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Abstract 

We consider dark matter production during the inflaton oscillation epoch. It is conceivable that 

renormalizable interactions between dark matter and inflaton may be negligible. In this case, the 

leading role is played by higher dimensional operators generated by gravity and thus suppressed by 

the Planck scale. We focus on dim-6 operators and study the corresponding particle production in 

perturbative and non–perturbative regimes. We find that the dark matter production rate is 

dominated by non–derivative operators involving higher powers of the inflaton field. Even if they 

appear with small Wilson coefficients, such operators can readily account for the correct dark matter 

abundance. 
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1 Introduction 

The nature of dark matter (DM) remains an outstanding mystery of modern physics. The null DM direct 

detection results motivate one to explore the possibility that dark matter has feeble interactions, in 

which case it does not reach thermal equilibrium with the environment. Therefore, its abundance is 

sensitive to the production mechanism. One of such mechanisms is provided by gravity, which can 

efficiently produce particles in non–adiabatic environments. 

In the absence of any non–gravitational couplings, the expansion of the Universe is itself a source 

of particle production [1],[2]. For example, the equation of motion (EOM) for a momentum mode χk of 

a free scalar in the Friedmann Universe with the metric ds2 = a2(η)(dη2−dx2) reads 

[3] 

  , (1) 

where 

 ,

 (2) 

a is the scale factor, ξ is the non–minimal coupling to gravity [4] and the prime denotes differentiation 

with respect to conformal time η. Time variation of ωk is non–adiabatic if , which implies 

particle creation due to expansion. For low k and conformal coupling ξ = 1/6, this is equivalent to a0/a2 

= H & mχ such that particles lighter than the Hubble rate H are constantly created. The effect can be 

even stronger for non–conformal ξ. The accumulated abundance of χ can constitute dark matter [3, 

5], depending on mχ and its self–interaction. 

Such particle production can be viewed in terms of the scalar field condensate hχ2i. Light scalars 

are subject to quantum fluctuations of order H [6] so that a semi–classical field χ experiences a random 

walk. As a result, a significant hχ2i can accumulate, for example, by the end of inflation and play the 

role of dark matter [7],[8]. Again, this mechanism is purely gravitational. The consequent dark matter 

distribution is not correlated with the inflaton fluctuations, therefore this possibility is subject to strict 

isocurvature constraints [8]. 

In this work, we focus on other aspects of particle production due to gravitational effects. 

Specifically, gravity is believed to generate couplings between different sectors of the theory as long 

as these are consistent with gauge symmetries. The corresponding operators may be non–

renormalizable and thus suppressed by the Planck scale. Nevertheless, they can play an important role 
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in dark matter production. This was recently emphasised in [9],[10], where the effects due to tree level 

graviton exchange were considered. 

We study dark matter production during the inflaton oscillation phase, which sets in immediately 

after inflation and creates a non–adiabatic environment [11, 12, 13]. Using the effective field theory 

approach, we focus on the leading gravity–induced dim–6 operators assuming that the renormalizable 

couplings between the inflaton and dark matter vanish. If DM is feebly interacting, its eventual 

abundance is determined by the number of DM quanta produced at this “preheating” stage. To this 

end, we identify the dominant operator and study whether it can be responsible for the correct dark 

matter abundance. 

2 The set–up 

Consider the possibility that the renormalizable couplings between the inflaton φ and dark matter s 

are zero or negligibly small. Then, the φ − s interaction can be described by a series of higher 

dimensional operators generated by gravity and thus suppressed by the Planck scale MPl. Let us assume 

for simplicity that these operators exhibit an approximate φ → −φ symmetry such that the lowest 

operator dimension is six:1 

 MPl2 µ

 MPl2 MPl2 µ MPl2 MPl , (3) 

where we have replaced the covariant derivatives with the partial ones. The inflaton field with mass 

mφ is assumed to have either (locally) quadratic or quartic potential, while the dark matter mass ms is 

taken to be negligible compared to the typical scales of the problem. Some of the above operators 

such as (∂µφ)2s2 and (∂µs)2φ2, along with , are generated by the tree 
Pl 

level graviton exchange [9]. Others can be generated at loop level and non–perturbatively. Since 

gravity is non–renormalizable, their coefficients should be treated as arbitrary input parameters. The 

above interactions are responsible for dark matter production after inflation, in particular, during the 

inflaton oscillation phase. Depending on the Ci coefficients, the production mechanism can be 

perturbative or non–perturbative (resonant). 

To mention but one example, some of the above operators operators appear automatically in 

theories with non–minimal couplings of scalars to gravity [4]. In particular, (∂µs)2φ2, (∂µφ)2s2 and s2 V 

(φ) are induced already at tree level by the metric transformation from the Jordan frame to the 

Einstein frame [14]. The (unsuppressed) operators φ2s4 and φ4s2 appear in these models at 1–loop via 

the graviton loop. Their coefficients are proportional to the product of the non–minimal couplings and 

the loop factor, and thus expected to be significant (in the absence of symmetry arguments). In general, 

it is a challenging task to estimate the relative size of the different operators since this can only be 

done reliably within UV complete gravity theories. On shell, two of the derivative operators can be 

eliminated via integration by parts: 

 (∂µφ)2s2 → (∂µs)2φ2 + m2φφ2s2 , (4) 

  (5) 
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 1 3 2 

The dim-5 operator φ s may in general be present, in which case it would dominate dark matter production. 
where we have neglected the dark matter mass and the Hubble rate, which, during preheating is small 

compared to the particle energy. (We consider the Hubble–induced effects in Section 4). Focussing on 

dark matter pair production, we can thus restrict ourselves to the operators 

 1 2 2 O4 = 12 φ4s2 ,

 (6) 

O3 = 2 (∂µs) φ , MPl MPl 

amended with the renormalizable interaction 

 Orenorm  . (7) 
Pl 

Although this term is renormalizable, the coupling strength is highly suppressed: for typical inflaton 

masses it is below 10−10. The operator φ2s4 produces a final state with 4 DM quanta. The corresponding 

reaction rate is similar to that of the derivative operator, since the final state phase space gives 

analogous energy dependence. Therefore, we will not discuss this operator separately within the 

perturbative regime, while its non–perturbative analysis will be presented in Sec.4. 

Clearly, operators O3 and O4 exhibit qualitatively different behaviour in regard to dark matter 

production. Indeed, O3 involves the particle energy which is of the order of the (effective) inflaton mass, 

while in O4 this dependence is replaced by the inflaton field value. The latter is not far from the Planck 

scale in typical models, thus 

  (8) 

and one expects much more efficient DM production from O4. In what follows, we make this argument 

more quantitative. 

3 Perturbative dark matter production 

An oscillating classical background can lead to particle production [11, 12, 13]. After inflation, φ 

oscillates coherently in either φ2 or φ4 potential, depending on the inflationary model. As a result, the 

φ − s couplings induce dark matter pair production. If the corresponding coupling is small, the process 

can be described perturbatively. Below, we consider the contributions of the 3 basic operators to this 

reaction. We treat the Hubble expansion adiabatically such that the time dependence can be inserted 

in the inflaton oscillation amplitude at the end of the calculation. Also, we treat the produced dark 

matter particles as free and neglect backreaction. These approximations are justified at small inflaton–

DM couplings. 

3.1 φ2s2 interaction 

Consider the 4–point interaction 
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 − ∆Lrenorm  , (9) 

where λφs ∼ m2φ/MPl2 . Let us expand the inflaton field as 

 , (10) 

where the coefficients ζn are time–independent. Creation of a two–particle DM state with momenta 

p,q from the vacuum is described by the amplitude (in Peskin–Schroeder conventions 

[15]) 

  , (11) 

with V (t) given by Eq.9. The corresponding invariant amplitude for the n-th inflaton mode decay is Mn 

= −λφsζn/2. The resulting reaction rate for DM pair production per unit volume is 

  . (12) 

Here we have kept the DM mass for generality. The inflaton decay rate Γφ can be computed using 

energy conservation, ρφΓφ = hEiΓ, where ρφ and hEi are the inflaton energy density and the average 

energy of the decay products, respectively. Hence, 

  . (13) 

In the massless limit, one thus recovers the result of [16]. 

3.2 φ2(∂µs)2 interaction 

The calculation proceeds as above, except the final state receives an additional momentum– 

dependent factor in the amplitude: 

 , 

where the DM mass has been neglected. So, effectively in the amplitude for the quartic interaction, 

one replaces , which in the ms → 0 limit leads to 

  . (14) 

3.3 φ4s2 interaction 

The calculation is similar to that for the φ2s2 case. φ4 can be expanded as 

 , (15) 
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where 

 . (16) 

Replacing λφs → 4C4/MPl2 , in the massless DM limit we get 

  . (17) 

3.4 Relative efficiency 

Let us estimate the relative particle production efficiency of the different operators. If the inflaton 

potential is quadratic, , we have 

 φ(t) = φ0 cosmφt , (18) 

where φ0 is the oscillation amplitude. (The fact that φ0 decreases slowly in time, φ0 ∝ 1/(mφt), is 

insignificant for our purposes). In the quartic case, , the inflaton field is given by the 

Jacobi cosine, 

 , 

(19) 

where 

(20) 

and 

(21) 

For many purposes, the above sum can be approximated by the first term with n = 1. 

The relative efficiency of O3 and O4 is given by 

  . (22) 

Clearly, the reaction rate due to φ2(∂µs)2 is much suppressed compared to that of φ4s2. For the 

quadratic inflaton potential, the suppression factor is 

  , (23) 

assuming the typical values φ0 ∼ 1 and mφ ∼ 10−5 in Planck units. In the quartic case, 

 for typical λφ < 10−10. 

The contribution of the φ2s2–operator of the form (7) is similarly suppressed by . It is also 

clear that, due to the phase space integral, the rate of the O5–induced process φφ → ssss contains an 

additional factor of  compared to the pair production rate from O4. Hence we conclude that the 
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φ4s2 interaction dominates DM production, unless there is a large hierarchy in the Wilson coefficients, 

e.g. C3/C4 ∼ 1010. 

The above calculation also tells us that higher dimensional operators 

  (24) 
 Pl Pl 

are important. Indeed, their contributions are only suppressed by Pl4 , etc. relative to that of O4. 

If the inflaton amplitude is not far away from the Planck scale, this suppression is not very significant. 

4 Resonant dark matter production via dim–6 operators 

Perturbative calculations ignore the Bose enhancement of the amplitude due to the presence of 

identical states. Depending on the coupling, this enhancement can be very significant and lead to 

resonant production [12, 17, 18]. Such a regime can be described semiclassically by analyzing the 

equations of motion for the DM field s. In what follows, we compare the corresponding resonant 

particle production via operators O3 and O4. 

To derive the EOM for s in the presence of the inflaton background φ(t), consider the action 

  , (25) 

where the kinetic function K(φ) depends on φ only and V is the s−dependent part of the scalar 

potential. Here g = detgµν and the Friedmann metric is gµν = diag(1,−a2,−a2,−a2). Since φ and a are 

functions of time only, variation of the action with respect to s yields 

  . (26) 

Let us expand s(t,x) in spacial Fourier modes sk(t), where k is the comoving 3–momentum. If V is 

quadratic in s, the different momentum modes decouple and we have 

  . (27) 

Now suppose that the renormalizable potential vanishes and only one dim–6 operator is present at a 

time, such that either K = 1 or V = 0. 

(a) Consider first the case of a non–trivial kinetic function K and V = 0. The first order time 

derivatives can be eliminated by the change of variables 

 sk = a−3/2K−1/2Xk , (28) 

such that 

 ,

 (29) 
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where the equation of state coefficient is 

  . (30) 

In the limit of a constant inflaton amplitude, the coefficients are periodic in time such that the above 

EOM belongs to the class of Hill’s equations. Depending on the parameters, the solution Xk can grow 

exponentially in time signifying particle production. 

Let us now specialize to operator O3, 

  . (31) 
Pl 

The effective field theory expansion makes sense if . Consider the locally quadratic 

inflaton potential such that φ(t) = φ0(t)cosmφt with φ0 ∝ 1/(mφt). In this case, the Universe is matter 

dominated, w = 0 and 

 H = √mφφ0 . (32) 

6MPl 

For C3 < 1 and φ0 < MPl, the term (K˙/K)2 in the square brackets is insignificant, as is wH2. The terms 

HK˙/K and K¨/K are similar in magnitude initially, but the former is cubic in φ0 and thus decreases 

faster in time. Keeping just the K¨/K term, we may approximate 

  . (33) 

This has the form of the Mathieu equation,  

Xk00 + [A + 2q cos4z] Xk = 0 , 

where z = mφt/2, the prime stands for differentiation with respect to z, and 

(34) 

  . (35) 

A large q generally implies fast amplitude growth and efficient particle production via broad parametric 

resonance [17]. In our case, however,  and the resonance is narrow. As a result, no efficient 

particle production is possible, especially in view of the redshifting of the produced particle momenta 

[17],[19]. 

(b) Let us now consider the effect of O4, so we take K = 1 and 

  . (36) 
Pl 

For the quadratic inflaton potential, the corresponding Xk satisfies 
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  . (37) 
Pl 

Using , one can bring the EOM into the form of the Whittaker–Hill 

equation, 

Xk00 + [A + 2pcos2z + 2q cos4z]Xk = 0 , 

where now z = mφt and 

(38) 

Pl 2 4m2φMPl . (39) a2mφ 

The efficiency of particle production is characterized by p and q, whose large values (depending on A) 

generally lead to broad resonance [20],[21]. We see that this regime is easily achieved in the presence 

of O4. In particular,  is consistent with  and sub–Planckian φ0 values, as long as

. 

We therefore conclude that O4 is much more efficient in particle production than O3. The same 

conclusion applies to the quartic inflaton potential: the analysis proceeds analogously up to the 

replacement of the inflaton mass with the effective inflaton mass meffφ ∼ pλφφ0. 

The resonance efficiency is determined by the ratio of the inflaton–induced DM mass to the 

inflaton effective mass. In the list (3), this ratio can be large only for operator O4. Indeed, (∂µφ)1s2 

induces the DM mass of order mφ at best. The term (φ∂µφ)(s∂µs) = (∂µφ2)(∂µs2)/4 can be rewritten as 

a mass term for s by integrating by parts. The resulting DM mass scale is determined by mφ or H, leading 

to the same conclusion. The operator φ2s4 does not induce any mass in our approximation and the 

corresponding EOM is not of Hill’s type (see below).2 Finally, the renormalizable term φ2s2 of the form 

(7) does not lead to broad resonance since the corresponding q . 1. It is thus clear that O4 dominates 

particle production. 

Similar conclusions apply to higher dimensional operators φ6s2, etc. As long as φ0 is not much below 

the Planck scale, the effective q parameter can be much greater than one, signifying efficient particle 

production. Therefore, the results are sensitive to the presence of operators of this type. 

The amount of dark matter produced during preheating is difficult to estimate analytically. The 

reason is that the parameters of the Whittaker–Hill equation evolve in time making the resonance 

stochastic, which is further complicated by the non–trivial 3-D stability band structure [21]. Depending 

on the size of C4, tangible backreaction and rescattering effects [22],[23] can also take place. Thus, to 

make reliable predictions, we have to resort to lattice simulations. 

4.1 On resonant production via φ2s4 

Unlike for other operators considered in this work, resonant particle production via O5 = φ2s4 is not 

described by the Hill’s equation. In this case, the system is non–linear already to leading order and thus 

 
1 The induced mass term appears when the variance hs2i becomes significant. 
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difficult to handle analytically. In this subsection, we discuss some of its properties relevant to the 

subject of our paper. 

The EOM for the DM field s in the presence of O5 reads 

  . (40) 
Pl 

Clearly, the different momentum modes do not decouple in this case. As a representative example, let 

us focus on the zero mode of s which normally plays a major role in particle production. Omitting the 

gradient term and introducing a rescaled field X (s = a−3/2X), we get 

  , (41) 
Pl 

where w is the coefficient of the equation of state of the system. Let us now specialize to the quadratic 

inflaton potential such that w = 0, 

  , (42) 

and . Here the initial condition is chosen such that φ(t0) = ϕ0 with mφt0 = 1. The 

above EOM should be supplemented by boundary conditions. The magnitude of a light field is given by 

quantum fluctuations, such that we may take√ s ∼ H and s˙ ∼ H2 initially, 

 
where H = mφϕ0/( 6MPl). Introducing 

 z = mφt , Y = X/mφ , (43) 

we get 

  , (44) 

where the prime denotes differentiation with respect to z. The representative boundary conditions 

can be chosen as Y (1) = 1,Y 0(1) = 1. The coupling κ is given by 

  , (45) 

where typically ϕ0 ∼ MPl, a0 ∼ 1 and the effective field theory approach is expected to be valid for κ . 

O(1). 
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Figure 1: Solutions to Eq.44 for κ = 1,100,2010. 

The oscillating term in Eq.44 falls faster with time then the analogous coefficient in the Mathieu 

equation, hence the duration of the resonance is shorter in the present case. The equation exhibits a 

simple asymptotic solution for ), 

 Y ∝ z . (46) 

On the other hand, for  varies much faster than cos2 z/z4 does such that the latter can be 

treated adiabatically. In this case, Eq.44 takes the form Y 00 + cY 2 = 0 with c = κ cos2 z/z4, whose 

solution is a Jacobi cosine. Given the amplitude of oscillations Y0, locally we have 

  (47) 

√  

in the convention of [18]. The oscillation frequency cY0 changes non–adiabatically around the 

inflaton zero crossings, implying particle production. 

Numerical solutions to Eq.44 are presented in Fig.1. For κ = 1, the solution quickly takes on the 

asymptotic form (46), which corresponds to constant s in our approximation (ms ∼ 0). Even for κ = 100, 

there is no significant amplitude growth, while for κ = 2010 the solution exhibits truly resonant 

behaviour.3 We thus find that κ & 103 is necessary for efficient DM production. 

The discussion above concerns the zero mode. Normally it serves as an indicator whether or not 

resonant particle production takes place. To reaffirm it, we have performed lattice simulations of the 

full inflaton–DM system in the regime  and indeed found no tangible particle production. 

We therefore conclude that no efficient particle production is induced by operator O5 as long as

. 

5 Lattice simulations: reproducing the correct DM abundance 

In this Section, we focus on the leading operator  and compute the resulting DM relic 
Pl 

 
2 We find that the solution in this regime is quite sensitive to the numerical method used for solving the differential 

equation. 
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abundance in the resonant regime, , assuming . As explained above, the 

analytical approach to resonant particle production has significant limitations, given the complexity of 

the Whittaker–Hill equation as well as backreaction and rescattering effects. Therefore, we resort to 

lattice simulations using the numerical tool CosmoLattice [24, 25]. 

A realistic framework must also account for the Standard Model particle production. The simplest 

way to incorporate reheating is to include a small Higgs–inflaton coupling following [26, 27], 

 Vφh = σφhφH†H , (48) 

which would lead to late–time decay of the inflaton into the Higgs pairs (for mφ > 2mh). As long as σφh 

is sufficiently small in Planck units, resonant dark matter production is not affected by this coupling. 

The dark matter abundance is expressed in terms of 

 n 2π2 3 
Y =  , sSM =  g∗s T , (49) sSM 45 

where n is the DM number density, sSM is the Standard Model entropy density at temperature T and 

g∗s is the effective number of SM degrees of freedom contributing to the entropy. We are interested 

in very weakly interacting dark matter such that it never reaches thermal equilibrium with the 

environment. After preheating ends, the total number of the DM quanta remains constant. Since the 

SM entropy is also conserved, Y can be computed at the reheating stage. The observed value is [28] 

  ,

 (50) 

which sets a constraint on the model parameters. 

Reheating occurs when 

 , (51) 

where HR is the Hubble rate at reheating and Γφ→hh takes into account 4 Higgs d.o.f. at high energies. 

The reheating temperature is given by 

rπ2g∗ T2 

HR =R , (52) 90 MPl 

where g∗ is the effective number of the Standard Model degrees of freedom contributing to the energy 

density. Combining TR with the dark matter density n computed on the lattice, one determines Y 

according to (49). 

The resulting abundance is sensitive to the energy balance between the inflaton and dark matter, 

which affects the expansion history. Depending on the coupling and the inflaton potential, DM can 

contribute a significant fraction up to 50% to the total energy density at the end of preheating. We 

therefore parametrize 

 ρe(s) = δ ρe(φ) , (53) 
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where ρe(s), ρe(φ) are the DM and inflaton energy densities, respectively, evaluated at the end of the 

simulation. At weak coupling, in the quadratic inflaton potential we have δ ∼ 0, while, at strong 

coupling, δ can reach a value close to 1. The Universe evolution proceeds in stages: first, it can be 

dominated by radiation; later, when the energy per quantum becomes comparable to the inflaton 

mass, it evolves as non–relativistic matter; finally, the Universe reheats and becomes radiation–like. 

Denoting the corresponding scale factors as ae (end of the simulation), a∗ (transition), aR (reheating), 

we have 

 ae −rel→ a∗ −nrel→ aR , (54) 

such that the Hubble rate evolves as H ∼ a−3(w+1)/2 with w = 1/3 and w = 0 during the two periods, 

respectively. After the transition point a∗, ρ(s) becomes negligible and at aR the inflaton energy density 

ρ(φ) converts into SM radiation. Thus, 

  , (55) 

where He is the Hubble rate at the end of the simulation. We note that the first stage of the radiation–

like expansion may collapse to a point, i.e. ae = a∗. This is the case for the quadratic inflaton potential 

at weak inflaton–DM coupling. 

Solving for aR, we find σφh required by the correct DM abundance in terms of the simulation output: 

  (56) 

for g∗ ' 107 and MPl being the reduced Planck mass. The values of He,ne,δ at the end of preheating are 

computed by CosmoLattice, while ae/a∗ can be determined by tracking the equation of state of the 

system. 

This formula can be simplified further if we define a∗ according to 

 , (57) 

where the average energy of the inflaton quantum at the end of the simulation is hEe(φ)i = 

ρe(φ)/ne(φ). This definition of a∗ is more practical in that it does not require tracking the equation of 

state of the system over a long period, which is computationally challenging. We then get 

 σφh ' 5  ,
 (58) 

Pl 

which only requires the particle densities as an output of the simulations. Here ne(φ) includes the 

inflaton quanta with zero momentum and typically  unless the coupling is relatively 

strong. 

The number densities are computed via the k–mode occupation numbers nk. For the dark matter 

field, we have 

σ φh ' 1 . 6 × 10 
− 8 q 

m φ M 3 
Pl 

H 2 
e 

(1+ δ ) n e 

a e 
a ∗ 

 GeV 

m s 
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  , (59) 

where  in the quadratic inflaton potential. Here Xk is a solution to 

Pl the EOM with the boundary condition given by quantum fluctuations. The 

resulting number density is then given by 

 . (60) 

On the lattice, the momentum spectrum is discrete which allows one to treat the zero mode separately. 

Analogous formulae apply to the inflaton field and the quartic potential. It is important to remember 

that the EOM for the different momentum modes decouple at weak couplings only. The lattice 

approach allows us to incorporate the couplings among the k–modes of the inflaton and DM, thereby 

accounting for backreaction and rescattering. The latter can have a crucial impact on the dynamics of 

the system (see [29, 30] for recent examples). 

 

Figure 2: C4 vs σφh required for the correct DM abundance in the quadratic inflaton potential (mφ = 1013 

GeV, ms = 1 GeV, ϕ0 ' MPl). The simulations are performed with CosmoLattice 

[24]. 

Our numerical results are presented in Fig.2. The correct relic density is produced in a wide range 

of C4 between 10−7 and 10−4. The lower bound comes from requiring semiclassical behaviour, that is, 

the occupation numbers must be sufficiently large. The upper bound has technical nature: the 

simulation becomes unstable. We observe that the curve tends to flatten out at larger couplings. This 

is expected from quasi–equilibrium: as ne(φ) approaches ne(s), the σφh coupling becomes constant 

within our approximation [27]. Although such flattening is clearly visible, we find that quasi–

equilibrium has not yet been reached at C4 ∼ 10−4. We estimate the required C4 to be of order 10−3, 

yet the simulations in this range become less reliable. 

Given these results, we can now determine under what circumstances the renormalizable coupling 

 becomes unimportant. According to Fig.4 of [27], λφs < 10−8 does not make any significant 
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contribution to the dark matter abundance in the parameter range of interest. This can be understood 

intuitively since φs 4ϕ Pl in this case (see also [20]). On the other hand, for λφs > 10−7 

− 10−6 or C4 > 10−3, the inflaton–DM system reaches quasi– equilibrium and the DM abundance 

becomes independent of these couplings, with the required σφh ∼ 10−17MPl. 

Subsequently, when the inflaton coherence is lost, the operator O4 relinquishes its privileged role 

in DM production. In quasi–equilibrium, the scattering processes φφ → ss can become comparably 

significant, depending on the corresponding Ci. Since all of our operators are Planck– suppressed, such 

processes are slower than the Hubble rate and thus do not lead to inflaton thermalization [31] nor 

significant DM production. At weak couplings, the inflaton field may remain semi–classical during 

reheating, in which case the effects of the SM thermal bath can be included along the lines of [32],[33]. 

Throughout this work we assume that other sources of dark matter are subdominant. In particular, 

we neglect the DM coupling to the Higgs such that no tangible freeze–in contribution from the Higgs 

thermal bath appears. This approximation is justified if this coupling is below 10−11 [34]. Furthermore, 

as explained in the Introduction, there is also a truly gravitational source of DM: the Universe 

expansion. However, in the presence of O4, the effective mass of s during inflation can be larger than 

the Hubble rate due to super–Planckian inflaton values, which suppresses hs2i and makes this 

production mechanism inefficient. 

In our analysis, we have relied on the effective field theory expansion in the Einstein frame, which 

is expected to be meaningful during preheating. Gravitational dark matter production can also be 

encoded in the DM non–minimal coupling to gravity [35], which corresponds to a specific choice of 

higher dimensional operators in our approach. A related option is provided by gravity–induced inflaton 

decay in Starobinsky–like models [36]. 

6 Conclusion 

In this work, we have studied perturbative and non–perturbative dark matter production during the 

inflaton oscillation epoch. We focus on the regime where the renormalizable interactions between the 

inflaton and dark matter are negligible. To determine the leading contributions, we resort to the 

effective field theory expansion in the inverse Planck mass. Such higher dimensional operators are 

expected to be generated by perturbative or non–perturbative gravitational effects. In the absence of 

quantum gravity theory, their coefficients are unknown and therefore treated as arbitrary input 

parameters. 

We have focussed on Planck–suppressed dim–6 operators and studied their relative importance in 

the perturbative and resonant regimes. We find that operators of the form φns2 (n ≥ 4) by far dominate 

particle production. They can generate the correct (non–thermal) dark matter abundance even for 

small values of the corresponding Wilson coefficients. Therefore, the phenomenological frameworks 

describing dark matter production are sensitive to the presence of such operators, which reinforces 

the importance of gravitational effects in this context. 
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