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Abstract Recently, using the assumption that the string 

theory effective action at the critical dimension is 

background independent, the classical on-shell effective 

action of the bosonic string theory at order α in a spacetime 

manifold without boundary has been reproduced, up to an 

overall parameter, by imposing the O(1,1) symmetry when 

the background has a circle. In the presence of the boundary, 

we consider a background which has boundary and a circle 

such that the unit normal vector of the boundary is 

independent of the circle. Then the O(1,1) symmetry can fix 

the bulk action without using the lowest order equation of 

motion. Moreover, the above constraints and the constraint 

from the principle of the least action in the presence of 

boundary can fix the boundary action, up to five boundary 

parameters. In the least action principle, we assume that not 

only the values of the massless fields but also the values of 

their first derivatives are arbitrary on the boundary. We have 

also observed that the cosmological reduction of the leading 

order action in the presence of the Hawking–Gibbons 

boundary term, produces zero cosmological boundary 

action. Imposing this as another constraint on the boundary 

couplings at order α, we find the boundary action up to two 

parameters. For a specific value for these two parameters, 

the gravity couplings in the boundary become the Chern–
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Simons gravity plus another term which has the Laplacian of 

the extrinsic curvature. 

1 Introduction 

String theory is a quantum theory of gravity with a finite 

number of massless fields and a tower of infinite number of 

massive fields reflecting the stringy nature of the gravity. 

The criticaldimensionforthebosonicstringis26,andforthetype 

IIA, type IIB, type I and for the heterotic strings is 10. The 

type IIB superstring theory on a spacetime manifold with 

negative cosmological constant which has boundary is 

conjecturedtobedualtoaconformalfieldtheoryontheboundary 

[1,2]. The string theory is usually explored by studying its 

effective action which includes the massless fields and their 

higher derivative terms. For the spacetime manifolds with 

boundary, the effective action has both bulk and boundary 

terms, i.e., Seff +∂Seff. At the leading order of the derivative, 

the bulk action should include the Hilbert–Einstein action at 

thecriticaldimensionandtheboundaryactionshouldinclude 

the corresponding Hawking–Gibbons–York boundary term 

[3,4]. These actions and their appropriate higher derivative 

extensions should be produced by specific techniques in the 

string theory. 

The effective actions in the string theory have a double 

expansions. The genus-expansion which includes the 

classical tree-level and a tower of quantum loop-level 

corrections, and the stringy-expansion which is an 



 

 

expansion in terms of higher derivative couplings at each 

loop level. It has been shown in [5–8] that the tree-level 

effective action of the bosonic string theory at orders α0 and 

α are invariant under O(d,d) transformations if one 

compactifies the theory on the tours T d and keeps only the 

zero modes (cosmological reduction). Using the string field 

theory, it has been proved in [9] that the cosmological 

reduction of the tree-level effective action of the bosonic 

string theory to all orders of α should be invariant under 

O(d,d) transformations. This has been extended in [10] to 

the classical effective action of the heterotic string theory. 

The Einstein theory of general relativity is background 

independent in the sense that only gauge symmetry is 

required to specify the theory. We expect that the string 

theory classical effective action at the critical dimension 

which is a higher-derivative extension of the Einstein 

theory at the 

criticaldimension,tobebackgroundindependenttoo.Unlike 

the Einstein action which has only one coupling, however, 

there are many gauge invariant couplings in the effective 

action of the string theory at each order of α, e.g., at the 

leading order the independent gauge invariant couplings in 

the bosonic string theory are 

S

G 

 . (1) 

where α1,α2,α3 are three parameters. The first term is the 

Einstein action at the critical dimension 26. The background 

independence assumption then requires these parameters to 

be independent of the geometry of the spacetime, i.e., if the 

background has the tours T4 or K3 the value of the 

coefficients α1,α2,α3 remains the same. However, the 

coefficients of the gauge invariant couplings in the reduced 

action do depend on the geometry of the compact spaces. In 

other words, if one compactifies the above action on T4, the 

result wouldbethesameasthecompactificationon K3 

oranyother 

compactmanifoldsprovidedthatonetakeintoaccountallthe 

correspondingKaluza–Kleinmodes.However,ifoneignores 

the Kaluza–Klein modes (dimensional reduction), then the 

actionsinthelowerdimensionhavedifferentsymmetriescorres

ponding to the compact spaces, i.e., the 22-dimensional 

action in the case of T4 has symmetry O(4,4) which is 

different than the symmetry of the 22-dimensional action in 

the case of K3. This means, if one could fix some how the 

parameters of the effective action at the critical dimension 

for a particular geometry in which the reduced action has a 

specific symmetry, then that parameters would be valid for 

any other geometry. For example, if one considers the 

background to have a circle, then the dimensional reduction 

of the action should have the O(1,1) symmetry. This 

symmetry has been used in [11] to fix the parameters in the 

above action up to an overall factor, i.e., 

S

G 

 × . (2) 

which is the standard effective action of the bosonic string 

theory for α1 = 1. At the higher orders of α, there is the 

complication that the effective action has the freedom of the 

higher-derivative field redefinitions [12]. In these cases, the 

O(1,1) symmetry may fix the parameters of the independent 

gauge invariant couplings up to the field redefinitions 

When the geometry has one circle, the constraints from 

the Z2-subgroup of the O(1,1) symmetry have been used in 

[11,13] to find the effective actions of the bosonic string 

theory at four- and six-derivative orders in a minimal 

scheme, up to an overall factor. Assuming there is such 

symmetry for the classical effective action of the type II 

superstring theories as well, all eight-derivative couplings 

for NS–NS fields havebeenfoundin[14–

17],uptoanoverallfactor.Thebackground independent 

assumption then requires the resulting couplings to be valied 

for any other spacetime, up to the field redefinitions. In fact, 

the effective actions found in this way are fully consistent 

with the sphere-level S-matrix element of four NS–NS 

vertex operators and with the results from the sigma model 

[16,17]. Moreover, when the geometry has the tours T d, the 

cosmological reduction of these effective actions are also 

fully consistent with the O(d,d) symmetry [18,19]. Assuming 

also the classical world-volume effective actions of the non-

pertubative branes in the string theory 

transformcovariantlyunderthe Z2-transformationswhenthe 

spacetime geometry has a circle, then many already known 

and unknown world-volume couplings have been found in 

[20,21]. 

In applying the O(1,1) symmetry to find the couplings at 

orders  in [11,13–17], one first needs to find all 

independent gauge invariant couplings in the minimal 

scheme, i.e., the couplings which are not related by various 

Bianchi identities, by the field redefinitions and by total 

derivative terms. The number of independent couplings at 

each order of α is fixed, however, the structure of the gauge 

invariantcouplingsdependsonhowtousetheabovefreedom to 

find the independent couplings. The number of independent 

couplings at orders  in the bosonic theory are 8, 

60, 872, respectively. These couplings in a specific minimal 
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scheme have been found in [12,15,22]. Then one should 

impose the Z2-symmetry on these independent couplings to 

find their corresponding coefficients at each order of α up 

to one parameter. The Z2-transformations or T-duality 

transformations are the Buscher rules [23,24] and some 

higher derivative corrections at each order of α which 

depends on the minimal scheme that one uses for the gauge 

invariant couplings at that order [11]. If one does not use 

the field redefinitions to write the gauge invariant couplings 

in the minimalscheme,thenthe 

O(1,1)constraintcanfixtheeffec- 

tive action up to many parameters which can be removed 

by the field redefinition [11]. These parameters appear also 

in the corrections to the Buscher rules. By changing these 

corrections, one can change the scheme of the gauge 

invariant couplings. However, there would be no scheme 

for which the T-duality transformations are only the 

Buscher rules. 

When the spacetime geometry has one circle, the 

Z2symmetryimposesthefollowingconstraintonthebulkeffect

ive action: 

Seff  (3) 

where Seff is the reduction of Seff, ψ represents the massless 

fields in the base space and ψ is its Z2-transformations. 

Therearealwayssometotalderivativetermsinthebasespace 

[14–17] which become zero when spacetime has no 

boundary.However,whenthespacetimehasboundary,thepre

sence of the total derivative terms dictates that there must 

be some couplings on the boundary as well. 

For the spacetime manifold which has boundary, using 

the background independent assumption, one may consider 

a geometry that has a boundary and one circle. Then the 

Z2symmetry may fix the couplings in the bulk and boundary 

actions up to field redefinitions. It has been speculated in 

[25] that, in the presence of the boundary, the invariance of 

the classical effective action under the Z2-transformations 

should be extended as follows: The sum of the bulk and the 

boundary actions, i.e., Seff +∂Seff, should be invariant under 

the Z2-transformations, i.e., 

Seff  (4) 

where ∂Seff is the reduction of the boundary action ∂Seff. 

There might be some total derivative terms on the boundary 

of the base space, however, they become zero using the 

Stokes’s theorem because the boundary of boundary is zero. 

In this paper, we are going to impose the above constraint on 

the effective action of the bosonic string theory at order α. 

We consider the background that its boundary is 

independentofthecircle,i.e.,theunitenormalvectortothebound

ary is invariant under the T-duality transformations at order 

α. This particular background constrains the corrections to 

the Buscher rules. We will see that for this Z2-

transformations, the O(1,1) constraint is not consistent with 

the effective action in the minimal scheme. In fact to impose 

the O(1,1) 

symmetryforthisgeometryoneshouldnotusethefieldredefiniti

ons to reduce the number of gauge invariant couplings at 

order α. 

Theconstraint (4)hasbeenusedin[26]tofindtheO-plane 

effective action at order α2 in the presence of the boundary 

in the type II superstring theories in which the Buscher rules 

have no correction at orders . The constraint (4) has 

been also used in [25] to find the spacetime effective action 

of the bosonic string theory at order . This constraint fixes 

the bulk actions completely, however, it fixes the boundary 

action up to some extra boundary parameters. 

When spacetime has boundary, however, there are further 

constraints on the boundary actions from the principle of the 

least action. To be able to extremize the bulk effective 

actions at each order of α, the boundary should have specific 

couplings and the massless fields should have appropriate 

values on the boundary. For example, the Hawking–Gibbons 

boundary term along with the arbitrariness of the metric on 

the boundary is needed to be able to extremize the Hilbert– 

Einstein action, i.e., the Einstein’s equations are derived by 

extremizing the Hilbert–Einstein action against variations of 

the spacetime metric Gμν which is arbitrary on the boundary, 

i.e., δGμν and its tangent derivatives along the boundary are 

zero. The normal derivative of the metric, however, is not 

arbitrary on the boundary. The variation of this term which 

is not zero, appears on the boundary when one extremizes 

the bulkaction.ThevariationoftheHawking–

Gibbonsboundary term cancels this normal derivative term 

on the boundary. We expect similar constraint for the 

boundary terms in the effective actions of the string theory. 

However, if one assumes only the metric is arbitrary on the 

boundary, the standard gravity couplings in the effective 

actions of the string theory atorders  

cannotbeextremizedforanyboundarycouplings. In fact it has 

been shown in [27] that only the gravity couplings in the 

Euler character can be extremized. We will show that the 

O(1,1)-constraint on the couplings at order α produces the 

bulk gravity couplings which are the same as the bulk 

couplings in the Euler character, however, it produces the 

boundary couplings which are consistent with the Chern–

Simons form as well as some other gravity coupling in the 

boundary. 

Hence, in order to be able to extremize the effective 

action of the string theory at order αn, we propose that not 

only the massless fields but also their derivatives up to order 

n should be arbitrary on the boundary, i.e., the massless 



 

 

fields are arbitrary on the boundary for the effective action 

at order α0, the massless fields and their first derivatives are 

arbitrary on the boundary for the effective action at order α, 

and so on. This may be inspired by the fact that the linear 

differential equation dt
d  

2n+2 x  0 has specific 

solution when the functions x,  d
dtn

x are known at the 

initial and the final times. 

Imposing the O(1,1)-symmetry on the most general 

gauge invariant couplings at order , one finds that the 

effective actions of the bosonic string theory are fixed up to 

one extra parameter in the boundary action [25], i.e., 

S  

×  

 

where K is trace of the extrinsic curvature and nμ is normal 

vector to the boundary. It is outward-pointing 

(inwardpointing) if the boundary is spacelike (timelike). 

We consider in this paper only the timelike boundary. The 

above actions are invariant under the Z2-transformation for 

arbitrary parameters α1,α5. The sum of the bulk and 

boundary terms in the first line are Z2-invariant, and the 

boundary terms in the second line are also invariant under 

the Z2transformations. The standard normalization of the 

Einstein term fixes α1 = 1. However, the parameters a5 

remains arbitrary. In the supestring theory, there are S-

duality as well which constrains the parameter α5 to be zero 

[25]. In the bosonic string theory, however, there is no such 

symmetry. One can fix this parameter by the principle of 

the least action as follows: Since the action is at two 

derivative order, only the massless fields are arbitrary on 

the boundary. In extremizing the bulk action, the normal 

derivative of the variation of dilaton which is not zero, does 

not appear on the boundary, whereas, the variation of the 

boundary action in the second line above produces such a 

term. The only way to cancel this term, i.e., to be able to 

extremize the bulk and boundary actions, is to set α5 = 0. 

Hence, the constraints from the Z2-symmetry and the least 

action principle, reproduce the standard bulk and boundary 

actions at the leading order of α, i.e., 

S  

×  

  (6) 

However, it turns out that if one imposes the Z2-constraint 

(4) and the constraint from the least action principle to the 

effective actions of the bosonic string theory at order α, one 

can not fully fix all parameters in the boundary action. 

The cosmological reduction of the classical bulk actions 

must be invariant under O(d,d) transformations [9]. We 

expect the cosmological reduction of the boundary actions 

should be also invariant under the O(d,d) transformations. 

Intheobservationthatthecosmologicalreductionoftheleading 

order bulk action is invariant under the O(d,d) symmetry, one 

removes a total derivative term which is not invariant under 

the O(d,d) transformations. We find that the cosmological 

reduction of the Hawking–Gibbons term is not invariant 

under the O(d,d) transformations either. However, if one 

keeps track of the total derivative term and transfers it to the 

boundary by using the Stokes’s theorem, one observes that 

the cosmological reduction of the boundary action at the 

leading order becomes invariant under the O(d,d) 

transformations. In fact it becomes zero. This motivates us 

to speculate that the cosmological reduction of the classical 

boundary actions at any order of α must be invariant under 

the O(d,d) transformations, and may even be zero, i.e., 

0 (7) 

In this paper, we would like to impose the Z2-constraint (4), 

the constraint from the least action principle and the above 

constraint on the cosmological reduction of the boundary 

actions,tofixtheeffectiveactionsofthebosonicstringtheory at 

order α when the spacetime has boundary. 

The outline of the paper is as follows: in Sect. 2, we use 

the Bianchi identities and remove the total derivative terms 

from the bulk action to the boundary action to show that 

there are 20 independent bulk and 38 independent boundary 

gauge invariant couplings at order α, without using the field 

redefinitions. In Sect. 3, using the background independent 

assumption, we consider a specific background geometry 

which has a circle and a boundary that its normal vector is 

independent of the circle. Then using the fact that the circle 

reduction of the effective action on this background should 

have O(1,1) symmetry, we constrain the coefficients of the 

couplings. In Sect. 3.1, we show that the T-duality constraint 

in the bulk fixes the 20 parameters in terms of two 

parameters. We impose a relation between these two 

parameters by requiring the effective action to have the 

standard propagator for the B-field. The resulting bulk action 
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is exactly the one found by K.A. Meissner up to one overall 

factor. The Tduality constraint on the bulk couplings 

produces also some total derivative terms in the base space 

which are transferred to the boundary by using the Stokes’s 

theorem. In Sect. 3.2, we show that the T-duality constraint 

on the boundary couplings fixes the 38 boundary parameters 

in terms of the 

overallbulkfactorandintermsof7boundaryparameters.InSect. 

4, we impose the constraint from the principle of the least 

action. Since the independent bulk couplings have no term 

with three derivatives, extremizing the bulk action produces 

no constraint on the bulk parameters. However, extremizing 

the boundary action, one can fix 2 of the 7 boundary 

parameters. In Sect. 5, we study the Cosmological/one-

dimensional reduction of the actions. We find that the 

cosmological constraint (7) on the boundary action fixes 3 

of the 5 boundary parameters. In Sect. 6, we briefly discuss 

our results. 

2 Gauge invariance constraint at order α 

The effective action of the string theory has a double 

expansions. One expansion is the genus expansion which 

includes the classical sphere-level and a tower of quantum 

effects. The other one is the stringy expansion which is an 

expansion in terms of higher-derivative couplings. The 

number of derivatives in each coupling can be accounted 

by the order of α. When spacetime has boundary, the 

sphere-level effective action Seff +∂Seff has the following α-

expansion in the string frame: 

Seff mSm m=0 

GeSm 

m 

∂Seff  
m=0 

∂Sm dD | | m

 (8) 

M 

where G is determinant of the bulk metric Gμν and boundary 

isspecifiedbythefunctionsxμ = xμ(σμ˜ ).Inthesecondline, g is 

determinant of the induced metric on the boundary 

∂ μ ∂ ν 

gμ˜ν˜ ν (9) 

The effective action must be invariant under the coordinate 

transformationsandunderthe B-fieldgaugetransformations. 

On can easily find the independent couplings in the bulk and 

boundary actions at order α0, i.e., 

 (10) 

where α1,...,α5 are 5 parameters that the gauge symmetry 

cannotfixthem.Usingthebackgroundindependent 

assumption, they can be fixed by the Z2-symmetry (5), and 

by the least action principle (6). 

Using the package “xAct” [28], one finds there are 41 

gauge invariant couplings inthebulkactionatorder 

α.However, they are not all independent. To find the 

independent bulk couplings, we note that the total derivative 

terms in the bulk can be transferred to the boundary using 

the Stoke’s theorem. Hence, the couplings in the bulk should 

not include total derivative terms. Moreover, the 

independent couplings should not be related to each others 

by the Bianchi identities 

Rα[βγδ] = 0 

∇[μRαβ]γδ = 0 

∇[μHαβγ] = 0 

[∇,∇]O − RO = 0 (11) 

Removing the above freedoms from the most general gauge 

invariant couplings in the bulk action, one finds there are 

20 even-parity independent couplings [12], i.e., 

+a2Hαβ 

+a3Hαβγ Hαβγ H  

+a5Rαβ Rαβ + a8RαβγδRαβγδ 

 +a9Hα  H R  

(12) 

wherea1,...,a20 are20parametersthatthegaugesymmetry can 

not fix them. The assumption that the effective action is 



 

 

background independent means these parameters are 

background independent. They may be fixed for the 

particular 

geometrywhichhasonecircle.Notethattheabovecouplings 

havenotermwiththreederivatives,hence,inextremizingthe 

above Lagrangian one does not face with the variation of the 

second derivative of massless fields on the boundary which 

are non-zero. As a result, our proposal for the boundary 

conditions in which the massless fields and their first 

derivatives are arbitrary on the boundary, i.e., their 

variations are zero on the boundary, does not constraint the 

parameters a1,...,a20. In other words, the above bulk action 

satisfies δS1 = 0 for any values of the parameters. 

Since the boundary of spacetime has a unite normal 

vector nμ, the boundary Lagrangian ∂L1 should include this 

vector as well as the tensors K  and 

their derivatives at order α. The second fundamental form 

or the extrinsic curvature of boundary, i.e., Kμν, is defined 

as K  where Pμν = Gμν − nμnν is the first 

fundamental form which projects the spacetime tensors 

tangent to the boundary. Using the fact that nμ is unit vector 

orthogonal to the boundary, one can write it as 

nμ = (∂α f ∂α f )−1/2∂μ f (13) 

where the boundary is specified by the function f to be a 

constant f ∗. One can rewrite Kμν as 

Kμν = ∇μnν − nμaν (14) 

where aν = nρ∇ρnν is acceleration. It satisfies the relation nμaμ 

= 0. Note that the extrinsic curvature is symmetric and 

satisfies nμKμν = 0 and nμnν∇αKμν = 0 which can easily be 

seen by writing them in terms of function f . Using 

thesesymmetriesandnμnμ = 1,onefindsthereare56gauge 

invariant even-parity couplings in the boundary action, i.e., 

 b  

γ KαβKβγ + 
b

4 KααKβγ Kβγ 

 b  

Kγδnαnβ + b8 Kαβ Rαβ γ nαnβ R

 + b KααR αβ 10 

Kγδnαnβ Rαγβδ + b  

Kβγnα∇αKβγ + b 

 b H  

Kβγnα  b  

 +b  δ nαnβn  

nαnβnγ R  b  

 b 

 b  

 b 

 b 

 b 

 

b  

 b 

nαnβ∇β∇γ Kαγ 

 b  

 b  

b  

n n n  b

 

+b  

nαnβ  b  

+b48 nαnβn  

+b49 nαnβ∇γ∇βKαγ 

+b50 nαnβnγ  

+b51 nαnβnγ  

nαnβ∇γ∇γ Kαβ + b  

 +b  H 

+b  

 nαnβnγnδ∇δ∇γ Kαβ (15) 

where b1 ,...b56 are 56 parameters. The terms in the boundary 

action which have bulk fields and have one vector nμ can be 

interpreted as the total derivative terms in the bulk action 

that are transferred to the boundary by the Stoke’s theorem. 

Note that we have not considered the curvature tensors and 

the covariant derivatives that are made of the induced metric 

(9), because they are related to the curvature tensors and 

covariant derivatives constructed from the spacetime metric 

by various Gauss–Codazzi relations. 

Not all of the couplings in (15) however are independent. 

Some of them are related by the Bianchi identities and some 

others by the total derivative terms in the boundary. To 

remove 

the 

+ 

  d 
D  1 

   g  T 1 

   
 

 M  D  
d 

D  1 
   g  n     e 

 2  F 
 

1  (16) 
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redundancy corresponding to the total derivative terms, we 

add to ∂L1 all total derivative terms at order α with arbitrary 

coefficients. The total derivative terms in the boundary have 

different structure than the total derivative terms in the bulk. 

According to the Stokes’s theorem, the total derivative terms 

in the boundary which have the following structure: 

are zero because the boundary of boundary is zero (see e.g., 

the appendix in [26]). In above equation  is an arbitrary 
antisymmetric even-parity tensor constructed from n, 

K, ∇K, H , R at two-derivative order, i.e., 

 − 
 β γ α α γ β 

+ f3(n 

n R γ 

− n n 

R γ) 

 + − 

+ f14(nβnγnδ∇δKαγ − nαnγnδ∇δKβγ) 

+ f15(nβ∇δKαδ − nα∇δKβδ) 

  (17) 

where f2,... f16 are 15 arbitrary parameters. Adding the above 

total derivative terms to ∂L1, one finds the same Lagrangian 

but with different parameters b1,b2,.... We call the new 

Lagrangian ∂L1. Hence 

0 (18) 

where  is the same as ∂L1 but with 

coefficients δb1,δb2,... where δbi = bi − bi. Solving the above 

equation, after imposing the Bianchi identities (11) and the 

identities corresponding to the unit vector nμ, one finds 

some linear relations between only δb1,δb2,... which 

indicate how the couplings are related among themselves 

by the total derivative terms, by the Bianchi identities, and 

by the identities corresponding to the unit vector. The above 

equation also gives some relations between the coefficients 

of the total derivative terms and δb1,δb2,... in which we are 

not interested. 

Toimposein(18)theBianchiidentities(11)andtheidentities 

corresponding to the unit vector n, we write the covariant 

derivativesandthecurvaturesintermsofpartialderivativesof 

metric, dilaton, H and n. We then write the partial 

derivatives of H in terms of potential B-field and the partial 

derivatives of n in terms of function f , using the definition 

(13). Then all the Bianchi identities (11) and the identities 

corresponding to the unit vector n satisfy automatically. In 

other words, there is no identities any more when one 

rewrites everything in terms of metric, dilaton, the potential 

B-field and f . To 

simplifythecalculation,onemaygotothelocalframe[22]in 

which the first partial derivative of metric is zero. All these 

steps can be done easily by the computer. Then one finds 

38 relations between only δb1,δb2,... which indicate there 

are 38 independent couplings. One particular choice for the 

independent boundary couplings is the following: 

∂L1 = b1HβγδHβγδKαα + b2HαγδHβγδKαβ 

+b3Kαγ KαβKβγ + b4KααKβγ Kβγ 

 +  + 
 γδ α β αβ 

 K n n + b8K Rαβ 

+b9Kγγnαnβ Rαβ + b10KααR 

+b11Kγδnαnβ Rαγβδ 

+b12Hβγδnα∇αHβγδ 

+b13Kβγnα∇αKβγ + b14Kββnα∇αKγγ 

+b15nα∇αR 

 +b17Kβγ

 βγ α 

nαnβnγ  

+b20nαnβnγ R +

 

+b23nαnβ  

 +

b33Hα n n n  

+b34nαnβn  

 



 

 

+b35nαnβnγ  

+b36nαnβnγ  

+b37nαnβ  

 +b38nαnβnγnδ∇δ∇γ Kαβ (19) 

where b1,...,b38 are background independent boundary 

parameters which may be fixed by imposing the 

Z2symmetry, by the least action principle and by the 

cosmological constraint (7). Note that the above boundary 

couplings do have terms with two and three derivatives, 

hence, 

inextremizingtheaboveLagrangianonefaceswiththevariation 

of the second and third derivatives of the massless fields on 

the boundary which are non-zero. As a result, the least action 

principle constrains the parameters b1,...,b38. In other words, 

the above boundary action satisfies δ(∂S1) = 0 for some 

specific values of the parameters which, as we will see, are 

consistent with the T-duality. Note that, as we will see, if one 

uses the boundary condition that only the massless fields are 

arbitrary on the boundary, i.e., only the variation of massless 

fields on the boundary are zero, then the least action 

principle would constrain more strongly the parameters 

b1,...,b38 which would not be consistent with the Z2-

symmetry. In the next section we first find the relations 

between the bulk parameters and the relations between the 

boundary and bulk parameters by imposing the Z2symmetry, 

and in the section after we impose the least action principle 

to further constrain the parameters in the boundary action. 

3 Z2-invariance constraint 

Using the assumption that the effective actions in the string 

theory are independent of the geometry of the spacetime, 

we now explicitly impose the Z2-symmetry on the effective 

actions to find some relations between the parameters in the 

gauge invariant couplings (12) and (19). To this end, we 

consider a particular geometry that 

its 

bulk and boundary have the 

structures M(D)and 

 . The manifold M has coordi- 

nates x = (x , y) and its boundary ∂M(D) has coordinates σμ˜ = 

(σa˜, y) where y is the coordinate of the circle S(1). The 

Kaluza–Klein reduction of the metric and the reduction of 

B-field and dilaton are [7] 

gagb eϕga 

Gμν, 

Bμν bbga b a ϕ/4 

(20) 

where g¯ab is the metric, b¯ab is the B-field, φ¯ is dilaton and 

ga, bb are two vectors in the base space. The reduction of the 

unit vector nμ is 

n  (21) 

where na is the unit vector to the boundary in the base space. 

Usingthesereductions,thenonereducestheeffectiveactions 

Seff +∂Seff on the circle to find Seff(ψ)+∂Seff(ψ) where ψ 

represents all the massless fields in the base space. The 

Z2symmetry then constraints the effective action to satisfy 

the relation (4).The Z2-

transformationofthebasespcaefieldsin (4) are the Buscher 

rules [23,24] and their higher derivative corrections, i.e., 

m (22) m=0 

where  represents the Buscher rules. In terms of the 
reductions (20), they are 

ϕ = −ϕ, ga
 = ba, ba

 = ga (23) 

The base space metric, dilaton, b¯-field and the unite vector 

na are invariant. The ) represents two derivative 

corrections to the Buscher rules, and so on. 

ThecorrectionstotheBuscherrulesdependonthescheme 

that one uses for the gauge invariant couplings [11], and vis 

versa. Since we have not used the field redefinitions to write 

the gauge invariant couplings, we are free to consider a 

specific geometry for imposing the O(1,1) symmetry. For 

the geometry that we have considered, the unit normal 

vector na on the boundary is independent of the circle on 

which the T-duality is imposed, i.e., g¯abnanb = 1 is invariant 

under the T-duality. Hence, the base space metric must be 

invariant under the T-duality at any order of α. On the other 

hand, 

under the reduction (20), the density e

G reduces to e−2φ¯
√

−¯g which may be invariant under the T-

duality at any order of α. Therefore, the base space dilaton 

may be invariant at any order of α. So, for the background 

that we consider, the base space unit normal vector na, the 
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dilaton φ¯ and the metric g¯ab do not appear in the T-duality 

transformations. The base space b¯-field which is invariant 

under the Buscher rules, however, appears in the higher 

derivative corrections because this field and the vectors ga, 

ba should satisfy a Bianchi identity [29]. Hence, we consider 

the Tduality transformations that involve only the 

derivatives of the base space fields ϕ, ga,ba,b¯ab. 

In order the T-duality constraint (4) to be satisfied, one 

should add some total derivative terms at the boundary 

which 

are zero by the Stokes’s theorem, i.e., T 

 

where Fab(ψ) is an arbitrary antisymmetric tensor 

constructed from the gauge invariant base 

α-expanded as Fabm space fields. It can be 

Fm
ab, which produces an α-expansion for T  Tm. 

Then one can study the Z2-constraint (4) at each order of α. 

Replacingtheexpansions(8)and (22)inthe Z2-symmetry (4), 

one finds the following relation at order : 

S  (25) 

Note that it is impossible to construct the antisymmetric 

tensor F0
ab 

atzeroderivativeorder.Hencethereisnototalderivative on the 

boundary in this case. This constraint has been used in [25] 

to find the effective action (5) at order . 

Using the relation (25), one finds that the constraint (4) 

produces the following relation at order α: 

S1(ψ) + ∂S1(ψ) + T1(ψ) 

  (26) 

where T1(ψ) is the total derivative terms (24) at order α, and 

 are defined in the following α-expansions: 

S  

 (27) 

where dots represent some terms at higher orders of α in 

which we are not interested in this paper. The constraint (26) 

can be written as 

S 

(28) 

Thetermsontheleft-handsideareinthe(D−1)-dimensional base 

space whereas the terms on the right-hand side are in its 

boundary. Only the total derivative terms in the (D − 1)-

dimensional action can contribute to its boundary action. 

Hence, the bulk actions on the left-hand side should be some 

total derivative terms, i.e., 

S  

 ×  (29) 

where Aa
1 is a vector made of the covariant derivative of the 

massless fields in the base space at order α. The total 

derivative terms then produce some boundary terms using 

the Stokes’s theorem. 

The Stokes’s theorem in the base space is 

e−2φ¯) 

 dD | | e−2φ¯

 (30) 

where na is the unit vector orthogonal to the boundary in the 

base space and the boundary is specified by the functions xa 

= xa(σa˜). The unit vector is outward-going (inwardgoing) if 

the boundary is spacelike (timelike). The metric in the 

square root on the right-hand side is the induced metric, 

i.e., 

∂xa ∂xb 

ga˜b˜ = ∂σ a˜ ∂σb˜ g¯ab (31) 

Using the Stokes’s theorem to transfer the bulk total 

derivative terms on the right-hand side of (29) to the 

boundary, then the Z2-symmetry on the effective action at 

order α produces the bulk constraint (29) as well as the 

following constraint on the boundary couplings: 

 

 ×  dD

 0 (32) 

∂M where Aa
1 has to be found from the bulk 

constraint (29). The constraint (29) and (32) produce some 

relations between the parameters in the gauge invariant 

couplings (12) and (19). 

3.1 Bulk constraint 

The bulk constraint (29) has been used in [11] to find some 

relations between the parameters in the action (12) for the 



 

 

most general T-duality transformation at order α. The total 

derivative terms have been ignored in calculating 

because in that calculation it was assumed 

spacetime has no boundary. Hence, the result in [11] can 

not be used for the present case that there is boundary. In 

the present case all total derivative terms in the base space 

should be taken into account. So we solve the constraint 

(29) in this section to keep track of the total derivative terms 

carefully. 

To find  from the expansion (27), one needs the 

reduction of the bulk action at order α0. Using the reductions 

(20), one finds the reduction of the bulk action S0 to be 

S  

×  

  (33) 

where Vab is field strength of the U(1) gauge field ga, i.e., Vab 

= ∂agb − ∂bga, and Wμν is field strength of the U(1) gauge field 

ba, i.e., Wab = ∂abν − ∂bba. The three-form H¯ is defined as 

H¯abc = Hˆabc [aVbc] where the three-form 

Hˆ is field strength of the two-form b¯ab in (20). Since H¯ is 

not exterior derivative of a two-form, it satisfies anomalous 

Bianchi identity, whereas the W, V satisfy the ordinary 

Bianchi identity, i.e., 

[abWcd] 

∂[aWbc] = 0 

∂[aVbc] = 0 (34) 

Our notation for making antisymmetry is such that e.g., 

g[aWbc] (gaWbc − gbWac . 

at order  , i.e., , The Z2-transformations 

are given by the Buscher rules (23), and at order α are given 

by the following: ϕ  

ba abc (35) 

where the corrections ba contain some 

contractions of ∇ϕ,eϕ/2V,e−ϕ/2W, H¯ at order α. Note that the 

base space metric, dilaton, b¯-field and the unite vector na 

remain invariant at order α. Since the transformations must 

form the Z2-group, the corrections satisfy the following 

relations [11]: 

0 (36) 

Then the corrections should have the following terms: 

 e−
ϕW2) 

ga = e4eϕ/2H¯abcV bc + e5e−ϕ/2∂bϕWab 

Vab (37) 

where e1,...,e5 aresome parameters that should befixed by the 

Z2-symmetry of the effective actions. Note that we did not 

include the corrections which depend on the derivative of the 

base space dilaton and metric. The correction abc is 

related to the corrections ba through the following 

relation which is resulted from the Bianchi identity (34): 

 H˜abc  

where H˜abc is a U(1)×U(1) gauge invariant closed 3-form 

at order α which is odd under parity. It has the following 

terms: 

H˜abc = e6∂[aWb
dVc]d + e7∂[a H¯bc]d∇dϕ (39) 

where e6,e7 are two other parameters that the Z2-symmetry of 

the effective action should fix them. 

Using the reduction (33), then one can calculate  from 

the expansion (27) in terms of above corrections, i.e., 

e−ϕ/2∂bϕWabga − 1eϕ/2∂bϕV abba 2 

abc 

 

where no integration by part has been used. One can check 

that up to some total derivative terms the above expression 

become the same as the corresponding expression in [11] for 

0 (i.e., eq.(23) in [11]), in which the total 
derivative terms were ignored. Note that  is not even or 
odd under the Buscher rules. However, up to some total 
derivative terms it is odd under the Buscher rules [11]. 

 S 0  
2 

 2 
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Using the reductions (20), it is straightforward to reduce 

the effective action S1 with the Lagrangian density (12) to 

find S1(ψ), and then calculate its transformation under the 

Buscher rules (23), i.e., S . See [11], for the details of 

this calculation. Note that S  is odd under the 

Buscher rules, however, since  is not even or odd under 

the Buscher rules, the vector A ) is not even or 

odd under the Buscher rules either. Hence, the vector A

should contain all even-parity contractions of ∂ϕ, ∂φ¯, 

eϕ/2V,e−ϕ/2W, H¯ , R¯ and their derivatives at order α with 

unknown coefficients. Using the package ”xAct”, one finds 

it has 48 terms, i.e., 

A bcdVbcWad + j2H¯acdVbcWbd + j3H¯bcdVabWcd 

+j4H¯bcd∇aH¯bcd + j7∇aR 

VbcVbc∇aφ¯ 

a 
Wbc 

+j23H¯bcdH¯bcd∇aϕ + j25R∇aϕ 

+eϕ j27VbcVbc∇aϕ + e−ϕ 

j29WbcWbc∇aϕ 

φ 

 +j12R 

b∇ φ¯ + e 

j14V Vbc∇ 

φ¯ 

 j26Rab∇bϕ 

+eϕ j28VacVbc∇bϕ + e−ϕ j30WacWbc∇bϕ 

+j39∇aφ¯∇bϕ∇bϕ + j40∇aϕ∇bϕ∇bϕ 

+j44∇b∇aφ¯∇bϕ + j48∇b∇aϕ∇bϕ 

+eϕ j18Vbc∇cVab + eϕ j19Vab∇cVbc 

+e−ϕ j21Wbc∇cWab + e−ϕ j22Wab∇cWbc 

 +j5H¯bcd∇dH¯abc + j6H¯abc∇dH¯bcd (41) 

where j1,..., j48 are 48 parameters. Note that some of the 

above terms are related by the Bianchi identities. We will 

remove them after imposing the constraint (29). 

To find the parameters which satisfy the bulk constraint 

(29), one should write the covariant derivatives and the 

curvatures in (29) in terms of partial derivative of the base 

space 

metric,andwritethepartialderivativesofthebasespacefield 

strength H¯, W, V in terms of the potentials b¯ab, ga,ba and 

then goes to the local frame in which the first derivative of 

the metric is zero [22]. The coefficients of the resulting 

independent terms in the local frame then should be zero. 

This gives some linear equations involving all the 

parameters. We find the following solution in terms of the 

parameter a1,a12: 

a10 = −16a1,a11 = 0,a13 = 384a1 − 12a12, a14 = 768a1 − 

24a12,a15 = 96a1 − 6a12, a16 = −768a1 + 24a12,a17 = −768a1 

+ 24a12, a18 = 48a1,a19 = 0,a2 = −9a1 + (3a12)/8, a20 = −24a1 

+ (3a12)/2,a3 = a1/3 − a12/96, a4 = 72a1 − 3a12,a5 = −192a1 

+ 6a12, a6 = −8a1 + a12/4,a7 = 48a1 − (3a12)/2,a8 = 24a1, 

a9 = −12a1,e6 = −288a1,e7 = 0, e1 = 0,e2 = 24a1,e3 = 

48a1,e4 = 24a1, e5 = 48a1, j1 = −24a1, j10 = 0, j11 = 0, 

j12 = 0, j13 = −48a1, j14 = 96a1, j15 = 48a1, j16 = −96a1, j17 

= −48a1, j18 = 48a1, j19 = −48a1, j2 = 0, j20 = −48a1, j21 = 

−48a1, j22 = 48a1, j23 = −8a1 + a12/2, j24 = 48a1 − 3a12, 

j25 = 192a1 − 6a12, j26 = −384a1 + 12a12, j27 = −72a1 + 

(3a12)/2, 

j28 = 192a1 − 6a12, j29 = −24a1 + (3a12)/2, j3 = 24a1, j30 = 192a1 

− 6a12, j31 = 0, j32 = 0, j33 = 0, j34 = 0, j35 = 0, j36 = 384a1 − 

12a12, j37 = −768a1 + 24a12, j38 = 0, j39 = 0, j4 = 0, j40 = 24a1 − 

(3a12)/4, j41 = 0, j42 = 0, j43 = 0, j44 = 0, j45 = 0, j46 = 0, j47 = 0, 

j48 = −96a1, j5 = 0, j6 = 0, j8 = −2j7, j9 = 0 

(42) 



 

 

When replacing them into (37) and (39), one finds the 

following corrections to the Buscher rules: 

 

abcV bc 

abcWbc  

H¯abc = −288a1∂[a(Wb
dVc]  

−3e−ϕ/2W (43) 

These transformations are those have been found in 

[29]2for 24a1 = −λ0. 

Since the above corrections are independent of the 

parameter a12, the solution (42) produces two mutliplets. 

One with theoverallcoefficienta1 

whichisinvariantundertheBuscher rules plus the above 

higher derivative corrections, and the other one with the 

overall coefficient a12 which is invariant under the Buscher 

rules. The T-duality then can not fix a relation between 

these two parameters. We find the relation between them by 

using the fact that the sphere-level S-matrix elements of 

massless vertex operators in the string theory have simple 

poles reflecting the standard propagators for the massless 

and massive fields in the amplitude. At the low energy, one 

expands the massive propagators to find an amplitude in 

terms of only massless fields. The massless poles at the low 

energy are still simple poles. They should be reproduced by 

effective actions which have standard massless 

propagators. The last term in the effective action (12) 

changes the standard propagators of the B-field. However, 

for the following relation between a1 and a12: 

a12 = 16a1 (44) 

the coefficient of this term become zero after imposing the 

T-duality constraint (42), i.e., a20 = 0. Interestingly, 

imposing this relation, one finds the curvature terms in the 

action (12) also becomes proportional to the Gauss–Bonnet 

gravity which does not change the standard propagator of 

the metric. 

Imposing the relation (44) and the Z2-constraint (42), one 

finds the following bulk action: 

 
2 The sign of the first term in the last line of (43), however, is different 

than the one appears in [29] which is a typo [30]. 

 (45) 

Since all background independent parameters in the gauge 

invariant action (12) are fixed in the particular geometry 

which has one circle, then the above action should be valid 

for any other geometry as well, e.g., if one considers a 

geometry which has a tours T2, then the reduction of the 

above action should have the symmetry O(2,2). The above 

action is exactly the off-shell Lagrangian that has been found 

in [8] by imposing various field redefinitions on the on-shell 

action in the minimal scheme. 

The relation (44) and the Z2-constraint (42) produces the 

total derivative terms in (29) that their corresponding vector 

Aa
1 is the following: 

A bcdV abWcd − H¯bcdV bcWad 

−2eϕVbcV bc∇aφ¯ 

WbcWbc∇aφ¯ − 2eϕV bc∇aVbc 

2eϕVbcV bc∇aϕ 

 +4e V

 Vbc∇ 
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φ¯ − 4e− W Wbc∇ φ¯ 

8Rab∇bϕ 

 +4e V Vbc∇ ϕ + 4e− W Wbc∇ ϕ 

cV ab 

−2eϕV ab∇cVbc − 2e−ϕWbc∇cWab 

  (46) 

Note that the above vector is not odd or even under the 

Buscher rules. 

The presence of the total derivative terms indicates that 

the bulk action alone is not invariant under the 

Z2transformations. Using the Stokes’s theorem, these 

anomalous terms are transferred to the boundary and then 

should be cancelled with the anomalous terms in the 

boundary action. The anomalous terms from the bulk action 

are then the following terms: 

 | |  dD

 ∂M  

bcdV abWcd 

 −H¯bcdV bcWad ϕVbcV bc∇aφ¯ 

+2e−ϕWbcWbc∇aφ¯ − 2eϕV bc∇aVbc 

−2e−ϕWbc∇aWbc + 4R∇aϕ 

−2eϕVbcV bc∇aϕ + 4eϕV acVbc∇bφ¯ 

16∇aφ∇bϕ∇bφ 

 −8R b∇ ϕ + 4e V Vbc∇bϕ + 4e−ϕWacWbc∇bϕ 

 

+2eϕV bc∇cV ab − 2eϕV ab∇cVbc 

 −2e−ϕWbc∇cWa
b  (47) 

In the next subsection we study the Z2-transformations of the 

boundary action (19). 

3.2 Boundary constraint 

To impose the Z2-constraint (32) on the boundary terms, 

one first assumes that the boundary is specified by the 

functions xμ(σμ˜ ) = (xa(σa˜), y)wherethefunctions 

xa(σa˜)represent the boundary in the base space which are 

independent of the y-coordinate. Then the reduction of the 

induce metric (9) becomes 

 = ⎛ ∂σ∂xaa ∂xbb˜ g¯ab + e  

 ⎠ 

gμ˜ν˜ ˜ ∂σ ∂(b (e gb) eϕ (48) 

Using this and the reduction of dilaton in (20), one finds the 

following reduction: 

|g| = e |g| (49) e

where g is the determinate of the induced metric ( 31). For 

the background that we have considered, it is invariant 

under the Z2-transformations to all orders of α. 

Using the reduction (21) for the normal vector and the 

reduction (20) for metric, one finds the reduction of the 

extrinsic curvature to be 

G  (50) where K¯ab is the 

extrinsic curvature of the boundary of the base space. So the 

reduction of the boundary action ∂S0 in 

(6) is 

 

which is invariant underU(1)×U(1) gauge transformations. 

In using the boundary constraint (32), one needs to cal- 

. Using the above reduction, one can calculate 
 in terms of the T-duality transformations (35), i.e., 

 (52) 

where ϕ is given in (43). Note that in finding the above result 

we have used the fact that in the background that we have 

considered, the unit vector na and the base space metric and 

dilaton are invariant under the Z2-transformations. 

 



 

 

Using the reductions (20), it is straightforward to reduce 

the effective action ∂S1 with the Lagrangian density (19) to 

find ∂S1(ψ), and then calculate its transformation under the 

Buscher rules (23), i.e., . See [13,26], for the 

reduction of different tensors in the boundary Lagrangian 

(19). Note that for simplicity of calculations in the boundary, 

we assume the metric of the base space is flat, i.e., g¯ab = ηab. 

This calculation produces the expression 

in (32). The anomalous couplings from the T-duality of the 

bulk action is also given in (47). Finally, one needs to add 

the total derivative terms T1(ψ) to the constraint (32). 

According to the Stokes’s theorem, the total derivative terms 

in the boundary which have the following structure are zero: 

T1(ψ) dD 

| | (53) M  

where Fab is an arbitrary even-parity antisymmetric tensor 

constructed from U(1) × U(1) gauge invariant tensors 

n,∂n,∂φ,∂ϕ,¯ e−ϕ/2W,eϕ/2V, H¯ at two derivative order. Using 

the package 

“xAct”, one can 

construct this tensor with arbitrary coefficients. 

Having calculated all terms in (32), one should then 

imposetheBianchiidentities(34)intheflatbasespacewhich can 

be done by writing the derivatives of the field strengths V, 

W, H¯ in terms of potentials ga,ba,b¯ab. To impose the 

identities corresponding to the unite vector na in the base 

space, we also write it in terms of the function f using (13), 

i.e., 

na = (∂b f ∂b f )−1/2∂a f (54) 

where we have used the fact that the function f should be 

independent of the killing coordinate y, i.e., ∂y f = 0. The 

coefficients of the resulting independent terms then should 

be zero. They produce some linear equations involving a1 

and the parameters in (19) and in (53). 

Wefindthefollowingnon-zerocouplingsintheboundary: 

 −2

 19 γ 

 

×Kγγnαnβ Rαβ − 12b1KααR 

+b11Kγδnαnβ Rαγβδ 

+b12Hβγδnα  

 +b17Kβγ Kβγnα  β 

 +  19 nαnβnγ  α 

+(−192a1 + 24b12 +b17 − 

4b19)nαnβn  

β 

+24(−16a1 − 2b1 + 

b12)K β α 

+(192a1 − 24b12 − b17 

(384a1 + 96b1 + 

48b12 + 2b17 − 8b19) 

α β γ 

×n n n 

+b38nαnβnγnδ∇δ∇γ Kαβ 

 + 3 −

 1 − 1 + 18 α β

 γ 

(55) 

which has the bulk parameter a1 and 7 boundary parameters 

b1,b11,b12,b17,b18,b19,b38. The corresponding antisymmetric 

tensor Fab in the Stokes’s theorem is 

Fab = 6(8a1 − b12)eϕnbncV adVcd 

−6(8a1 − b12)eϕnancV bdVcd 

−6(8a1 − b12)e−ϕnbncWadWcd 

−6(−8a1 + 

b12)e−ϕnancWbdWcd 

+ 
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cnc 

+48(8a1 + b1)nanc∂bϕ∂c
φ

¯ 

−24b1nb∂anc∂cϕ + 24b1na∂bnc∂cϕ 

which has the bulk parameter a1 and the boundary 

parameters b1,b12. The background independent parameters 

b1, b11, b12, b17, b18, b19, b38 may be fixed further by 

considering the geometry which has the tours T2 in which we 

are not interested in this paper. In this paper, however, we 

further constrain the parameters by using the least action 

principle, and by considering the geometry which has tours 

T d. Before imposing these conditions, let us compare the 

gravity couplings that the Z2-symmetry produces, with the 

couplings in the Euler character I2. 

3.2.1 Comparing with the Euler character I2 

In this subsection we compare the couplings in the classical 

effectiveactionthatareconsistentwiththeT-duality,withthe 

couplings in the Chern–Simons form Q2 in the Euler 

character I2. When the dilaton and B-field are zero, the 

couplings that are found by the T-duality constraint are the 

following: 

S  

R 

(56) 

wherethecouplingsareallindependent.Onemayusevarious 

identities to rewrite the boundary coupling in different form, 

however,thenumberofboundarycouplingsremainthesame. 

For example, one may use the following identity: 

nαnβnγnδ∇δ∇γ Kαβ = −2Kαγ KαβKβγ + nαnβ∇γ∇γ Kαβ 

(57) 

which can be verified by writing both sides in terms of 

function f , to write the term with the second derivative of 

extrinsic curvature in (56) in terms of the Laplacian of the 

extrinsic curvature. This changes the coefficient of Kα
γ 

KαβKβγ, however, the number of the boundary couplings 

remain the same. 

On the other hand, it has been shown in [27] that if one 

extends the couplings in the four-dimensional Euler density 

I2 to arbitrary dimension, the couplings satisfy the least 

action principle with the boundary condition that only 

metric is arbitrary on the boundary. This extension is 

I

g|Q2 (58) 

where RGB
2 is the Gauss–Bonnet gravity and Q2 is the Chern– 

Simons form [27] 

Q 

(59) 



 

 

where R˜μν and R˜ are curvatures that are constructed from the 

induced metric (9). Using the following Gauss–Codazzi 

relations: 

R˜αβ = PαμPβνRμν − nμnνRαμβν − KαμKβμ + KαβKμμ 

 R˜ = R − 2nμnνRμν − KμνKμν + KμμKνν (60) 

and the identity nμKμν = 0, one can rewrite Q2 in terms of the 

spacetime curvatures, i.e., 

Q 

(61) 

The bulk couplings in I2 are the same as the bulk couplings 

in (56), however, the number of boundary couplings in (56) 

is more that the number of boundary couplings in I2. If one 

sets b38 to zero in (56), then the number of couplings and 

the structure of couplings become the same as those in I2, 

however, for no values of the boundary parameters 

b1,b11,b12,b17,b18,b19 the two sets of the couplings become 

identical, e.g., the ratio of the last terms in the first and 

second lines above is 3/2 whereas this ratio in (56) is one. 

Hence, the boundary couplings that the T-duality dictates 

can not be exactly the same as the boundary couplings in I2 

for any values of the boundary parameters. This may 

indicate that the assumption that only metric is arbitrary on 

the boundary in the 4-derivative couplings is not consistent 

with the classical effective action of string theory. 

However, such assumption may be valid for the higher loop 

effective actions for which there is no T-duality symmetry. 

4 Constraint from the least action principle 

We have seen that when the background geometry has a 

circle, requiring the bulk and boundary actions at order α to 

have the Z2-symmetry, one finds the bulk action (45) and the 

boundary action (55). Using the background independent 

assumption,thentheseactionsshouldbetheeffectiveactions at 

order α for any arbitrary background which has boundary, 

up to field redefinitions. To find the bulk equations of 

motion one needs to extremize these actions, i.e., δ(S1 + ∂S1) 

= 0, by using some assumption for the massless fields on the 

boundary.Atthetwoderivativeorder,theassumptionthatthe 

massless fields should be arbitrary on the boundary is good 

enough to produce the equations of motion from extremizing 

the leading order actions, i.e., δ(S0 + ∂S0) = 0. At the four 

derivative order, however, the assumption that only the 

massless fields are arbitrary requires the boundary couplings 

which are not consistent with the T-duality symmetry. If one 

insists on that assumption, then the 4-derivative action 

would not be the classical effective action of the string 

theory in which the T-duality is a symmetry. Hence, it seems 

to study the classical equations of motion in the string theory 

at order α, one should assume that not only the massless 

fields but also their first derivatives should be arbitrary on 

the boundary. 

Since the bulk action (45) has at most two-derivative 

terms, e.g., R or , when one extremizes the bulk action, 

one would find the variation δ as well as the variations 

(δ) where  represents the massless fields. 

After using the Stokes’s theorem, the variations ∇(δ) and 

∇∇(δ)producethevariations

 (δ)ontheboundary. The assumption that  and  are 

arbitrary on the boundary, means their variations are zero 

on the boundary, i.e., 0. Hence, the 

bulk action satisfies 

0 with no constraint on the bulk 

couplings. The boundary action (55), however, has two- and 

three-derivative terms, e.g., R or ∇∇K. When one extremizes 

the boundary action, one would find variations ∇∇(δ) and 

∇∇∇(δ) on the boundary which are not zero in general. The 

parameters in the boundary action should be such that the 

coefficients of these variations become zero up to some total 

derivative terms on the boundary which are zero according 

to the Stokes’s theorem. 

The variation of the boundary action (55) against the 

metric variation produces the following non-zero terms in 

the local frame: 

 

  (62) 
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where f 1α = ∂α f, f 2αβ = ∂α∂β f . We have used the assumption 

that the variation of metric and its first derivative, and their 

tangent derivatives are zero, i.e., δGαβ = ∂μδGαβ = 0 and 

Pμν∂μ∂γδGαβ = 0. One is free to add arbitrary total derivative 

terms, i.e., (16) in which the antisymmetrictensor

containsthevariationofmetric.Using the Stokes’s theorem, 

the total derivative terms on the boundary become zero. 

Then, up to some total derivative terms, the resulting 

equations are zero for the following relation: 

b19 = −48a1 + 6b12 + b17/4 (63) 

Note that if one requires that the first derivative of the 

variation of metric to be non-zero on the boundary, i.e., 

∂μδGαβ = 0, then one would find many other terms in (62) 

that become zero for the incorrect value of a1 = 0. 

Inserting the relation (63) into (55), one finds the 

variation of (55) against the dilaton becomes zero up to 

some total derivative terms, and the B-field variation 

produces the following relation: 

b12 = 16a1 − b11/12, (64) 

and some total derivative terms. Therefore, for the relations 

(63) and (64) the bulk and boundary actions satisfy the 

stationary condition 0 

when the variation of massless fields and their first 

derivative on the boundary are zero.3 Since the variation of 

fields in the bulk are non-zero, this gives the appropriate 

equations of motion in which we are not interested. 

Inserting the relations (63) and (64) into the boundary 

action (55), one finds the boundary action to be 

nαnβ 

 

−8KααKββKγγ + 24Kγγnαnβ Rαβ 

 
3  Ifonedoesnotusethetotalderivativeterms(16)inthemetricvariation of 

the boundary couplings (62), then one would find the constraint (63), 

(64), and another constraint b1 = −8a1. 

α 

12K αR 

−  

−128nαnβnγ  

+  

nαnβn  

 −

48Hαn n n  

−768nαnβnγ  

(65) 

The boundary multiplets with the background independent 

parameters b1,b11,b17,b18 and b38 are each invariant under 

the Z2-symmetry and satisfy the least action. The boundary 

multiplet with parameter a1 also satisfies the least action 

principle, however, its combination with the bulk multiplet 

(45) satisfies the Z2-symmetry. In the next section we study 

another constraint on the background independent 

parameters by considering the geometry which has the tours 

T d. 

 



 

 

5 Constraint from zero cosmological boundary action 

In this section we show that the cosmological reduction of 

the boundary term at the leading order produces zero 

boundary action. We then extend this to the cosmological 

boundary action at order α to further constrain the boundary 

parameters in (65). 

When fields depend only on time, using the gauge 

symmetries it is possible to write the metric, B-field and 

dilaton as 

Gμν , 

Bμν  , 

 (66) 

where the lapse function n(t) can also be fixed to n = 1. The 

cosmological reduction of the bulk action in (6) then 

becomes 

S  B˙ij B˙ij 

 G˙ ijG˙ ij − GijG˙ ijφ˙ − φ˙2 + GijG¨ ij (67) 

where G˙ ij ≡ GikGilG˙ kl. Up to a total derivative term the 

above action can be written in O(d,d)-invariant form. In 

fact, using the following total derivative term: 

 dφ ij ˙  

dtG Gij 

dt 

 GijG˙ ijφ˙ − G˙ ijG˙ ij + GijG¨ ij  

one can write Sc
0 as 

S  B˙ij B˙ij G˙ ijG˙ ij  

− 2 d ij ˙ κ2 dt dtG Gij (69) 

 
4  Notethatthelapsefunctioninthecosmologicalreductioncorresponds to 

the base space metric g¯ab in the circular reduction. The invariance of 

the lapse function is then consistent with the invariance of the base 

Since there is boundary, the total derivative term can not be 

ignored. It can be transferred to the boundary by using the 

Stokes’s theorem. 

On the other hand, the cosmological boundary is specified 

by xi = σi, and x0 = t is independent of σi. Hence, the 

. The cosmological reduction of

unit vector to the boundary is fixed, i.e., n˙ = 0, and the 

cosmological reduction of the trace of the extrinsic 

curvature becomes 

 c 
1 

ij 

K = G G˙ ij (70) 

2 

Therefore,thereductionoftheboundarytermin (6)isexactly 

cancelledwiththetotalderivativeterminthebulkaction,i.e., 

S  

0 (71) 

where W = G−1G˙ , Y = G−1B˙. The bulk action is invariant 

under O(d,d) [5,6]. Note that the reduction of the extrinsic 

curvature (70) can not be written in O(d,d) invariant form. 

So it was necessary that this term was cancelled with the 

total derivative term in the bulk action. In other words, there 

is no way to write the boundary action in O(d,d) invariant 

form unless it is zero. 

At the higher order of α the bulk and boundary actions 

should be invariant under O(d,d). We will see the couplings 

that are found by the Z2-symmetry satisfy the O(d,d) 

symmetry with no further constraint on the boundary 

parameters. However, since the cosmological reduction of 

the leading order boundary action is zero we speculate that 

the boundary action at all higher orders of α to be zero too, 

i.e., (7). This can be a consistency check and a constraint for 

the boundary couplings at higher orders of α, e.g., the 

cosmological reduction of the boundary couplings (65) 

should satisfy the O(d,d) symmetry and then the constraint 

(7) fixes the coefficients of the O(d,d) invariant terms to be 

zero. 

Using a one-dimensional field-redefinition for which the 

lapse function remains invariant,4 it has been shown in [8] 

that the cosmological reduction of the bulk action (45) can 

space metric under the Z2-transformations that we have considered in 

this paper. 
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be written explicitly in O(d,d)-invariant form when there is 

no boundary, i.e., 

S  

(YWYW)  

In this calculation the terms which could not be written 

in termsof O(d,d)-

invariantformareremovablebyfieldredefinition and total 

derivative terms. The total derivative terms which are 

needed to write the cosmological reduction of the bulk 

couplings in the above O(d,d)-invariant form, are the 

following: 

 d φ 2 φ φ 

24a1 dt  Tr + ˙ + ˙ 

Tr dt 3 

  (73) 

These total derivative terms have been ignored in [8] because 

it has been assumed that the spacetime has no boundary. In 

the presence of boundary, the above total derivative terms 

produce the following boundary terms: 

(74) 

which should be taken into account when studying the 

O(d,d)-symmetry of the boundary action (65). The 

boundary of the cosmological reduction is spacelike. The 

onedimensional reduction that its boundary is timelike is 

the same as above in which n = −1. 

On the other hand, using the reductions (66), one finds 

the cosmological reduction of the boundary action (65) for 

the following relation between b1, b11: 

b11 = −24b1 

to be 

 (75) 

Note that the cosmological reduction of the coupling in (65) 

with coefficient b38 is zero. While the terms in the second 

line above are invariant under the O(d,d) transformations, 

the terms in the first line are not. However, adding the 

residual total derivative terms from the bulk action, i.e., 

(74), one finds the boundary terms in the first line above are 

cancelled. Note that if one changes the coefficient of the 

boundary coupling Kα
γ KαβKβγ in (65), then there would be 

the term Tr(W)3 in the first bracket above which is not 

cancelled with the total derivative terms and is not invariant 

under O(d,d) 

transformation. It means the cosmological reduction of the 

Euler character is not consistent with the O(d,d) symmetry. 

Therefore, up to a field redefinition, the cosmological 

reductionofthebulkandboundarycouplingsaregivenbythe 

O(d,d) invariant bulk action (73) and the following O(d,d) 

invariant boundary action: 

 (76) 

Note that since the cosmological boundary action at the 

leading order is zero, i.e., (71), the field redefinition has no 

effect on the above cosmological boundary action. Hence, 

requiring the effective actions that are found by the Z2-

symmetry and by the least action principle, to be invariant 

under the O(d,d)-transformations produces no further 

constraint on the boundary couplings. However, requiring 

the constraint (7), one finds the following two relations 

between the parameters. 

 



 

 

b17 = −192a1 − 24b1, b18 = 192a1 + 24b1 (77) 

Inserting the above relations into the boundary action (55), 

one finally finds the boundary action to be 

 − 
 γ α β α 

+24K γn n Rαβ − 12K αR 

−2HβγδHβγδnα  

 −

 + 

nαnβnγ 

+ βγ α −192Kβγ K n 

 − 48Hα n n n  

−512nαnβnγ  

  (78) 

Then the effective actions are fixed up to one bulk parameter 

a1 and two boundary parameters b1, b38. 

6 Discussion 

In this paper, we propose that the classical effective action 

of the string theory at order αn in the presence of boundary, 

should satisfy the following three constraints: 

1-The effective action should be a combination of the 

gauge invariant couplings that their coefficients should be 

independent of the geometry of the background, up to the 

field redefinitions. When the background has a circle which 

is independent of its boundary, then the dimensional 

reduction of the action should satisfy the O(1,1) 

symmetry. 

2-The effective action should satisfy the least 

action principle with the boundary conditions that the 

massless fields and their derivatives up to order n should be 

arbitrary on the boundary. This boundary condition is 

consistent with the O(1,1) symmetry. 

3-The cosmological/one-dimensional reduction of the 

effective actions should satisfy the O(d,d) symmetry with 

zero boundary action, as in the leading order effective 

action. 

Usingtheaboveconstraintsontheeffectiveactionatorder 

α,wehavefoundthebulkaction (45)uptoonebulkparameter 

a1, and the boundary action (78) up to the bulk parameter a1 

and two boundary parameters b1,b38. 

When the B-field and dilaton are zero, the gravity 

couplings in the bulk action are exactly the gravity 

couplings in the Gauss–Bonnet gravity, whereas the gravity 

couplings in the boundary have more couplings than those 

in Chern– Simons 

gravity. Using the 

identity (57), one can 

match the 

coefficientofthecouplingsin(65)whichhavethesamestructur

e as those in Chern–Simons gravity Q2 for the following 

relations: 

b1 = −8a1, b38 = 32a1 (79) 

The gravity couplings in this case then become 
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S

GRGB2 

 

While the Euler character I2 is not consistent with the 

symmetries of the classical effective actions, i.e., it does not 

satisfy the O(1,1) symmetry when the geometry has one 

circle, nor with O(d,d) symmetry when the geometry has 

the tours T d, the above couplings are consistent with the 

O(1,1) and O(d,d) symmetries. 

The effective actions that we have found for the relations 

(79) are the following: 

SdDx√−Ge  

M 

×  

 

(81) 

 48 D

  

∂S1  d | | κ

 ∂M 

×  

 

−2H  

 

(82) 

where RGB
2 istheGauss–Bonnetbulkcouplingsand Q2 isthe 

Chern–Simons boundary couplings (61). The bulk couplings 

for a1 = 1/96 is the effective action of the bosonic string 

theory which has been found in [8]. 

We have imposed the relation (44) to have standard 

propagators for the B-field. This relation can be also found 

by the O(d,d) symmetry. We have seen that the cosmological 

reduction of the bulk couplings are invariant under the 

O(d,d) transformation up to some total derivative terms 

which are not invariant. These anomalous terms are exactly 

cancelled with the anomalous terms in the cosmological 

reduction of the boundary couplings. If one does not use the 

constraint (44), then the two set of anomalous terms would 

cancel each other only under the condition (44). We have 

performed this calculation explicitly. 

In the cosmological study, we have used the scheme that 

thecosmologicalactionhasthefirstderivativeofdilaton,i.e., 

(72),andtheboundaryactionhasnotermwithfirstderivative of 

dilaton, i.e., (7). On the other hand, it has been shown in 

[31,32] that if one uses various one-dimensional field 

redefinitions and uses integration by part, then the 

cosmological reduction of the bulk action at order α and 

higher can be written in a scheme in which the bulk action 

has only the first derivative of the generalized metric, i.e., no 

coupling involves the first derivative of dilaton. In the 

presence of boundary, the total derivative terms appear in the 

boundary by using the Stokes’s theorem. Hence, if one uses 

the scheme in which the derivative of dilaton does not appear 

in the bulk action, then in that scheme the boundary action 

may have the first derivative of the dilaton, i.e., the 

cosmological boundary action may not be zero in that 

scheme. 

In imposing the O(1,1) symmetry, we have assumed the 

unit normal vector of the boundary in the base space, na and 

its length remain invariant under the T-duality 

transformations. This forces use to work with the most 

general gauge invariant bulk action (12) which has 20 

parameters, i.e., we did not use the higher derivative field 

redefinitions to work with the independent bulk couplings. 

If one uses the most general field redefinitions, then the 

bulk action in the minimal scheme has only 8 independent 

couplings. The T-duality fixes these parameters up to an 

overall factor [11], i.e., 

S  dDx e G 

×  



 

 

 

where c1 is the overall factor. For c1 = 1/4, the above action 

is the effective action of the bosonic string theory at order 

α which has been found in [12] by the S-matrix method. The 

above action and theaction (81)arerelated intoeach other by 

aparticularfieldredefinition[8].Inthepresenceofboundary, 

however, one may not be able to use the most general field 

redefinitions because they change the values of the 

massless fields and their derivatives on the boundary which 

may not be consistent with the least action principle. It 

would be interesting to find the appropriate field 

redefinitions in the presence of the boundary to find the 

corresponding independent gauge invariant couplings and 

then impose the constraints that we have studied in this 

paper, to find independent bulk and boundary couplings at 

order α. It would be also 

interestingtoextendthecalculationinthispapertofindtheboun

dary couplings at order α2,α3. The corresponding bulk 

actions in the minimal scheme have been found in 

[13,16,17]. 
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