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Abstract Recently, using the assumption that the string
theory effective action at the critical dimension is
background independent, the classical on-shell effective
action of the bosonic string theory at order ain a spacetime
manifold without boundary has been reproduced, up to an
overall parameter, by imposing the O(1,1) symmetry when
the background has a circle. In the presence of the boundary,
we consider a background which has boundary and a circle
such that the unit normal vector of the boundary is
independent of the circle. Then the O(1,1) symmetry can fix
the bulk action without using the lowest order equation of
motion. Moreover, the above constraints and the constraint
from the principle of the least action in the presence of
boundary can fix the boundary action, up to five boundary
parameters. In the least action principle, we assume that not
only the values of the massless fields but also the values of
their first derivatives are arbitrary on the boundary. We have
also observed that the cosmological reduction of the leading
order action in the presence of the Hawking—Gibbons
boundary term, produces zero cosmological boundary
action. Imposing this as another constraint on the boundary
couplings at order o, we find the boundary action up to two
parameters. For a specific value for these two parameters,
the gravity couplings in the boundary become the Chern—
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Simons gravity plus another term which has the Laplacian of
the extrinsic curvature.

1 Introduction

String theory is a quantum theory of gravity with a finite
number of massless fields and a tower of infinite number of
massive fields reflecting the stringy nature of the gravity.
The criticaldimensionforthebosonicstringis26,andforthetype
1A, type 1B, type | and for the heterotic strings is 10. The
type 1IB superstring theory on a spacetime manifold with
negative cosmological constant which has boundary is
conjecturedtobedualtoaconformalfieldtheoryontheboundary
[1,2]. The string theory is usually explored by studying its
effective action which includes the massless fields and their
higher derivative terms. For the spacetime manifolds with
boundary, the effective action has both bulk and boundary
terms, i.e., Serr +0Serr. At the leading order of the derivative,
the bulk action should include the Hilbert—Einstein action at
thecriticaldimensionandtheboundaryactionshouldinclude
the corresponding Hawking—Gibbons—York boundary term
[3,4]. These actions and their appropriate higher derivative
extensions should be produced by specific techniques in the
string theory.

The effective actions in the string theory have a double
expansions. The genus-expansion which includes the
classical tree-level and a tower of quantum loop-level
corrections, and the stringy-expansion which is an
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expansion in terms of higher derivative couplings at each
loop level. It has been shown in [5-8] that the tree-level
effective action of the bosonic string theory at orders a®and
a are invariant under O(d,d) transformations if one
compactifies the theory on the tours T 9and keeps only the
zero modes (cosmological reduction). Using the string field
theory, it has been proved in [9] that the cosmological
reduction of the tree-level effective action of the bosonic
string theory to all orders of a should be invariant under
O(d,d) transformations. This has been extended in [10] to
the classical effective action of the heterotic string theory.

The Einstein theory of general relativity is background
independent in the sense that only gauge symmetry is
required to specify the theory. We expect that the string
theory classical effective action at the critical dimension
which is a higher-derivative extension of the Einstein
theory at the
criticaldimension,tobebackgroundindependenttoo.Unlike
the Einstein action which has only one coupling, however,
there are many gauge invariant couplings in the effective
action of the string theory at each order of a, e.g., at the
leading order the independent gauge invariant couplings in
the bosonic string theory are
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where ai,09,03 are three parameters. The first term is the
Einstein action at the critical dimension 26. The background
independence assumption then requires these parameters to
be independent of the geometry of the spacetime, i.e., if the
background has the tours T* or K3 the value of the
coefficients ag,a,a3 remains the same. However, the
coefficients of the gauge invariant couplings in the reduced
action do depend on the geometry of the compact spaces. In
other words, if one compactifies the above action on T4, the
result wouldbethesameasthecompactificationon K3
oranyother
compactmanifoldsprovidedthatonetakeintoaccountallthe
correspondingKaluza—Kleinmodes.However,ifoneignores
the Kaluza—Klein modes (dimensional reduction), then the
actionsinthelowerdimensionhavedifferentsymmetriescorres
ponding to the compact spaces, i.e., the 22-dimensional
action in the case of T* has symmetry O(4,4) which is
different than the symmetry of the 22-dimensional action in
the case of K®. This means, if one could fix some how the
parameters of the effective action at the critical dimension
for a particular geometry in which the reduced action has a
specific symmetry, then that parameters would be valid for
any other geometry. For example, if one considers the

background to have a circle, then the dimensional reduction
of the action should have the O(1,1) symmetry. This
symmetry has been used in [11] to fix the parameters in the
above action up to an overall factor, i.e.,
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which is the standard effective action of the bosonic string
theory for a1 = 1. At the higher orders of a, there is the
complication that the effective action has the freedom of the
higher-derivative field redefinitions [12]. In these cases, the
0O(1,1) symmetry may fix the parameters of the independent
gauge invariant couplings up to the field redefinitions

When the geometry has one circle, the constraints from
the Zp-subgroup of the O(1,1) symmetry have been used in
[11,13] to find the effective actions of the bosonic string
theory at four- and six-derivative orders in a minimal
scheme, up to an overall factor. Assuming there is such
symmetry for the classical effective action of the type II
superstring theories as well, all eight-derivative couplings
for NS-NS fields havebeenfoundin[14—
17],uptoanoverallfactor. Thebackground independent
assumption then requires the resulting couplings to be valied
for any other spacetime, up to the field redefinitions. In fact,
the effective actions found in this way are fully consistent
with the sphere-level S-matrix element of four NS-NS
vertex operators and with the results from the sigma model
[16,17]. Moreover, when the geometry has the tours T ¢, the
cosmological reduction of these effective actions are also
fully consistent with the O(d,d) symmetry [18,19]. Assuming
also the classical world-volume effective actions of the non-
pertubative branes in the string theory
transformcovariantlyunderthe  Z,-transformationswhenthe
spacetime geometry has a circle, then many already known
and unknown world-volume couplings have been found in
[20,21].

In applying the O(1,1) symmetry to find the couplings at
orders o, &%, &% in [11,13-17], one first needs to find all
independent gauge invariant couplings in the minimal
scheme, i.e., the couplings which are not related by various
Bianchi identities, by the field redefinitions and by total
derivative terms. The number of independent couplings at
each order of ais fixed, however, the structure of the gauge
invariantcouplingsdependsonhowtousetheabovefreedom to
find the independent couplings. The number of independent
couplings at orderse". .7 in the bosonic theory are 8,
60, 872, respectively. These couplings in a specific minimal
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scheme have been found in [12,15,22]. Then one should
impose the Z,-symmetry on these independent couplings to
find their corresponding coefficients at each order of a up
to one parameter. The Z,-transformations or T-duality
transformations are the Buscher rules [23,24] and some
higher derivative corrections at each order of a which
depends on the minimal scheme that one uses for the gauge
invariant couplings at that order [11]. If one does not use
the field redefinitions to write the gauge invariant couplings
in the minimalscheme,thenthe
O(1,1)constraintcanfixtheeffec-

tive action up to many parameters which can be removed
by the field redefinition [11]. These parameters appear also
in the corrections to the Buscher rules. By changing these
corrections, one can change the scheme of the gauge
invariant couplings. However, there would be no scheme
for which the T-duality transformations are only the
Buscher rules.

When the spacetime geometry has one circle, the
Z,symmetryimposesthefollowingconstraintonthebulkeffect
ive action:

Serfl W} = Senr (4] €))
where Sefris the reduction of Serr, U represents the massless
fields in the base space and U is its Zp-transformations.
Therearealwayssometotalderivativetermsinthebasespace
[14-17] which become zero when spacetime has no
boundary.However,whenthespacetimehasboundary,thepre
sence of the total derivative terms dictates that there must
be some couplings on the boundary as well.

For the spacetime manifold which has boundary, using
the background independent assumption, one may consider
a geometry that has a boundary and one circle. Then the
Z,symmetry may fix the couplings in the bulk and boundary
actions up to field redefinitions. It has been speculated in
[25] that, in the presence of the boundary, the invariance of
the classical effective action under the Z,-transformations
should be extended as follows: The sum of the bulk and the
boundary actions, i.e., Sefr +0Sesr, Should be invariant under
the Z,-transformations, i.e.,

Serd W) + 0Serr (W) = Ser(¥") + 3Serr (V') ()
where 0Ser is the reduction of the boundary action 9Sesr.
There might be some total derivative terms on the boundary
of the base space, however, they become zero using the
Stokes’s theorem because the boundary of boundary is zero.
In this paper, we are going to impose the above constraint on
the effective action of the bosonic string theory at order a.
We consider the background that its boundary is
independentofthecircle,i.e.,theunitenormalvectortothebound
ary is invariant under the T-duality transformations at order
a. This particular background constrains the corrections to

the Buscher rules. We will see that for this Zo-
transformations, the O(1,1) constraint is not consistent with
the effective action in the minimal scheme. In fact to impose
the 0(1,1)
symmetryforthisgeometryoneshouldnotusethefieldredefiniti
ons to reduce the number of gauge invariant couplings at
order a.

Theconstraint (4)hasbeenusedin[26]tofindtheO-plane
effective action at order o? in the presence of the boundary
in the type Il superstring theories in which the Buscher rules
have no correction at orderst’. >, The constraint (4) has
been also used in [25] to find the spacetime effective action
of the bosonic string theory at orderc"". This constraint fixes
the bulk actions completely, however, it fixes the boundary
action up to some extra boundary parameters.

When spacetime has boundary, however, there are further
constraints on the boundary actions from the principle of the
least action. To be able to extremize the bulk effective
actions at each order of a, the boundary should have specific
couplings and the massless fields should have appropriate
values on the boundary. For example, the Hawking—Gibbons
boundary term along with the arbitrariness of the metric on
the boundary is needed to be able to extremize the Hilbert—
Einstein action, i.e., the Einstein’s equations are derived by
extremizing the Hilbert—Einstein action against variations of
the spacetime metric G,vwhich is arbitrary on the boundary,
i.e., 6Gwand its tangent derivatives along the boundary are
zero. The normal derivative of the metric, however, is not
arbitrary on the boundary. The variation of this term which
is not zero, appears on the boundary when one extremizes
the bulkaction. ThevariationoftheHawking—
Gibbonsboundary term cancels this normal derivative term
on the boundary. We expect similar constraint for the
boundary terms in the effective actions of the string theory.
However, if one assumes only the metric is arbitrary on the
boundary, the standard gravity couplings in the effective
actions of the string theory atorders @, ot
cannotbeextremizedforanyboundarycouplings. In fact it has
been shown in [27] that only the gravity couplings in the
Euler character can be extremized. We will show that the
0O(1,1)-constraint on the couplings at order a produces the
bulk gravity couplings which are the same as the bulk
couplings in the Euler character, however, it produces the
boundary couplings which are consistent with the Chern—
Simons form as well as some other gravity coupling in the
boundary.

Hence, in order to be able to extremize the effective
action of the string theory at order o, we propose that not
only the massless fields but also their derivatives up to order
n should be arbitrary on the boundary, i.e., the massless
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fields are arbitrary on the boundary for the effective action
at order a®, the massless fields and their first derivatives are
arbitrary on the boundary for the effective action at order a,
and so on. This may be inspired by the fact that the linear
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differential equation dt® ¢ 1 zne2 X 0 has specific

solution when the functions x, “"l """ dyn*are known at the
initial and the final times.

Imposing the O(1,1)-symmetry on the most general
gauge invariant couplings at order ", one finds that the
effective actions of the bosonic string theory are fixed up to
one extra parameter in the boundary action [25], i.e.,

3 .
0+ {.’S[) = - _U1| [ / d’)". \"”*(;('7-(1“
S k2|
I 5
(R {4V, dVH P |wH')

X
1 / FLEI v"l.?t'uzd’lx']

20t

—( 1
D-1 J*J‘l’ K x7
_;c_~‘_[d oe "7 /gl ( :I\ +n V“d))

(5)

where K is trace of the extrinsic curvature and n*is normal
vector to the boundary. It is outward-pointing
(inwardpointing) if the boundary is spacelike (timelike).
We consider in this paper only the timelike boundary. The
above actions are invariant under the Z,-transformation for
arbitrary parameters oy,as. The sum of the bulk and
boundary terms in the first line are Z.-invariant, and the
boundary terms in the second line are also invariant under
the Ztransformations. The standard normalization of the
Einstein term fixes ai = 1. However, the parameters as
remains arbitrary. In the supestring theory, there are S-
duality as well which constrains the parameter as to be zero
[25]. In the bosonic string theory, however, there is no such
symmetry. One can fix this parameter by the principle of
the least action as follows: Since the action is at two
derivative order, only the massless fields are arbitrary on
the boundary. In extremizing the bulk action, the normal
derivative of the variation of dilaton which is not zero, does
not appear on the boundary, whereas, the variation of the
boundary action in the second line above produces such a
term. The only way to cancel this term, i.e., to be able to
extremize the bulk and boundary actions, is to set as = 0.
Hence, the constraints from the Z,-symmetry and the least
action principle, reproduce the standard bulk and boundary
actions at the leading order of a, i.e.,
o)
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However, it turns out that if one imposes the Z,-constraint

(4) and the constraint from the least action principle to the

effective actions of the bosonic string theory at order a, one

can not fully fix all parameters in the boundary action.

The cosmological reduction of the classical bulk actions
must be invariant under O(d,d) transformations [9]. We
expect the cosmological reduction of the boundary actions
should be also invariant under the O(d,d) transformations.
Intheobservationthatthecosmologicalreductionoftheleading
order bulk action is invariant under the O(d,d) symmetry, one
removes a total derivative term which is not invariant under
the O(d,d) transformations. We find that the cosmological
reduction of the Hawking—Gibbons term is not invariant
under the O(d,d) transformations either. However, if one
keeps track of the total derivative term and transfers it to the
boundary by using the Stokes’s theorem, one observes that
the cosmological reduction of the boundary action at the
leading order becomes invariant under the ©O(d,d)
transformations. In fact it becomes zero. This motivates us
to speculate that the cosmological reduction of the classical
boundary actions at any order of a must be invariant under
the O(d,d) transformations, and may even be zero, i.e.,
9S8 =0 (7
In this paper, we would like to impose the Z,-constraint (4),
the constraint from the least action principle and the above
constraint on the cosmological reduction of the boundary

actions,tofixtheeffectiveactionsofthebosonicstringtheory at
order a when the spacetime has boundary.

The outline of the paper is as follows: in Sect. 2, we use
the Bianchi identities and remove the total derivative terms
from the bulk action to the boundary action to show that
there are 20 independent bulk and 38 independent boundary
gauge invariant couplings at order a, without using the field
redefinitions. In Sect. 3, using the background independent
assumption, we consider a specific background geometry
which has a circle and a boundary that its normal vector is
independent of the circle. Then using the fact that the circle
reduction of the effective action on this background should
have O(1,1) symmetry, we constrain the coefficients of the
couplings. In Sect. 3.1, we show that the T-duality constraint
in the bulk fixes the 20 parameters in terms of two
parameters. We impose a relation between these two
parameters by requiring the effective action to have the
standard propagator for the B-field. The resulting bulk action
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is exactly the one found by K.A. Meissner up to one overall
factor. The Tduality constraint on the bulk couplings
produces also some total derivative terms in the base space
which are transferred to the boundary by using the Stokes’s
theorem. In Sect. 3.2, we show that the T-duality constraint
on the boundary couplings fixes the 38 boundary parameters
in terms of the
overallbulkfactorandintermsof7boundaryparameters.InSect.
4, we impose the constraint from the principle of the least
action. Since the independent bulk couplings have no term
with three derivatives, extremizing the bulk action produces
no constraint on the bulk parameters. However, extremizing
the boundary action, one can fix 2 of the 7 boundary
parameters. In Sect. 5, we study the Cosmological/one-
dimensional reduction of the actions. We find that the
cosmological constraint (7) on the boundary action fixes 3
of the 5 boundary parameters. In Sect. 6, we briefly discuss
our results.

2 Gauge invariance constraint at order o

The effective action of the string theory has a double
expansions. One expansion is the genus expansion which
includes the classical sphere-level and a tower of quantum
effects. The other one is the stringy expansion which is an
expansion in terms of higher-derivative couplings. The
number of derivatives in each coupling can be accounted
by the order of a. When spacetime has boundary, the
sphere-level effective action Sefr +0Sett has the following a-
expansion in the string frame:

e
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where G is determinant of the bulk metric Gy and boundary
isspecifiedbythefunctionsx* = x*(a*~ ).Inthesecondline, g is

determinant of the induced metric on the boundary
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The effective action must be invariant under the coordinate
transformationsandunderthe  B-fieldgaugetransformations.
On can easily find the independent couplings in the bulk and
boundary actions at order a?, i.e.,

Lo =a R+ @V, dV'd + a3 H?

4Ly = ayK + asn"V,d (10)

where ay,...,05 are 5 parameters that the gauge symmetry
cannotfixthem.Usingthebackgroundindependent
assumption, they can be fixed by the Z,-symmetry (5), and
by the least action principle (6).

Using the package “xAct” [28], one finds there are 41
gauge  invariant  couplings  inthebulkactionatorder
a.However, they are not all independent. To find the
independent bulk couplings, we note that the total derivative
terms in the bulk can be transferred to the boundary using
the Stoke’s theorem. Hence, the couplings in the bulk should
not include total derivative terms. Moreover, the
independent couplings should not be related to each others
by the Bianchi identities

Rapys1=0

ViuRoplv6=0

ViuHapy1 =0
[V,V]JO-RO=0 (11)

Removing the above freedoms from the most general gauge
invariant couplings in the bulk action, one finds there are
20 even-parity independent couplings [12], i.e.,

Ly a;R* agRHugy H  a)H,* HPY Hys" Hy (o
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+a20 Ve HY V3 Hp, " (12)
whereay,..., a0 are20parametersthatthegaugesymmetry can
not fix them. The assumption that the effective action is



background independent means these parameters are
background independent. They may be fixed for the
particular
geometrywhichhasonecircle.Notethattheabovecouplings
havenotermwiththreederivatives,hence,inextremizingthe
above Lagrangian one does not face with the variation of the
second derivative of massless fields on the boundary which
are non-zero. As a result, our proposal for the boundary
conditions in which the massless fields and their first
derivatives are arbitrary on the boundary, i.e., their
variations are zero on the boundary, does not constraint the
parameters ay,...,az. In other words, the above bulk action
satisfies 6S; = 0 for any values of the parameters.

Since the boundary of spacetime has a unite normal
vector n¥, the boundary Lagrangian dL1 should include this
vector as well as the tensors K Hivps Hivpn . ¥ ® and
their derivatives at order a. The second fundamental form
or the extrinsic curvature of boundary, i.e., K, is defined

as Kev = Py Ff'?fﬂ”ﬁ‘where P = GW - n*nVis the first
fundamental form which projects the spacetime tensors
tangent to the boundary. Using the fact that n*is unit vector
orthogonal to the boundary, one can write it as

N= (9a f OOF )-V20Mf (13)

where the boundary is specified by the function f to be a
constant f . One can rewrite Ky as

va = Vl.lnv - Nuav (14)

where av=nPVpnyis acceleration. It satisfies the relation n*a,
= 0. Note that the extrinsic curvature is symmetric and
satisfies n*K,w = 0 and n*n*VaK,w = 0 which can easily be
seen by writing them in terms of function f . Using

thesesymmetriesandn*n, = 1,onefindsthereare56gauge

invariant even-parity couplings in the boundary action, i.e.,
3Ly = by Hys H' Y K 4 phHL Y H gy KOF
b Koy KKy + 04 KaaKgy Ky
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where by,...bss are 56 parameters. The terms in the boundary
action which have bulk fields and have one vector n*can be
interpreted as the total derivative terms in the bulk action
that are transferred to the boundary by the Stoke’s theorem.
Note that we have not considered the curvature tensors and
the covariant derivatives that are made of the induced metric
(9), because they are related to the curvature tensors and
covariant derivatives constructed from the spacetime metric
by various Gauss—Codazzi relations.

Not all of the couplings in (15) however are independent.
Some of them are related by the Bianchi identities and some
others by the total derivative terms in the boundary. To
remove
the a

lﬁl M
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(16)
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redundancy corresponding to the total derivative terms, we
add to dL; all total derivative terms at order o with arbitrary
coefficients. The total derivative terms in the boundary have
different structure than the total derivative terms in the bulk.
According to the Stokes’s theorem, the total derivative terms
in the boundary which have the following structure:

are zero because the boundary of boundary is zero (see e.g.,
il

the appendix in [26]). In above equation}_r' is an arbitrary
antisymmetric even-parity tensor constructed from n,

K, VK, H. Vi, YWD R at two-derivative order, i.e.,
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+ f15(npVsKas — NaVsKps)
+fi6(KPsn* VP — K*sn" V' @) 17)

where f,,... figare 15 arbitrary parameters. Adding the above
total derivative terms to dL4, one finds the same Lagrangian
but with different parameters by,bo,.... We call the new
Lagrangian dL1. Hence

AT =0 (18)
where & = #L) — il js the same as oL; but with
coefficients 8by,80,,... where 6bi= b - bi. Solving the above
equation, after imposing the Bianchi identities (11) and the
identities corresponding to the unit vector n*, one finds
some linear relations between only &bs,6b;,... which
indicate how the couplings are related among themselves
by the total derivative terms, by the Bianchi identities, and
by the identities corresponding to the unit vector. The above
equation also gives some relations between the coefficients
of the total derivative terms and 6b1,6b,,... in which we are
not interested.

Toimposein(18)theBianchiidentities(11)andtheidentities
corresponding to the unit vector n, we write the covariant
derivativesandthecurvaturesintermsofpartialderivativesof
metric, dilaton, H and n. We then write the partial
derivatives of H in terms of potential B-field and the partial
derivatives of n in terms of function f, using the definition
(13). Then all the Bianchi identities (11) and the identities
corresponding to the unit vector n satisfy automatically. In
other words, there is no identities any more when one
rewrites everything in terms of metric, dilaton, the potential
B-field and f . To
simplifythecalculation,onemaygotothelocalframe[22]in
which the first partial derivative of metric is zero. All these
steps can be done easily by the computer. Then one finds
38 relations between only 6bs,6bs,... which indicate there
are 38 independent couplings. One particular choice for the
independent boundary couplings is the following:
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+h13KynaVaKpy + b14KppnaVaKyy

+b15n*VaR
[0 Y LT v
K n Vy®+byKgK? o1V yh17Ka,
By a

1o Hy™ Heobenangny Ve @
+h2onanpny R & Vur® = by n iV, by
frys K ¥ T T
+t;;3nansva PVEY,
+hy K7 yn®n? Vi,V + bysn®n? VgV, K7,
+by K“FVpV,
+by7 K7 yn"nP VgV ® + byg Hy'® Hysn® VP @
+bygn” Ryg VP @ + b3 Kog VIOV @

b n“ Ve ®Vg evie /’_\3”“ ViV OV

+ +

de o oy basHe  nnn ¥yl

+baanangn” Ve B Ve &V,



+h3snangny ¥e BV, Ve d
+b3snangny ¥y ¥ Ve

+ha7nang Vi Ke V7 b

+b38nanpnynsVsVy Kap (19)

where b;,...,bss are background independent boundary
parameters which may be fixed by imposing the
Z,symmetry, by the least action principle and by the
cosmological constraint (7). Note that the above boundary
couplings do have terms with two and three derivatives,
hence,

inextremizingtheabovelL agrangianonefaceswiththevariation
of the second and third derivatives of the massless fields on
the boundary which are non-zero. As a result, the least action
principle constrains the parameters by,...,bss. In other words,
the above boundary action satisfies 6(dS:) = 0 for some
specific values of the parameters which, as we will see, are
consistent with the T-duality. Note that, as we will see, if one
uses the boundary condition that only the massless fields are
arbitrary on the boundary, i.e., only the variation of massless
fields on the boundary are zero, then the least action
principle would constrain more strongly the parameters
bi,...,bss which would not be consistent with the Z,-
symmetry. In the next section we first find the relations
between the bulk parameters and the relations between the
boundary and bulk parameters by imposing the Z,symmetry,
and in the section after we impose the least action principle
to further constrain the parameters in the boundary action.

3 Zz-invariance constraint

Using the assumption that the effective actions in the string
theory are independent of the geometry of the spacetime,
we now explicitly impose the Z;-symmetry on the effective
actions to find some relations between the parameters in the
gauge invariant couplings (12) and (19). To this end, we
consider a particular geometry that — M'P-1 o, gl

apMi — g I|IH-:.'J ., _q;lll its (1
bulk and boundary have the

i i

structures M®and
. The manifold M
nates X = (x, y) and its boundary dM® has coordinates o* =

has coordi-

(0%, y) where y is the coordinate of the circle S®. The
Kaluza—KIlein reduction of the metric and the reduction of

B-field and dilaton are [7]

_ ( Bl + ¥ ) gagh e¢ga
3 lﬂ""ﬁh ¥ E Guv’
e Ly o 1 -
_ (Ir}ﬁ-ﬁ | —2-'53-_4,-,.'1 n ] . =g+
B — b bbga b a ¢/4
(20)

where g~ab is the metric, b7ab is the B-field, ¢~ is dilaton and
ga, brare two vectors in the base space. The reduction of the

unit vector n*is

r

= (b) (21)

where n?is the unit vector to the boundary in the base space.
Usingthesereductions,thenonereducestheeffectiveactions

Setf +0Serr ON the circle to find Ser(P)+0Sere(P) Where
represents all the massless fields in the base space. The
Z,symmetry then constraints the effective action to satisfy
the relation (4).The Zo-
transformationofthebasespcaefieldsin (4) are the Buscher
rules [23,24] and their higher derivative corrections, i.e.,

[ \ :" Lo
W= e Yo (22) m=0

where i represents the Buscher rules. In terms of the
reductions (20), they are

P=-0, Ja= ba, Da=ga (23)

The base space metric, dilaton, b™-field and the unite vector

n?are invariant. The 1 1" {22y yepresents two derivative
corrections to the Buscher rules, and so on.
ThecorrectionstotheBuscherrulesdependonthescheme

that one uses for the gauge invariant couplings [11], and vis
versa. Since we have not used the field redefinitions to write
the gauge invariant couplings, we are free to consider a
specific geometry for imposing the O(1,1) symmetry. For
the geometry that we have considered, the unit normal
vector n?on the boundary is independent of the circle on
which the T-duality is imposed, i.e., g~abn®n®= 1 is invariant
under the T-duality. Hence, the base space metric must be
invariant under the T-duality at any order of a. On the other
hand,

under the reduction (20), the density e oy

G reduces to e-2¢'v—'g which may be invariant under the T-

duality at any order of a. Therefore, the base space dilaton
may be invariant at any order of a. So, for the background
that we consider, the base space unit normal vector n?, the
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dilaton ¢~ and the metric g~ab do not appear in the T-duality
transformations. The base space b™-field which is invariant
under the Buscher rules, however, appears in the higher
derivative corrections because this field and the vectors g,,
ba should satisfy a Bianchi identity [29]. Hence, we consider
the Tduality transformations that involve only the
derivatives of the base space fields ¢, ga,ba,bab.

In order the T-duality constraint (4) to be satisfied, one
should add some total derivative terms at the boundary
which

are zero by the Stokes’s theorem, ie., T

/ dP 2o /1gn,Vpe @ F?y =0 (24)
N ;,A!I“ 1)

| v

[

p
where F®() is an arbitrary antisymmetric tensor
constructed from the - gauge invariant base
space fields. It can be — <m=1"" g-expanded as Fem
Fm®, which produces an a-expansion for T = 2ot T,
Then one can study the Z,-constraint (4) at each order of a.
Replacingtheexpansions(8)and (22)inthe Z,-symmetry (4),
one finds the following relation at ordere:™:

so(¥) + 3So(¥r) = So(¥rg) + 3So(¥r) (25)
Note that it is impossible to construct the antisymmetric
tensor Foab

atzeroderivativeorder.Hencethereisnototalderivative on the
boundary in this case. This constraint has been used in [25]
to find the effective action (5) at orderc:™.

Using the relation (25), one finds that the constraint (4)
produces the following relation at order a:

S1() +0S1(P) + Ta(W)
= S1(¥ry) + 381 () + ASo + AdSy (26)
where T1() is the total derivative terms (24) at order a, and
M50, Ad S are defined in the following a-expansions:
sl W+ u'g’!l'] — So(¥ry) = ' ASy + - - -
ASo(Wry + a'vry) — dSo(Y) = ' AdSy + - - 27)
where dots represent some terms at higher orders of a in

which we are not interested in this paper. The constraint (26)
can be written as

1) — S1 (W)
(5109 — 9516 — S0 (28)

ASo=-T(¥) ¢

Thetermsontheleft-handsideareinthe(D-1)-dimensional base
space whereas the terms on the right-hand side are in its
boundary. Only the total derivative terms in the (D - 1)-

dimensional action can contribute to its boundary action.
Hence, the bulk actions on the left-hand side should be some

total derivative terms, i.e.,
3
s’“‘r’] — 81(yrg) — ASy = ]

/ (I” l X \'_Q vn (A ‘|‘ ¢ % )
xJ -1 (29)

where A? is a vector made of the covariant derivative of the
massless fields in the base space at order a. The total
derivative terms then produce some boundary terms using
the Stokes’s theorem.

The Stokes’s theorem in the base space is

/ dP " x =gV (A§

JM-1 e_2¢—)

- j;’-.f'” ndP _Eﬂ.\'f E IIiI1"""'JII'T| | e-2-
(30)

where n2is the unit vector orthogonal to the boundary in the
base space and the boundary is specified by the functions x?
=X3(0®). The unit vector is outward-going (inwardgoing) if
the boundary is spacelike (timelike). The metric in the
square root on the right-hand side is the induced metric,

i.e.,

O0Xa OXb

gah =00 _a~ggb g ab (31)

Using the Stokes’s theorem to transfer the bulk total
derivative terms on the right-hand side of (29) to the
boundary, then the Z,-symmetry on the effective action at
order a produces the bulk constraint (29) as well as the
following constraint on the boundary couplings:

g

D81 (Y) — S (Yy) — AISy + T (W) + —
2
x _'I"-"'x-";|.-§|i'¢u Afe™ = dP
0 (32
oM where A2, has to be found from the bulk
constraint (29). The constraint (29) and (32) produce some

relations between the parameters in the gauge invariant
couplings (12) and (19).

3.1 Bulk constraint

The bulk constraint (29) has been used in [11] to find some
relations between the parameters in the action (12) for the



most general T-duality transformation at order a. The total
derivative terms have been ignored in calculating
Adpin[1l|because in that calculation it was assumed
spacetime has no boundary. Hence, the result in [11] can
not be used for the present case that there is boundary. In
the present case all total derivative terms in the base space
should be taken into account. So we solve the constraint
(29) in this section to keep track of the total derivative terms
carefully.

To find S from the expansion (27), one needs the
reduction of the bulk action at order o°. Using the reductions
(20), one finds the reduction of the bulk action Sgto be

S“(l"“ = _é / dP'xe ¥ /3
R—viy lv oV I( PV 4 e YW
y ay 4 a ¥ 4( ¢
- - 1
AV, VD + 2V, Vg 3 Hab, H”bl:|
12 (33)

where Va is field strength of the U(1) gauge field ga, i.€., Vao
= 0a0b — Ob0a, and Wy is field strength of the U(1) gauge field
Da, i.e., Wap = 0aby - 0pba. The three-form H™ is defined as

H™abc = Habc ~ %-'%'If-' W) — ":_;-“[avbc] where the three-form
H" is field strength of the two-form b~ab in (20). Since H™ is
not exterior derivative of a two-form, it satisfies anomalous
Bianchi identity, whereas the W, V satisfy the ordinary

Bianchi identity, i.e.,

o 3.
g Hpea) = T2 ¥ [abWed]

0[aWhbcj=0
d[aVhe = 0 (34)

Our notation for making antisymmetry is such that e.g.,
_
graWbel = 1(gaWbc - gbWac  — g Wiy

. 0 .
The  Zo-transformations @ at order , i.e.,¥i,

are given by the Buscher rules (23), and at order a are given
by the following: = —¥ +@'A¢, g, = b, +a'e?*Ag,,
ba= 8o + ""’7“‘1"’\[’f“ H«:m = Hape + o' A Habc (35)
the corrections & &84 & b, contain

where some

contractions of Ve,e®2V,e-#/2W, H™ at order a. Note that the
base space metric, dilaton, b™-field and the unite vector n?

remain invariant at order a. Since the transformations must

form the Z,-group, the corrections satisfy the following
relations [11]:
Ap(¥r) + Ap(¥y) =0

Abe (W) + Aga(¥y) =0

Aga(Ur) + Abs () = 0
AHupe (W) + AHupe (W) = (36)
Then the corrections should have the following terms:
Ap = e3dypid®y + el H + ex(e* V7 + e_on?)
ga = e4eq/2H abcV be + e5e-¢/20beWab
Aby = —ese ' Hape W™ + e5e¥ ""‘i)"q:n\/ab (37)
where ey,...,es aresome parameters that should befixed by the
Z,-symmetry of the effective actions. Note that we did not
include the corrections which depend on the derivative of the
base space dilaton and metric. The correction & H ane IS

related to the corrections 2. &b, through the following
relation which is resulted from the Bianchi identity (34):

A lll-:rr.-."-"e. =H"abc — Bt'i“qj‘: ulfl"l’ Ah"l - 3()"”:’1 Agl’" vh"'l (38)

where Hahc is a U(1)xU(1) gauge invariant closed 3-form
at order a which is odd under parity. It has the following

terms:
H~abc = e0[aWpVcld + €70[a H bcld Vi (39)

where eg,e;are two other parameters that the Z,-symmetry of
the effective action should fix them.

Using the reduction (33), then one can calculate:*n from
the expansion (27) in terms of above corrections, i.e.,

dP7Ixe™® -5 = e?vZi—e?W?2

2 1
So=—7, Z

e-¢/20b@Wabga — 1e¢/20b@V abba 2

1 - -
——H"™ A
i} abc

| -
+5(dap + 43PV (Ag) — VoV (Ag)
e Y2 Wap VP (AgY) + €92 t-';,.,,v”(mf’)] (40)

where no integration by part has been used. One can check
that up to some total derivative terms the above expression
become the same as the corresponding expression in [11] for
Ady = ARy =0 (i.e., eq.(23) in [11]), in which the total
derivative terms were ignored. Note that i is not even or

odd under the Buscher rules. However, up to some total
derivative terms it is odd under the Buscher rules [11].
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Using the reductions (20), it is straightforward to reduce
the effective action S; with the Lagrangian density (12) to
find Si(), and then calculate its transformation under the
Buscher rules (23), i.e., S (¥, See [11], for the details of
this calculation. Note that S11%} — 3109 s odd under the
Buscher rules, however, since /.1 is not even or odd under
the Buscher rules, the vector A1¢¥? i (29 js not even or
odd under the Buscher rules either. Hence, the vector A7 L]
should contain all even-parity contractions of d¢, 0¢~,
e®2\ e-®2\W H~ , R~ and their derivatives at order o with
unknown coefficients. Using the package "xAct”, one finds
it has 48 terms, i.e.,

A1 = J1HpcdVbeWad + j2H acdVbeWbd + j3H bedVabWed

+j4H bcdVaHbed + j7VaR

+
+e¥ VIV Vi 4 e WY

FjoHpea VG + j1i RV + €¥ 13

-y = ’ rbe a4 . _
e Y jisWp WHV9% VbcVbcVad

Whc
+j23H"bcdH bedVag + j25RVagp

+isVeR™ 4 jy VgVl + jasVigV, Vi

L '-?;._\T"%‘J-}-j_ﬁ V"(!)Vg,qul + ja7 V"(,':-Vg.vhq)
+ i VT 89 [27VheVbeVag + e-¢

J29WbcWhbcVae
+jVeVIVi + Vi VPV + jioH? Hyea VP~
a b ¢ ac b d)

‘ ) i ) ) +j12R

+e ¥ j1eW Wi V70 + j3s VoV Vi v ¢ +e

+j36 VoV V P + j1VdVeeVPh  juV VeV
Fias V9oV VPP + jiaVy VgV ¢

+j16 VsV 0V 9

F o e VU 5 jo6Rab Ve
+eg j28VacVbcVb + e-¢ j30WacWhcVhep
+j39Vad Vb Vb + j40Va@VbeVhe
+j44VbVad Vb + j48VbVapVbe

+€¢ j18VhcVcVab + e j19VabVcVhe

+€-¢ j21WbcVcWab + e-¢ j22WabVcWhc

+j5HbcdVdH abc + j6H "abcVdH "bed (41)

where ji,..., jas are 48 parameters. Note that some of the
above terms are related by the Bianchi identities. We will
remove them after imposing the constraint (29).

To find the parameters which satisfy the bulk constraint
(29), one should write the covariant derivatives and the
curvatures in (29) in terms of partial derivative of the base
space
metric,andwritethepartialderivativesofthebasespacefield
strength H™, W, V in terms of the potentials b~ab, ga,ba and
then goes to the local frame in which the first derivative of
the metric is zero [22]. The coefficients of the resulting
independent terms in the local frame then should be zero.
This gives some linear equations involving all the
parameters. We find the following solution in terms of the
parameter ai,a.:

ap = -16as,a11 = 0,a13 = 384a; — 12ai», a4 = 768a; -
24a1z,a15 = 96a; - 6ap, aie = -768a; + 24a1z,a17= -768a1
+24a;,, a1s = 48a,a10= 0,82 = -9a1 + (3212)/8, Az = -24a:
+(3a12)/2,a3 = a1/3 - @12/96, as = 72a;1 - 3a12,as = -192a;
_ +6ai, as=-8a1 + aip/4,a7 = 48a1 - (3a12)/2,a5 = 24ay,
ag = -12a1,66 = -288as,e7 = 0, e; = 0,62 = 24ay,e3 =
48a1,e4 = 24a1, €5=48ay, j1=-24ay, j10=0, j11=0,

J12=0, ji3=-48ay, jua = 96ay, jis = 48ay, jis = -96ay, ji7

= -48ay, jis = 48ay, jig= -48ay, j2=0, joo= -48ay, jo1 =
-48ay, j2o = 48ay, jo3 = -8a1 + a12/2, j24 = 48a1 - 3ai2,

j25 = 192a1 - 6a12, jos = -384a1 + 12a12, jor = -72a1 +
(3a12)/2,

jos=192a;1 - 6auy, joo= —24a1 + (3a12)/2, j3 = 244y, jzo = 192a1
-6aw, j321=0,j32=0,j:3=0, jsa= 0, jss= 0, jss = 384a; -
12a1y, ja7 = -768a1+ 24a1, jss=0, jso=0, ja= 0, jao = 24a1 -
(3a12)/4, jar=0, jaz=0, jaz=0, jas=0, jas=0, jas= 0, jazr= 0,
jag=-96a1, j5=0, js=0, js=-2j7, ja=0

(42)



When replacing them into (37) and (39), one finds the
following corrections to the Buscher rules:

Ap = 24(;.('2.',@;;"'(,-.' Fe¥ V2 g e¥ w3)

Ao, =2 2200 W.), + e¥* H
Aga = '4"“('( P Wap + ¢ Hach be

Ab, = 24a, (3(“""“25!"‘;‘4-"‘,;, e ¥

H-abe = ~288a:01a(WetVid) — 37 Vias A
~3e-9/2Wlab &l |(43)

These transformations are those have been found in
[29]%for 24a; = M.

Since the above corrections are independent of the
parameter aip, the solution (42) produces two mutliplets.
One with theoverallcoefficienta;
whichisinvariantundertheBuscher rules plus the above
higher derivative corrections, and the other one with the
overall coefficient ai;o which is invariant under the Buscher
rules. The T-duality then can not fix a relation between
these two parameters. We find the relation between them by
using the fact that the sphere-level S-matrix elements of
massless vertex operators in the string theory have simple
poles reflecting the standard propagators for the massless
and massive fields in the amplitude. At the low energy, one
expands the massive propagators to find an amplitude in
terms of only massless fields. The massless poles at the low
energy are still simple poles. They should be reproduced by
effective actions which have standard massless
propagators. The last term in the effective action (12)
changes the standard propagators of the B-field. However,
for the following relation between a; and aia:

aiz=16a; (44)

the coefficient of this term become zero after imposing the
T-duality constraint (42), i.e., ax = 0. Interestingly,
imposing this relation, one finds the curvature terms in the
action (12) also becomes proportional to the Gauss—Bonnet
gravity which does not change the standard propagator of
the metric.
Imposing the relation (44) and the Z,-constraint (42), one

finds the following bulk action:

2 The sign of the first term in the last line of (43), however, is different
than the one appears in [29] which is a typo [30].

5 e “H" Hys" Hye.

L‘.| - 24(“[
I S ppafy €
—— Hyp® H*PY H,“* Hy,
8 i
1 .
— Hypy H*PY Hy, o H
tag ey '
+Hy"  Hgys RP — 4Ry R*P
1 , ,
— (7 Hu/in“m'R + R+ Ru,'i;.uﬁ Ru;‘i) &
b

! .
5 v By
— = H, " HY Ry 5

9
- ; ,I/'-.':,.;, fl'ﬂ}"’ Ve Ve

-

+3 Hpys HYY, &V ® 4 RV, DV d

+16V,dV*dVVF b
~16RVI DV D — 16V, OV DV dVF D

+2H, """ Hy, s VIV <1>]
(45)
Since all background independent parameters in the gauge
invariant action (12) are fixed in the particular geometry
which has one circle, then the above action should be valid
for any other geometry as well, e.g., if one considers a
geometry which has a tours T2, then the reduction of the
above action should have the symmetry O(2,2). The above
action is exactly the off-shell Lagrangian that has been found
in [8] by imposing various field redefinitions on the on-shell
action in the minimal scheme.
The relation (44) and the Z;-constraint (42) produces the
total derivative terms in (29) that their corresponding vector
A2, is the following:

1= 2da | i
A bedV abWed = H™bedV bcWad
-2e¢VhcV beVad™
+2e™"
¥_2¢” WHVIW, + 4RV g —
¢ a b ¢ ac b
WhbcWhcVad™ - 2e¢V bcVaVhe
2e¢VhcV bcVap
+4e V

+8V oV d Vi — 16V VeVl —

@ ac b ¢ ac b

Vch
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¢ -4e-W WiV
8RabVhep
+4e V Vch () + 4e— W Wch ()
| o b ! o 1sbe
+=VVpeV7@ — AV VeV + 2e¥Y V'V
3 UV V ¢ bY@V Y+ 26 oV ab
-2e¢V abVcVbe - 2e-¢WhcVcWab
+2e7E Wby, wﬂ
(46)

Note that the above vector is not odd or even under the
Buscher rules.

The presence of the total derivative terms indicates that
the bulk action alone is not invariant under the
Zstransformations. Using the Stokes’s theorem, these
anomalous terms are transferred to the boundary and then
should be cancelled with the anomalous terms in the
boundary action. The anomalous terms from the bulk action
are then the following terms:

o ; X
dp oy g R ATE

il

oM

= 24a, / dP 2o \ﬁt 2. [H
Jam bedV abWed

—-HbedV bcWad — 2¢ @VbeV beVad™
+2e-oWbcWhcVad™ - 2e¢V bcVaVhe

-2e-¢WbcVaWhc + 4RVae

-2e¢VpcV bcVag + 4egV acVpcVbd™

—de P W Wy VP
F8VI oV Vi

a b ¢ ac
-8R,V @ + de V
I { ! ’
+5 ViV Ve — 4V VeVl

16V2b VbV

VpcVbep + 4e-oWacWhcVbp

+2eV beVeV ab — 289V abVcVbe

+ 2 I i1 Wl'l i TI: ”.I:‘ i ]

—2e- WPy WA, (47)

In the next subsection we study the Z,-transformations of the
boundary action (19).

3.2 Boundary constraint

To impose the Z,-constraint (32) on the boundary terms,
one first assumes that the boundary is specified by the
functions x*(c* ) = (x¥o*), Yy)wherethefunctions
x3(o®-)represent the boundary in the base space which are
independent of the y-coordinate. Then the reduction of the
induce metric (9) becomes

e et e
=/606_Xaadxbb"g ab+j bakb? yyalf" Ha _

X [

ngk wr -30 (b (€ gb) e (48)

Using this and the reduction of dilaton in (20), one finds the
following reduction:

_ _ =

=2 F i
e viigl=e "+ |g| (49)

where g is the determinate of the induced metric ( 31). For
the background that we have considered, it is invariant
under the Z,-transformations to all orders of a.

Using the reduction (21) for the normal vector and the
reduction (20) for metric, one finds the reduction of the
extrinsic curvature to be

4 -.'.'lI = |
" Iﬁ"fn'-!'-' =2 JIF'H'n'l" + -,“”E-:-"-:r""

G — (50) where K ab is the

extrinsic curvature of the boundary of the base space. So the

reduction of the boundary action dSgin

(6) is

a g 4 D=2 - ’gfl N~ =ab ¢ I a

".Sl)["//) = —— d e Tty |L’|[ﬁ.’ Aub + ;” Vu'(!(’]
K= o

which is invariant underU(1)xU(1) gauge transformations.

In using the boundary constraint (32), one needs to cal-
culate A, Using the above reduction, one can calculate
A45 in terms of the T-duality transformations (35), i.e.,

4 \ Vb S~ | B
ADSy = e fdl)f-o (,*-41\/ }31[;”1‘\'?-1(‘5('"')]
K= va

(52)

where @ is given in (43). Note that in finding the above result
we have used the fact that in the background that we have
considered, the unit vector n?and the base space metric and
dilaton are invariant under the Z-transformations.



Using the reductions (20), it is straightforward to reduce
the effective action 0S; with the Lagrangian density (19) to
find 8S1(), and then calculate its transformation under the
Buscher rules (23), i.e., "S10%) . See [13,26], for the
reduction of different tensors in the boundary Lagrangian
(19). Note that for simplicity of calculations in the boundary,
we assume the metric of the base space is flat, i.e., g"ab = nan.
This calculation produces the expression 31 () — @31 (453
in (32). The anomalous couplings from the T-duality of the
bulk action is also given in (47). Finally, one needs to add
the total derivative terms Ti(g) to the constraint (32).
According to the Stokes’s theorem, the total derivative terms
in the boundary which have the following structure are zero:

_ 2 T — d°

X= “ ¥ . 2 el
g oy 8 Radele '/'u‘:”” | (53) m

where F® is an arbitrary even-parity antisymmetric tensor
constructed from U(1) x U(1l) gauge invariant tensors

n,0n,0¢,0¢,” e-*/2W,e®/2V/, H™ at two derivative order. Using

the  package 1t

Vo BV, Ve ®4+96(—8a, -
“xAct”, one can

by n* VgV, dVFd + (48a,

construct this tensor with arbitrary coefficients.

Having calculated all terms in (32), one should then
imposetheBianchiidentities(34)intheflatbasespacewhich can
be done by writing the derivatives of the field strengths V,
W, H™ in terms of potentials ga,ba,b™ab. To impose the
identities corresponding to the unite vector n?in the base
space, we also write it in terms of the function f using (13),
ie.,

n2= (9 f o0 f )-1/202f (54)
where we have used the fact that the function f should be
independent of the killing coordinate y, i.e., dyf = 0. The
coefficients of the resulting independent terms then should
be zero. They produce some linear equations involving a;
and the parameters in (19) and in (53).
Wefindthefollowingnon-zerocouplingsintheboundary:
L) = by Hpys H™ K + 240, Hy"* Hgys K
+by, Ke” KKy + (24b,
1
LIRS
] 4 19 vy

— ;[)]'.‘)k’“u A’ﬂ’v K'“)’

+12(—16a, + b») K* Rqyp
1
+(96a, +24b) — 12b; — 5by7 +2by)

xKyyNanp Rap - 12b1KaaR

+p11Kysnanp Rayps
+b12HBv6na\7-'u H,“;;v..\ — Zhl llh.;,'\ ”;’{y.':nuvu(b
+b17Kgy Kpyna Yo P + bisK sKY n"V,d .

&
i Hy™ Hse jonanpnyV o

+(-192a; + 24b;, +b17 -

4b19)nangn” Ry Vb
#24(8a; + b)n" RV, — 48h K 5V, 4V,
20 192a 480 b K7 n“nPV,dVd
| 1 18 ¥
w5y W p+24(-16a1 - 2by +
b1o)K Ba

ETRY S P L L vy +(192a1 - 24b1, - b1y
4 |1;|.:| :.-J‘r 1 vf‘-can!‘D

1 48( 8a b n"RgViO4 — | —
3844, Ko VHviD
96(da b "V, dVdVF b (384ay+ 96b; +
48b1+ 2bg7 - 8b19)
4
—6b,2) Hy " n*n”n? V,, Hpj,
aBy
+xXNNn
+p3snanpnynsVsVy Kap
4 w By
+—( 576a  96b b n“a"n"V OV OV P3_
1- 1+18 a B
Y
(55)

which has the bulk parameter a; and 7 boundary parameters
b1,b11,b12,b17,b18,010,b35. The corresponding antisymmetric
tensor F® in the Stokes’s theorem is

Fab = 6(8a1 - b12)eenbncV adVed
-6(8a1 - b12)eenancV bdVcd

-6(8a1 - b12)e-enbncWadWed

! 8 vy
+(=8by — cbi KK’ K7, -6(-8ar+

b12)e-gnancWhdWed
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+24b,n"3%@d.n — 24b,n" 3" d
48(8a, 4 hllu"u"fi"yz-lilzp e

+48(8ay + by)nancapd.P-
-24b1nbdancdcep + 24binadbncdcp

which has the bulk parameter a; and the boundary
parameters by,bio. The background independent parameters
bl, b11, b12, b17, blg, blg, b33 may be fixed further by
considering the geometry which has the tours T2in which we
are not interested in this paper. In this paper, however, we
further constrain the parameters by using the least action
principle, and by considering the geometry which has tours
T 9. Before imposing these conditions, let us compare the
gravity couplings that the Z,-symmetry produces, with the
couplings in the Euler character I..

3.2.1 Comparing with the Euler character I,

In this subsection we compare the couplings in the classical
effectiveactionthatareconsistentwiththeT-duality,withthe
couplings in the Chern-Simons form Q: in the Euler
character I,. When the dilaton and B-field are zero, the
couplings that are found by the T-duality constraint are the
following:

+2byq ) K” n“n” R,g — 12b, K",
} K vo o ﬁR i
+0q, nn" Keypa

+hygn®nn? n* VsV, Kog ]

48a
| +88) = - %frlt).\’J -G(R"P Ry vap

K

—4R""R,, + R?)

N -
- /¢l“‘l.l‘\.f'|_ql[h”AQR'K""*K;,Y
2

1 ,
+ (241), - ;h,-,> K® Kp, KP?

| ) .
1( 8h, -ahm) K KPsKY,

F12(=16a, + by2) K™ Ryg

1
+(96u, +24b) — 12by, — =by
s 2

(56)

wherethecouplingsareallindependent.Onemayusevarious
identities to rewrite the boundary coupling in different form,
however,thenumberofboundarycouplingsremainthesame.
For example, one may use the following identity:

NanpnynsVsVy Kap = -2Kay KapKpy + NanpVyVy Kap

(67)

which can be verified by writing both sides in terms of
function f , to write the term with the second derivative of
extrinsic curvature in (56) in terms of the Laplacian of the
extrinsic curvature. This changes the coefficient of Ky
K*®Kg,, however, the number of the boundary couplings
remain the same.

On the other hand, it has been shown in [27] that if one
extends the couplings in the four-dimensional Euler density
I, to arbitrary dimension, the couplings satisfy the least
action principle with the boundary condition that only
metric is arbitrary on the boundary. This extension is
| N
1= d?xv=GR2 / dPx/

vt Vi, (58)

where Rgg? is the Gauss—Bonnet gravity and Q; is the Chern—
Simons form [27]

— s P
3:4[/\",,/" 2K Rus + 5 GK“a K K1

K" KV K — 2K, K e KW )] (59)



where R™uvand R™ are curvatures that are constructed from the
induced metric (9). Using the following Gauss—Codazzi
relations:

R~ap = PauPvRuv — npnvRappv - KapKpp + KapKup

R™ =R - 2nunvR,y - KiwKpv + KKy (60)

and the identity n*K,v= 0, one can rewrite Q in terms of the

spacetime curvatures, i.e.,
2 = 4[/«'*3, R —2K" Ry —2Ko*n"n" R,

L’ 5
+2K" 0" n" Ry

I ( o d s v U 44 s
—3(6K“a Ky K" = 2K" K" K?

—4K, K o K" )]

(61)

The bulk couplings in I, are the same as the bulk couplings
in (56), however, the number of boundary couplings in (56)
is more that the number of boundary couplings in I.. If one
sets bsg to zero in (56), then the number of couplings and
the structure of couplings become the same as those in I,
however, for no values of the boundary parameters
b1,b11,b12,b17,b18,019 the two sets of the couplings become
identical, e.g., the ratio of the last terms in the first and
second lines above is 3/2 whereas this ratio in (56) is one.
Hence, the boundary couplings that the T-duality dictates
can not be exactly the same as the boundary couplings in I»
for any values of the boundary parameters. This may
indicate that the assumption that only metric is arbitrary on
the boundary in the 4-derivative couplings is not consistent
with the classical effective action of string theory.
However, such assumption may be valid for the higher loop
effective actions for which there is no T-duality symmetry.
4 Constraint from the least action principle

We have seen that when the background geometry has a
circle, requiring the bulk and boundary actions at order a to
have the Z,-symmetry, one finds the bulk action (45) and the
boundary action (55). Using the background independent
assumption,thentheseactionsshouldbetheeffectiveactions at

order o for any arbitrary background which has boundary,
up to field redefinitions. To find the bulk equations of
motion one needs to extremize these actions, i.e., 8(S1+ dS;)
=0, by using some assumption for the massless fields on the
boundary.Atthetwoderivativeorder,theassumptionthatthe
massless fields should be arbitrary on the boundary is good
enough to produce the equations of motion from extremizing
the leading order actions, i.e., §(So + 0Sg) = 0. At the four
derivative order, however, the assumption that only the
massless fields are arbitrary requires the boundary couplings
which are not consistent with the T-duality symmetry. If one
insists on that assumption, then the 4-derivative action
would not be the classical effective action of the string
theory in which the T-duality is a symmetry. Hence, it seems
to study the classical equations of motion in the string theory
at order a, one should assume that not only the massless
fields but also their first derivatives should be arbitrary on
the boundary.

Since the bulk action (45) has at most two-derivative

terms, e.g., R orvw s, when one extremizes the bulk action,
one would find the variation 6 as well as the variations
VAU and ¥V (8) where represents the massless fields.
After using the Stokes’s theorem, the variations V(§) and
VV(6)producethevariations: ¥ and v
(6)ontheboundary. The assumption that and t are
arbitrary on the boundary, means their variations are zero
on the boundary, i.e., d¥ = W{4W) =0, Hence, the
bulk action satisfies
#8) = [---34% = 0 with no constraint on the bulk
couplings. The boundary action (55), however, has two- and
three-derivative terms, e.g., R or VVK. When one extremizes
the boundary action, one would find variations VV(8) and
VVV(8) on the boundary which are not zero in general. The
parameters in the boundary action should be such that the
coefficients of these variations become zero up to some total
derivative terms on the boundary which are zero according
to the Stokes’s theorem.

The variation of the boundary action (55) against the
metric variation produces the following non-zero terms in
the local frame:

24(8a, + b)a"df 17 P70 3,855G s

l g ’ 8 £
+(96ay — Sbyy —6bp) f17f17 27 Py Py 3,08 G s
i !
F(—48a; + 6b5 4 31)]7 byg)
x f19£1° £270 Py PE€3,850G
I
+(—96a) —24b) — 12by; — Sby7 +2byg)3" P

x fla f17 17 P850, 8Gs, (62)
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where f 19= 9%, f 228 = 929k . We have used the assumption
that the variation of metric and its first derivative, and their
tangent derivatives are zero, i.e., 6Gap = 0u6Gqs = 0 and
P*9,0y6Gap = 0. One is free to add arbitrary total derivative

terms, i.e., (16) in which the antisymmetrictensor Flr'ﬁ
containsthevariationofmetric.Using the Stokes’s theorem,
the total derivative terms on the boundary become zero.
Then, up to some total derivative terms, the resulting
equations are zero for the following relation:

b19 =-48a; + 6b12 + b17/4 (63)

Note that if one requires that the first derivative of the
variation of metric to be non-zero on the boundary, i.e.,
0u6Gap = 0, then one would find many other terms in (62)
that become zero for the incorrect value of a; = 0.

Inserting the relation (63) into (55), one finds the
variation of (55) against the dilaton becomes zero up to
some total derivative terms, and the B-field variation
produces the following relation:

bio=16a;1 - b11/12, (64)

and some total derivative terms. Therefore, for the relations
(63) and (64) the bulk and boundary actions satisfy the
stationary condition 8(S) +d8)) = (- 8¥ = 0
when the variation of massless fields and their first
derivative on the boundary are zero.® Since the variation of
fields in the bulk are non-zero, this gives the appropriate
equations of motion in which we are not interested.
Inserting the relations (63) and (64) into the boundary
action (55), one finds the boundary action to be
al) = by I:Ku S Kg, + : Hud' Hgse K 7 ¥
4 Nanp
— K" Ryp + K" n"n” Ry s

f

L avs a 1, 4y
_ IZH“"“n Vo Hpys — ZHJ‘ Hysen“nPn’ V, &
I ,
—2K*P VgV, d + 3H(,"‘n"n"n" v, H,«m}
+h, [H‘,,},,,- HPYPK®, +24K" Kz, K"

-8KaaKppKyy + 24Kyynang Rop

% Ifonedoesnotusethetotalderivativeterms(16)inthemetricvariation of
the boundary couplings (62), then one would find the constraint (63),
(64), and another constraint bs = -8a.

_ a
—~2Hpys HPY 0"V, ® + 24n° RV,
~48K" pV, oV
12K R
+96KY ,n*nV, dVyd
48K“PVV, ® — 480" R,z VP d

+96n“V, V5OV @
~ 96n*VV,dVF P
~128nangny ¥ P Va bV, @

+96n°nn? V, &V, Vy ¢]

+a, [24 Ho"’Hg,s K" — 24H," Hgs KV ,n"n”

+ 16HP" 0"V, Hg,s

A8 " Hoe  nangn” Vi — 1920% RV, &

+384K7 ,n“n"V,dVsd — 384n* R,y VI b

~384K,s VI OVF b 4 3840V, dVdVF P
7681 V5V, &V b

i w pA8Ha nn' Yy M

~768nanpny ¥u TV a BV, B

+768n“n"n? V,®V, Vg ¢>]

b7 r B 1 § - g
5 K Kg, KP7" + —H," Hgse K¥ yn“n’

—Kpy KP7 0V ® — = Hg™ Hysen®nn” Vo

- hﬁ[K"U — 27V, d>]"
6

-}-I)»;h-n"ur‘ n?n’ VsV, Kug (65)
The boundary multiplets with the background independent
parameters b1,b11,b17,b1g and bag are each invariant under
the Z,-symmetry and satisfy the least action. The boundary
multiplet with parameter a; also satisfies the least action
principle, however, its combination with the bulk multiplet
(45) satisfies the Z,-symmetry. In the next section we study
another constraint on the background independent
parameters by considering the geometry which has the tours
T



5 Constraint from zero cosmological boundary action

In this section we show that the cosmological reduction of
the boundary term at the leading order produces zero
boundary action. We then extend this to the cosmological
boundary action at order a to further constrain the boundary
parameters in (65).

When fields depend only on time, using the gauge
symmetries it is possible to write the metric, B-field and
dilaton as

B AT |
Gw—( { G,-_,—'f!“l)

)
Buv_ U 8000, )

1
2 =g + - logdetiGy;) (66)

where the lapse function n(t) can also be fixed to n = 1. The

’

cosmological reduction of the bulk action in (6) then

becomes
I 2 —i 1
SI'I = _F ‘[ die |:1 B B
3
4G ijG'ij - GijG ijp" - ¢2 + GijG™ jj (67)

where G i = G¥G''G" k. Up to a total derivative term the
above action can be written in O(d,d)-invariant form. In

fact, using the following total derivative term:

_|:£'_ do ij
dtG Gij
dt

l :a':-f!“'“[ - ] {65
v GijG ijd - G ijG  ij + GijG ij

one can write S%as

- ~

9 Fl iy l. ey
h=—— I :ffﬁ“"[— 4] .‘—r:ﬁ‘]
S Lo 4Bl 4G G

_J _[e‘ “2dii" kedtdtG Gij (69)

4 Notethatthelapsefunctioninthecosmologicalreductioncorresponds to
the base space metric g~ab in the circular reduction. The invariance of
the lapse function is then consistent with the invariance of the base

Since there is boundary, the total derivative term can not be
ignored. It can be transferred to the boundary by using the
Stokes’s theorem.

On the other hand, the cosmological boundary is specified
by x = o', and x° =t is independent of o'. Hence, the
cosmological reduction of Vel T =e ¥ The
unit vector to the boundary is fixed, i.e., n" = 0, and the
cosmological reduction of the trace of the extrinsic
curvature becomes

c 1 ij
K= _GGij (70)
2
Therefore,thereductionoftheboundarytermin (6)isexactly
cancelledwiththetotalderivativeterminthebulkaction,i.e.,

¢ _2 /n o Lyew2 — Ly _ g2
_ [ Lrew? _ Ly2 _ 42
=N e 4 ‘

#5; =0 (71)
where W = G-1G", Y = G-!B". The bulk action is invariant
under O(d,d) [5,6]. Note that the reduction of the extrinsic
curvature (70) can not be written in O(d,d) invariant form.
So it was necessary that this term was cancelled with the
total derivative term in the bulk action. In other words, there
is no way to write the boundary action in O(d,d) invariant
form unless it is zero.

At the higher order of a the bulk and boundary actions
should be invariant under O(d,d). We will see the couplings
that are found by the Z,-symmetry satisfy the O(d,d)
symmetry with no further constraint on the boundary
parameters. However, since the cosmological reduction of
the leading order boundary action is zero we speculate that
the boundary action at all higher orders of a to be zero too,
i.e., (7). This can be a consistency check and a constraint for
the boundary couplings at higher orders of a, e.g., the
cosmological reduction of the boundary couplings (65)
should satisfy the O(d,d) symmetry and then the constraint
(7) fixes the coefficients of the O(d,d) invariant terms to be
zero.

Using a one-dimensional field-redefinition for which the
lapse function remains invariant,*it has been shown in [8]
that the cosmological reduction of the bulk action (45) can

space metric under the Z,-transformations that we have considered in
this paper.
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be written explicitly in O(d,d)-invariant form when there is
no boundary, i.e.,

2 1 1
i= = 24a [d!(‘“‘5 =T YH 4 ~Tr(wh)
S K= . 3 8

I | .
F-T —Tr FA W)
2 ywywy 2

l o > ) ] » n .
— T (V™) = Te(WHI — S[Te(Y") — Tr(W)lg*
0 2

In this calculation the terms which could not be written

in termsof O(d,d)-
invariantformareremovablebyfieldredefinition and total
derivative terms. The total derivative terms which are
needed to write the cosmological reduction of the bulk
couplings in the above O(d,d)-invariant form, are the
following:

[r‘ (WYH)  —e” ¢ e ¢ (W)

d ¢ 2 ¢ ¢
24a; da Tr + T+
Trdt3

l . ~
+5e PH(TrW)?

1 ) 1
—5¢ PTe(W)ETr (W) + —e ¢(TrW|i|
2 4 (73)

These total derivative terms have been ignored in [8] because
it has been assumed that the spacetime has no boundary. In

the presence of boundary, the above total derivative terms
produce the following boundary terms:

5 ho 2. .y I . 5
24ane™” ['l'l'( WY-)+ iq‘r‘ + ¢ Tr(W) + S¢(Tr W)~

- %Tn W)Tr(W) + %m W ‘»‘]
“ (74)
which should be taken into account when studying the
O(d,d)-symmetry of the boundary action (65). The
boundary of the cosmological reduction is spacelike. The
onedimensional reduction that its boundary is timelike is
the same as above in which n = -1.

On the other hand, using the reductions (66), one finds
the cosmological reduction of the boundary action (65) for
the following relation between by, b11:

b11 = —24b1

to be

r.t':“} (72)

) . .
24(11”1-""[ —Tr(WY?) — %9’)3 — ¢~ Tr(W)

1. o] 2 i 1 3
§¢(Trl‘\') t ETF(WI Tr(W) — E(TI‘H) ]

bl? ) :('l‘fbt" - 'lh y")
h Js '

C

+m"“'|i(24a| +3b +

+(32a; + 4b) — l/)ls)qz)’l]
i} (75)
Note that the cosmological reduction of the coupling in (65)
with coefficient bas is zero. While the terms in the second
line above are invariant under the O(d,d) transformations,
the terms in the first line are not. However, adding the
residual total derivative terms from the bulk action, i.e.,
(74), one finds the boundary terms in the first line above are
cancelled. Note that if one changes the coefficient of the
boundary coupling Ko’ K*®Kg, in (65), then there would be
the term Tr(W)3 in the first bracket above which is not
cancelled with the total derivative terms and is not invariant
under O(d,d)
transformation. It means the cosmological reduction of the
Euler character is not consistent with the O(d,d) symmetry.
Therefore, up to a field redefinition, the cosmological
reductionofthebulkandboundarycouplingsaregivenbythe
0O(d,d) invariant bulk action (73) and the following O(d,d)
invariant boundary action:

2n

bi7 s
98| = ——,e‘*“[(—}lm —3b) — : 1o (TrWw=
2

8

2 ‘ bis. . ;]
~TrY*) + (32a) + 4b) — —)¢
6 (76)
Note that since the cosmological boundary action at the
leading order is zero, i.e., (71), the field redefinition has no
effect on the above cosmological boundary action. Hence,
requiring the effective actions that are found by the Z»-
symmetry and by the least action principle, to be invariant
under the O(d,d)-transformations produces no further
constraint on the boundary couplings. However, requiring
the constraint (7), one finds the following two relations
between the parameters.



b17 = —1926\1 - 24b1, blg = 192a1 + 24b1 (77)

Inserting the above relations into the boundary action (55),
one finally finds the boundary action to be

L) = =24h, [KuyKuliKm, - K“, Km,l\'l-‘}' — KeP Rap
, pyvd a B l Byd axy
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16HP7p v, Hgys

- b w8 vA8Ha nnn ¥y fas

1920 RV, &
—384K,s VIOV D 4+ 3840V, dVdVF D
7681V

-512nangny ¥ VBV, B
+7681“n"n? V,®V, Vg (D]

Fbhagn®nPn? n’ VsV, Kyp (78)

Then the effective actions are fixed up to one bulk parameter
ai and two boundary parameters b1, bss.

6 Discussion

In this paper, we propose that the classical effective action
of the string theory at order o in the presence of boundary,
should satisfy the following three constraints:

1-The effective action should be a combination of the
gauge invariant couplings that their coefficients should be
independent of the geometry of the background, up to the
field redefinitions. When the background has a circle which
is independent of its boundary, then the dimensional
reduction of the action should satisfy the O(1,1)
symmetry.

2-The effective action should satisfy the least
action principle with the boundary conditions that the
massless fields and their derivatives up to order n should be
arbitrary on the boundary. This boundary condition is
consistent with the O(1,1) symmetry.

3-The cosmological/one-dimensional reduction of the
effective actions should satisfy the O(d,d) symmetry with
zero boundary action, as in the leading order effective
action.

Usingtheaboveconstraintsontheeffectiveactionatorder
a,wehavefoundthebulkaction  (45)uptoonebulkparameter
a1, and the boundary action (78) up to the bulk parameter a;
and two boundary parameters bs,bss.

When the B-field and dilaton are zero, the gravity
couplings in the bulk action are exactly the gravity
couplings in the Gauss—Bonnet gravity, whereas the gravity
couplings in the boundary have more couplings than those
in  Chern— Simons
gravity. Using the
. identity (57), one can
sVe VP P match the
coefficientofthecouplingsin(65)whichhavethesamestructur
e as those in Chern-Simons gravity Q, for the following
relations:

B

384n RV &

b1 = —8611, bsa = 32&1 (79)

The gravity couplings in this case then become
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While the Euler character 1, is not consistent with the
symmetries of the classical effective actions, i.e., it does not
satisfy the O(1,1) symmetry when the geometry has one
circle, nor with O(d,d) symmetry when the geometry has
the tours T 9, the above couplings are consistent with the
0O(1,1) and O(d,d) symmetries.

The effective actions that we have found for the relations
(79) are the following:
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where Rgg? istheGauss—Bonnetbulkcouplingsand Q; isthe
Chern—Simons boundary couplings (61). The bulk couplings
for a; = 1/96 is the effective action of the bosonic string
theory which has been found in [8].

We have imposed the relation (44) to have standard
propagators for the B-field. This relation can be also found
by the O(d,d) symmetry. We have seen that the cosmological
reduction of the bulk couplings are invariant under the
O(d,d) transformation up to some total derivative terms
which are not invariant. These anomalous terms are exactly
cancelled with the anomalous terms in the cosmological
reduction of the boundary couplings. If one does not use the
constraint (44), then the two set of anomalous terms would
cancel each other only under the condition (44). We have
performed this calculation explicitly.

In the cosmological study, we have used the scheme that
thecosmologicalactionhasthefirstderivativeofdilaton,i.e.,
(72),andtheboundaryactionhasnotermwithfirstderivative of
dilaton, i.e., (7). On the other hand, it has been shown in
[31,32] that if one uses various one-dimensional field
redefinitions and uses integration by part, then the
cosmological reduction of the bulk action at order o and
higher can be written in a scheme in which the bulk action
has only the first derivative of the generalized metric, i.e., no
coupling involves the first derivative of dilaton. In the
presence of boundary, the total derivative terms appear in the
boundary by using the Stokes’s theorem. Hence, if one uses
the scheme in which the derivative of dilaton does not appear
in the bulk action, then in that scheme the boundary action
may have the first derivative of the dilaton, i.e., the
cosmological boundary action may not be zero in that
scheme.

In imposing the O(1,1) symmetry, we have assumed the
unit normal vector of the boundary in the base space, n?and
its length remain invariant under the T-duality
transformations. This forces use to work with the most
general gauge invariant bulk action (12) which has 20
parameters, i.e., we did not use the higher derivative field
redefinitions to work with the independent bulk couplings.
If one uses the most general field redefinitions, then the
bulk action in the minimal scheme has only 8 independent
couplings. The T-duality fixes these parameters up to an
overall factor [11], i.e.,
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where c; is the overall factor. For ¢; = 1/4, the above action
is the effective action of the bosonic string theory at order
awhich has been found in [12] by the S-matrix method. The
above action and theaction (81)arerelated intoeach other by
aparticularfieldredefinition[8].Inthepresenceofboundary,
however, one may not be able to use the most general field
redefinitions because they change the values of the
massless fields and their derivatives on the boundary which
may not be consistent with the least action principle. It
would be interesting to find the appropriate field
redefinitions in the presence of the boundary to find the
corresponding independent gauge invariant couplings and
then impose the constraints that we have studied in this
paper, to find independent bulk and boundary couplings at
order a. It would be also
interestingtoextendthecalculationinthispapertofindtheboun
dary couplings at order o?a®. The corresponding bulk
actions in the minimal scheme have been found in
[13,16,17].
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