT, PSt = PS; PTα = PT, PSα = PS, α > 0 (50) 

where Xt is a transposed matrix, and 1 is the 4 × 4 identity matrix. Under these conditions, it is easy 

to show: 

 PT −3PS = (PT − PS)(PT − 3PS) − 6PS (51) 

so that: 

K 

 H = [(PT − PS)(PT − 3PS) − 6PS]. (52) 

4 

Let |Ψ> be the generic collective wave function and let us introduce the projector |Ψ>< Ψ| 

= 1 on the basis vectors. We then have: 

 H|Ψi = K
[(PT − PS)|ΨihΨ|(PT − 3PS) − 6PS]|Ψi (53) 

4 

with: 

  (54) 

due to Equation (50), and the fact that |Ψ>∗ = <Ψ| because |Ψ> is real. Finally, using the fact that 

<Ψ|Ψ> = 1, we may finally write: 

 H|Ψi = K
[(PT − PS)|Ψi(PT − 3PS) − 6PS|Ψi]. (55) 

4 

According to the Hamilton principle, which states that in the true evolution of a physical 

system, described by the generalized coordinates q(t), the action S must be minimal with respect 

to q(t). The action S may be expressed with the Lagrangian system,L , 

where q /dt and, after an adequate Legendre transform, with the Hamiltonian system 

H. As a result, minimizing S means that, at the equilibrium, H must be minimized. In gauge field 

theories, notably applied in particle physics, this process is called a minimal coupling scheme. 

Under these conditions, the equilibrium of any dynamic situation is described by the following 

Hamiltonian: 

  (56) 

where the operator min(x) exclusively applies on a number x (for the Hamiltonian applied to a 

vector |Ψ>, it concerns the result of the corresponding application). We then have: 

 (ETm,0,m  m,m0|Ψi Jm,m0|Ψi,

 (57) 

min(PS|Ψi) = ES,0 

 m,m0 m,m0 

where ET,0 and ES,0 are the lowest energies of the triplet and singlet states, respectively, for d bands 

m and m’, characterizing each ion located on each side of the ligand, X. We recognize Jm,m0 = ET
m

,0
,m0 

− ES
m

,0
,m0. As a result, at the equilibrium, we have: 



 

 J 0 3 0 

  (59) 

so that finally, for an ion 3d1 characterized by bands m and m’ involved on each side of ligand X: 

 Heq = Jm4,m0 (PT − 3PS) − 23 ESm,0,m01 = Jm,m  0 32 ESm,0,m0 ion 

3d1 (60) 

where Jm,m’ is given by Equation (40). 

When dealing with several d bands located on each side of ligand X, we suppose that these 

bands are independent, i.e., non-interacting between themselves through the coulombic 

processes. We simply have: 

 H  (ion ndm, 3 ≤ n ≤ 5, 1 ≤ m ≤ 5). (61) 

Indeed, as seen on Figure 1, for ions nd1 to nd5, we have different half-filled electronic 

shells, so that the value of the couple (m,m’) varies between 1 and 5. If this value is greater than 

5, only the half-filled shells intervene in the calculation of Jm,m’ so that an ion of nd6 (L = 2, S = 2), 

nd7 (L = 3, S = 3/2), nd8 (L = 3, S = 1) and nd9 (L = 2, S = 1/2) is treated as an ion nd4, nd3, nd2, and 

nd1, respectively. 

3.4. Introduction of Crystal Field Theory 

3.4.1. Expression of Jm,m0 ; Physical Discussion of the Crystal Field Effect 

The crystal field theory was notably introduced by Van Vleck in the 1930s [32]. When 

considering the ions of the cage in which each magnetic cation is inserted, we observe that each 

ion, k, can be described by a unique charge, qk, due to the fact that there are very weak overlaps 

between first-nearest neighbors. We do not discuss in this paper the symmetry properties of the 

cage and the correlative simplifications that may occur. 

In this subsection, we will only discuss the effect of the crystal field on the nature of 

exchange energy, J, involved in the coupling of first-nearest spin neighbors. We show that, 

starting from an isotropic (Heisenberg) exchange coupling when there is no crystal field, the 

appearance of a crystal field induces an anisotropy of exchange coupling, thus leading to a z-z 

(Ising-like) coupling or an x-y one. For the sake of simplicity, we do not consider the other cases, 

but the corresponding problem is solvable. 

Thus, we only discuss the effects of a weak crystal field magnitude (3d ions) to a stronger (4d 

ions) and then stronger one (5d ions). Let us recall that this effect is due to the fact that the mean 

radius of the transition ion increases when passing from 3d ions to 5d ions, whereas the 

dimensions of the surrounding cage in which these ions are inserted roughly show the same size 

(we exclude the scenario of distortions that might occur). 

However, we do not discuss the effect of the crystal field in the splitting of orbital degeneracy. 

Let O be an arbitrary origin, OX1, OX2 and OX3, three orthonormal axes and r = (x1, x2, x3) the 

Cartesian coordinates of any point M bearing an electron (with the usual correspondence, x1 = x, 

x2 = y, x3 = z). As a result, the potential describing the crystal field effect may be written as: 

 VCF, qke > 0 or qke < 0 (62) 

Heq|Ψi = min(H|Ψi) = m,m |Ψi(PT − 3PS) − 2 ES
m

,0
,m |Ψi, K = 1. 4 

Due to Equations (54) and (49), we then have: 

(58) 



 

k 

where Rk = (X1,X2,X3) is the position vector associated with each 

ion k of the surrounding cage (Rk = Cst). Considering the two cases, qke > 0 or qke < 0, means that 

we envisage the possibility not only of an electrically neutral entity constituted by the cage and 

the inserted cation A or B but also that the set cage + cation may show a positive or a negative 

electrical charge. Finally, we may write the full electrostatic contributions of the crystal field for 

the fragment A–X (electron 1 coming from cation A and electron 2 coming from anion X): 

VA-XCF (r) = 

−∑ 

k 

and, for the fragment X−B (electron 3 coming from anion X 

and electron 4 coming from cation B): 

VX-BCF (r) = 

−∑ 

k 

for similar insertion cages (with A = B or, exceptionally, for A 6= B). Note that it is possible to 

consider different insertion cages, i.e., cages showing different geometrical properties. In this 

respect, we must add that this reasoning is valid for Class I compounds characterized by a ligand 

orbital length of the same order as cationic orbital length. However, for Class II compounds 

characterized by a ligand orbital length that is plainly greater than the cationic one, it has no 

physical sense by which to consider crystal field effects. The latter may only come from the 

electrostatic environment of the cation itself, which may be inserted within a crystallographic 

site. 

As a result, the full contribution of the crystal field for the fragment A–X–B is: 

Uanis = VA-XCF (r) + VX-BCF (r) = −∑ 4qπεke0 i∑=41 |Rk 1− ri|, A 6= B. 

k 

When A = B, on which we focus for the sake of simplicity, we have: 

 Uanis = 2VA-XCF (r) = −2∑k 4 q  e 2 1 , A = B. 

Under these conditions, only the coulombic contributions defined by Equation (32) and called 

Xiso in the absence of a crystal field are 

altered. We then have: 

 Uanis = UAanis 1 1 12 =1 4πε0|Rk−ri| 1 1 UAiso + UACF, 

k i 

Canis  Ciso + 
U

CCF, 

(63) 

 γ1anis = hA1|hA2| U12 − 2  4 |R −r | A1 A2 = 

γ1iso + UγCF1 , 

γ2anis = hA1|hA1| U12 − 2 4

πε0|Rk−ri| A1 A2 = γ2iso + UγCF2 , A = B. k i=1 



 

As previously noted, for Class II compounds characterized by long ligand chains, there is no 

crystal field and factor 2 must be replaced by unity in Equation (63). In addition, in Appendix A, we 

have shown that the following physical parameters T and V, EA and T, EAg and EAu, respectively, as 

given by Equations (1), (16), (18) and (22), the coulombic terms UA
iso, Ciso, γ1

iso and γ2
iso, given by 

Equation (32), and the coulombic contributions of crystal field UA
CF, UC

CF, Uγ
CF

1 and Uγ
CF

2 defined in 

Equation (63) can be labeled by the generic term Yk and decomposed as a sum of their respective 

Cartesian components along the axes OX1, OX2 and OX3, called Yk;xi(as a scalar is a zero-rank tensor): 

 3 Yk 

 Yk = i∑=1 Yk;xi,Yk;xi = 3 (64) 

because, for each ion, k, we deal with a spherical symmetry (cf. Equations (A6)–(A10)). However, 

for a given similar xi-component Ykxi , components Yk characterized by different k values are not 

equal (except when the site in which the cation is inserted shows particular symmetry properties). 

Due to the definitions of UA
CF, UC

CF, Uγ
CF

1 and Uγ
CF

2 (cf Equation (63)), we may give the same 

mathematical argument regarding the respective values of r and Rk appearing in the argument of 

the atomic orbitals (cf Equation (A12) in Appendix A). We have (cf. Equation (42)): 

 UγCF2 << UCCF≈ UγCF1 << UACF (65) 

and a similar inequality with the Cartesian components, for a given k. 

The Hamiltonian matrix, defined by Equation (30) in the absence of a crystal field, now 

appears as: 

  Gg,anis anis 0 0 0 0 

 
E

0,xi Kxi 

  Kanisxi 
E

0Gu,xi,anis 0 0 0 0 

 ∑3 anis, Hxanisi =  00 00 
E

0U,0x,anisi 
E

1U,0x,anisi 00 00 

 H = Hxi 

 i=1  

  U,anis 

  0 0 0 0 E1,xi  

 0 0 0 0 0 
E

1U,x,anisi 

with: 

 U
A,CFxi +U

C,CFxi Gg

 γCF,xi +4U
γCF2,xi 

E0,xi,anis = E0Gg,xi,iso + 

E0Gu,xi,anis = E0Gu,xi,iso + 

(67) 

 Kanisxi = Kx 

 E0U,x,anis = E0U,x,isoi+ UA,CFx1i−−SU2γCF1,xi , E1,xi = E1U,x,isoi 1−−SU2 , A = B, 
i 

where the corresponding isotropic component, for each of the quantities above, is given by 

Equation (34). Similar remarks, given after Equation (36) and concerning the scenario where A 6= 

+    
 (  +  )  

 

  
   +   

   +    
     −    

     
 (  −  )  

 

 
 + 

  
   −   

   
 (  −   )  

  
+ 

  
   

 
     



 

B, remain valid here. If diagonalizing the upper 2 × 2 matrix in Equation (66), we have the 

following eigenvalues: 

 

 E
0±,0,,anisx = 12  E0Gg,xi,anis + E0Gu,xi,anis ± r(E0Gg,xi,anis − E0Gu,xi,anis)2 + 4 Kanisxi 2!. (68) 

i 

As a result, for the fragment A–X−A, the general theoretical expression of J may be written 

from Equation (40), where each physical quantity is replaced by the same one in the presence of 

a crystal field and given by Equation (67): 

 

In the physical case of a small overlap, S, on which we focus, the previous equation reduces 

to: 

Uanis−Canis 

 
E

Aanisg

 Aanisu − S U + C , (70) 

S << 1 

where all the physical quantities can be expressed along the axes OX1, OX2 and OX3, according to 

Equation (64). 

As discussed in the scenario where there is no crystal field after Equation (41), using similar 

reasoning, it becomes easy to show that the difference of exchange energy between 

superexchange (Jm,m’) and no superexchange (Jm,m’,0) is: 

 − J = −Uanis−Canis 
0 

 EAanisg Aanisu − S U + C 

As in the absence of a crystal field, we have to compare the magnitude of the coulombic 

 interactions Uanis to the quantity EAanisg − EAanisu EAisog − 

EAisou EAg − EAu . 

 

As a result, we may also derive the universal relationships if S << 1: 

 Jm,m0 − Jm,m0,0 1, 

 − EAuUanis, 

EAg 

 Jm,m0 − Jm,m  ,0 EAg − EAu  Uanis4| T| ≈ 2|T|, 

EAg − EAu  Uanis. 

    0 = 
  −   

 
 −   − 

(  +   )(   +   +    
 ) −     

 
 (  −   )  

+ 
s  

  
  −   

  − 
 (   +   +    

 ) −  (  +   )   
 

(  −   )  
  

+    −   
 

  
 

 



 

This means that the appearance of a crystal field also strengthens the superexchange. 

 • Case 1:EAanisg − EAanisu EAisog − EAisou  Uanis. 

The coulombic interactions, including those coming from the crystal field, 

dominate the term EAanisg − EAanisu EAisog − EAisou  . We then have: 

 Jmanis,m0,1 γ1 γ1 γ1

 ≈ Jmiso,m0,1 − 2UγCF1 . (71) 

with: 
3 

Jmanis,m0,1 = ∑ Jmanis,m0,xi,1 = Jmxx,m0,1 + Jmyy,m0,1 + Jmzz,m0,1, UγCF1,x 6= UγCF1,y 6= UγCF1,z.

 (72) i=1 

As discussed, when there is no crystal field, we also deal here with Class I compounds. For 

such materials, the size of the X-ligand orbital (s- or p-like) has the same order of magnitude as 

that of A(B)-magnetic cation (d-like). However, we may also have Class II compounds (the X-ligand 

length is plainly greater than in the cation), thus imposing a weak crystal ferromagnetic 

contribution in absolute value (see below). 

 If 
U

γ
CF

1 > 0 and 
J

m
iso

,m0,1 = −2γ1
iso < 0 (cf. Equation (43)), we always 

have Jm
anis

,m0,1 < 0 according to Equation (71), and all the coulombic interactions favor a 

ferromagnetic coupling. This effect is enhanced by the crystal field (CF) contribution, 

independently of its magnitude. This is also due to a subtle mechanism that is a consequence of 

the first Hund’s rule, in spite of the presence of the crystal field. This aspect has been detailed in 

Section 3.2.1. This allows us now to justify the fact that Class I and Class II compounds enter this 

case. 

If Uγ
CF

1 < 0 (qke > 0), we have two possibilities, when examining Equation (71): 

0; we deal with a weak CF contribution (in the case of 3dm ions); 

Jm
anis

,m0,1 ≈ −2γ1
iso < 0; the surrounding cage is mainly characterized by an important 

geometrical size: we may deal with Class I compounds. This is also the case when using 

organic ligands whose long length may be adapted to the magnetic system that one wishes 

to build up [15–18]; this is a good way to obtain isotropic (Heisenberg) spin-spin couplings 

for Class II compounds; we always have ferromagnetic couplings, including in the particular 

case of  so that, finally, the ferromagnetic coupling is strongly enhanced 

and  (in the case of ions 

4dm and 5dm); 

0; we deal with a strong CF contribution (case of 5dm ions); now 

we have Jm
anis

,m0,1 ≈ −2Uγ
CF

1 > 0; antiferromagnetic couplings are favored and this only 

concerns Class I compounds. 

Now we examine the influence of the crystal field over the initial isotropic character of 

exchange coupling. As previously announced at the beginning of the present subsection, 

we restrict our study to those cases where the axis OX3 = Oz is favored (with respect to OX1 = Ox 

and OX2 = Oy) or the axes OX1 = Ox and OX2 = Oy are equally favored by the crystal field (with 

respect to OX3 = Oz). Then, we have: 

Jmanis,m0,1 ≈ Jmzz,m0,1if UγCF1,x ≈ UγCF1,y << UγCF1,z(z-z coupling; here Ising coupling as s = 1/2), 

 yy CF ≈ UγCF1,y >> UγCF1,z(x-y coupling). (73) 

Jmanis,m0,1 ≈ Jmxx,m0,1 + Jm,m0,1if Uγ1,x 



 

We can have Jm
anis

,m0,1 < 0 or Jm
anis

,m0,1 > 0. This is in the case of 4d and 5d ions. 

 • Case 2:EanisAg − EanisAu EisoAg − EisoAu  Uanis 

The contribution of coulombic interactions is weak vs. the small term|EAg −EAu|, which is 

insensitive to the crystal field by definition. This is in the case of 3d ions. 

We have the same discussion as in the isotropic case, i.e., without a crystal field. When 

  

EAisog − EAisou  , we have: 

E
Aisou 0. (74)   iso − 

Jm,m ,2 
E

Ag 

We always deal with antiferromagnetic couplings independently of the crystal field. This 

mechanism is detailed in Section 3.2.2 because we now deal with a molecular orbital model. 

When EAisog − EAisou S Uanis + Canis anis EAisog − EAisou is smaller, we find again 

Case 1: the couplings are now ferromagnetic, but the corresponding value of J is very small. 

As discussed, in the absence of a crystal field we deal with Class I compounds (S << 1). 

However, this is always the case with Class II compounds because, due to a more or less important 

length of ligand X, the involved electrons show a very small coulombic 

 

interaction magnitude.EA
iso

g − EA
iso

uis greater, now S < 1. Similar remarks 

may be made for molecular organic ferromagnets. 

3.4.2. Expression of the Hamiltonian 

We wish to show that the Hamiltonian may be written in the form of: 

 H  xx

 x,m x,m0Jmyy,m0s1y,m.sy,m0 + 
J

mzz,m0 1 
. 

2 . (75) 

2 

By an analogy with the isotropic case, we define the following projectors:  

 1x,m2x,m0 + s1y,m.s2y,m0 = 14(PT − 3PS)xy, s1z,m.s2z,m0 = 14(PT − 3PS)zz, 
 s .s (76) 

with the properties: 

 (PT − 3PS)xy + (PT − 3PS)zz = PT − 3PS, (PT − 3PS)xy.(PT − 3PS)zz = 0 (77) 

where PT and PS are projectors (defined by Equation (49)) and are acting in the triplet and singlet 

subspaces, respectively. (PT − 3PS)xy is the projector acting in the subspace corresponding to the x-

y plane and (PT − 3PS
)

zz acts along the z-axis. 

Similarreasoningperformedfortheisotropiccase, i.e., withoutacrystalfield(cf. Section 3.3) 

allows one to directly write in the presence of a crystal field: 

xy 

Heq,xy = Jm,m0 (P − 3P ) − 3 ESxy,0;m,m  = Jm,m0 s1x,ms2x,m + s1, s2,

 23 ESxy,0;m,m01 (78) 
 4 T S xy 2 

x–y plane favored by CF (ion nd1, 3 ≤ n ≤ 5) and: 



 

zz 

Jzz;m,m01 = Jmzz,m0s1z,ms2z,m0 − 32 

ESzz,0;m,m01 

Heq,zz = mES,0 

(79) 

 z-axis favored by CF ion nd 

 xy zz are given by Equations (71)–(74). 

where Jm,m0 and Jm,m0 

When dealing with several d bands, located on each side of ligand X, we again suppose that 

these bands are independent, i.e., non-interacting between themselves through coulombic 

processes. We simply have: 

 H xy  x,m x,m0 y,m y,m0 3 

ESxy,0;m,m01+ Jmzz,m0s1z,ms2z,m0 − 23 ESzz,0;m,m01 

(80) 

(ion ndm, 3 ≤ 5, 1 ≤ 5). 

4. Conclusions 

In this article, we have developed a general model allowing us to describe the underlying 

microscopic mechanisms leading to superexchange in terms of the isolated centrosymmetric 

fragment A–X–B, where A and B are magnetic sites bearing d orbitals and X is a diamagnetic ligand 

involving an s or p orbital. We have considered not only the degenerate case (A = B) but also the 

general one (A 6= B). The orbitals describing the states |A> and |B> do not overlap but the 

important scenario of overlap through a π bond may also be taken into account. 

The energy spectrum has been constructed. Notably, from the single-triplet splitting, a 

closed-form expression of the exchange energy J has been expressed vs. key molecular integrals, 

for a given 3d1 ion. For the first time, this result has allowed us to predict the sign of J and its 

magnitude: when coulombic interactions are dominant, our model follows Hund’s rule and we 

explain why couplings are automatically ferromagnetic (J < 0); when coulombic interactions are 

no longer dominant, our model is equivalent to the molecular orbital one and couplings are always 

antiferromagnetic (J > 0), except in one particular case where couplings are ferromagnetic but 

with a small absolute value of J. 

Owing to this general formalism, we have shown for the first time that the corresponding 

Hamiltonian may be written using the formula Js1.s2. The model has been easily generalized in the 

case of the ndm ion (3 ≤ n ≤ 5, 1 ≤ m ≤ 10, orbital degeneracy). 

Finally, we have introduced crystal field theory and we have shown how we can pass from 

an isotropic (Heisenberg) coupling (no crystal field, 3d ions) to a stronger (4d ions) and stronger 

(5d ions) contribution, which introduces an anisotropic exchange coupling. The nature of the spin 

arrangement has been determined, vs. the crystal field magnitude. We have shown that our 

formalism also allows us to write a spin-exchange Hamiltonian. 

Important generalizations may be made. Notably, spin polarization effects may be 

introduced for the fragment A–X–B, as well as spin-orbit coupling. In particular, if this latter 

contribution remains small, the formalism may be slightly altered through a perturbation 

expansion, the zeroth-order orbitals being replaced by new magnetic orbitals, taking into account 

the spin-orbit perturbation. 

This work has previously been conducted by Moriya, but he used Anderson’s theory as a 

starting point [33,34]. As a result, one can say that the Dzialoshinskii coupling is a “close parent” 

of the superexchange coupling [35,36]. Moriya has notably determined the crystal symmetries 

that must be fulfilled for favoring the establishment of an antisymmetric spin coupling. More 



 

recently, Katsnelson et al. also used Anderson’s theory and an exact perturbation expansion of 

the total energy of weak ferromagnets showing a canted spin structure, with the unique 

assumption of local Hubbard-type interactions. This allows the expression of the modulus of the 

Dzialoshinskii–Moriya vector, with a natural separation into spin and orbital contributions [37]. 

However, these models do not take into account all the key molecular integrals detailed in this 

paper or allow the expression of superexchange energy J exactly. 

The most important key point concerns the possible generalization of our formalism to any 

kind of molecule or polyatomic ion, opening the possibility of exact calculations of exchange 

couplings in real molecules such as polymers or biopolymers. It is a promising and important field 

of research in biology. Finally, the exact knowledge of the energy spectrum may allow others to 

interpret the experiences of photomagnetism that have recently been published, concerning ions 

Mo(IV) and W(IV) [38]. 
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Appendix A 

Let O be an arbitrary origin, OX1, OX2 and OX3 three orthonormal axes and (x1,x2,x3) the 

coordinates of any point M bearing a mass me and a charge −e. The kinetic energy T, defined by 

Equation (1), may be written as: 

12 ∑3 •2 = ∑3 Txi, x•i = T = dxdti , rj = OMj = (xj;1, xj;2, xj;3), j = 1, 2 (A1) me xi 

 i=1 i=1 

where the ith-space coordinate of species rj is labeled xj;i for the sake of simplicity. The potential 

V, also defined in Equation (1), represents the interaction of one electron with respect to the rest 

of the cation. If dealing with a spherical system, we have: 

  r + Cst, r  V = k

 (A2) 
0 

where k = −Qe is the electric charge of cation. We neglect the gravitational potential energy. As 

we deal with spherical symmetry, we have three equal contributions when expressing 

V along each axis OXi, i = 1, 3. As a result, after the adequate integration of the first of Equation 

(A2), V is invariant by the permutation of x1, x2 and x3, and may be artificially written: 

 3 V 

 V = i∑=1 Vxi, Vxi = 3 . (A3) 

From Equation (33), the coulombic interactions may be defined by the generic form: 

Z ∗ (r1)ΦX∗ (r2)4πεK0r12 

ΦY(r2)ΦZ(r1) (A4) Uc =< W| < X|U1,2|Y > |Z >= dr1dr2ΦW 

where r12 = |r1 − r2|, K = e2 for UA, UB, γ1 and γ2 given by Equation (33); dri represents the elementary 

volume in spherical coordinates i.e., ri
2sinθidθidϕi. In all cases, K > 0. r1 and r2 are the position 



 

vectors representing electron 1 from cation A, respectively, electron 2 from anion X, for instance. 

In a spherical coordinate system, we deal with the triplet (rj,θj,ϕj), defined as follows: 

 θj , j = 1, 2. (A5) 

1/r12 may be expressed under the symmetric form with respect to the exchange of indices 1 

and 2 [39]: 

Y∗ (θ 

 r r1 r2 l=0

 n=l,l+2 1 2 m=−l l,m1, ϕ1)Yl,m(θ2, ϕ2), (A6) 

Kn,l . 

In the previous equation, the notation of the current index of the n-summation means that 

n only takes l-values with an (l + 2)-step; Yl,m(θ,ϕ) represents the well-known spherical harmonics 

[39]. 

As a result, we have: 

 Uc  (A7) 

with: 

+∞
( +∞ 

 f(r1, r2) = l∑=0 n=∑l,l+2 Kn,lYl∗,m(θ1, ϕ1)Yl,m(θ2, ϕ2)× (A8) 
 (r1 +r2 ) m=−l 

. 

The integration over angular variables is easy: each integral is equal to unity with the 

selection rule l = 0, m = 0. As a result, we finally have the radial contribution: 

 K +∞ Z (r1r2)n 

Uc = ∑ Kn,0 dr1dr2 n . (A9) ε0 n=0,2 (r12 + r22) 

In the previous equation, n only takes even values. This complicated integral may be 

uniquely calculated numerically. In addition, as we deal with the isotropic case of spherical 

coordinates, Uc may be decomposed into 3 Cartesian components, Ucxi , so that: 

 3 Uc 

 Uc = i∑=1 Ucxi , Ucxi = 3 . (A10) 

Thus, any coulombic interaction Uc may be decomposed into a system of Cartesian 

coordinates along each axis OXi, i = 1,3. 

Now let us introduce the notion of crystal field. For the sake of simplicity, we restrict 

ourselves to the case of a unique cation A or B (respectively, anion X) inserted within a 

crystallographic site. The reasoning may be extended to all the ions involved in A–X–B. The 

potential describing the crystal field effect may be written as: 

 
 =   √  +  

+  
 
( +  

     
     

  +   
  ) +  

 



 

 VCF(r) = −∑ qke 
(A11) 

k 4πε0|Rk − r| 

where Rk = (X1,X2,X3) is the position vector associated with each ion k (Rk = Cst) and r = (x1,x2,x3) is 

that of electron belonging to cation A (or B) or anion X. Under these conditions, the corresponding 

crystal field contribution may be written as: 

 Uc
CF.

 (A12) 
k 

The expansion of |Rk−r|−1 has been examined by Hutchings [40] in the assumption r < Rk, near 

an origin of cubic point symmetry corresponding to the three most-encountered situations (see 

Figure 2 in [40]): 

• The charges composing the cage are located at the corners of an octahedron (sixfold 

coordination); in that case, Rk = (a,0,0), (−a,0,0), (0,a,0), (0,−a,0), (0,0,a) and (0,0,−a); Rk = a 

is the distance of each corner from the origin; 

• The charges are located at the corners of a cube (eightfold coordination); Rk = (a,a√,a), 

 

 (−a,a,a), (a,−a,a), (−a,−a, a), (a,−a,−a), (a,a,−a), (−a, a,−a) and (−a,−a,−a); Rk = a 3; 

• The charges are located at the corners of a tetrahedron (with two tetrahedra per cube, 

fourfold coordination); Rk = (a,a,a), (−a,−a,a), (a,−a,−a), (−a,a,−a) for tetrahedron√ 1 

 

 and Rk = (a,−a,a), (−a,a,a), (−a,−a, −a), (a,a,−a) for tetrahedron 2; Rk = a 3. 

In a first step, Hutchings has expanded |Rk − r|−1 in Cartesian coordinates, with the 

assumption that r/Rk < 1 [40]. Under these conditions, this author obtains a perturbation series 

analogous to the famous dipolar expansion. He shows that VCF(r) may be written with Cartesian 

coordinates under the generic form: 

 VCF(x1, x2, x3) = A + VxCF1 + VxCF2 + VxCF3 + Vmix(x1, x2, x3) (A13) 

A is a constant composed of a product between a numerical factor and a ratio whose 

numerator is the coordination number, q, and the denominator is the distance of the cage charges 

from the origin. Vx
CF

1 (respectively, Vx
CF

2 and Vx
CF

3 ) are the polynomial of even powers of exclusive 

variables x1 (respectively, x2, x3). 

Vx
CF

1 , Vx
CF

2 and Vx
CF

3 may be derived from each other through a permutation of variables x1, 

x2, and x3 but, according to site symmetries, we may have not only Vx
CF

1 =Vx
CF

2 =Vx
CF

3 but also Vx
CF

1 

.Vmix(x1, x2, x3) is a polynomial characterized by terms composed of products 

separately involving two variables x1 and x2, x2 and x3, x3 and x1, showing even different powers, 

but it is impossible to separate variables x1, x2, and x3 (if odd powers intervene in higher-order 

terms, the final result of integration vanishes). As a result, Equation (A13) may be rewritten as: 

VCF 

(A14) +Vex1,x2 (x1, x2) + Vex2,x3 (x2, x3) + Vex3,x2 (x3, x2). 

This is a quadratic form. It is then possible to express VCF(x1, x2, x3) in a new eigenbasis, under 

the following form: 



 

 
V

CF(xe1, 
x
e2, 

x
e3) = 

V
xeCF1 + 

V
xeCF2 + 

V
xeCF3 . (A15) 

If inserting this expansion in Equation (A12) and integrating over variables x1, x2 and x3, Uc
CF 

appears under the form: 

 UcCF = UxCFe1 + UxCFe2 + UxCFe3 , UxCFe1 6= UxCFe2 6= UxCFe3 . (A16) 

Hutchings has also calculated the matrix element Uc given by Equation (A12), in which |Rk − 
r|−1 is expanded in terms of spherical harmonics. The matrix element Uc and correlated general 

rules of calculation may be found from this expansion, using vector coupling coefficients (see [41], 

p. 37). Hutchings recalls the rules for determining nonzero matrix elements, which follow from the 

Wigner–Eckart theorem (see [41], p. 75). 

The conclusion derived by Hutchings is that, in a final step, Uc may be also expressed owing 

to Cartesian components. This method allows us to stop the expansion vs. spherical harmonics 

Yl,m(θ,ϕ) for small values of l and m, if using symmetries derived from that of the host site, whereas 

the direct calculation of the integral giving Uc
CF is longer because it is exclusively ruled by the 

convergence of the series, giving VCF(x1, x2, x3) (cf. Equation (A9)). 

As a result, the anisotropic contributions of the crystal field appear as one of the main 

origins of the anisotropy of exchange. 
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