
 

 

Sedge Foodplants Growing in the Cradle of Humankind, South Africa, and Cyperus Esculentus Tubers (Patrysuintjies) 

as a C4 Superfood 

RESEARCH PAPER 

MARLIZE LOMBARD   

CORRESPONDING AUTHOR: 

Marlize Lombard 

Palaeo-Research Institute,  
University of Johannesburg,  
Auckland Park, Johannesburg,  
ZA mlombard@uj.ac.za 

 

KEYWORDS: 
Cyperaceae; hominin diet; wetland 

hypothesis; nutrition; yellow nutsedge; 

patrysuintjies 

TO CITE THIS ARTICLE: 
Lombard, M. 2022. Sedge  
Foodplants Growing in the  
Cradle of Humankind, South  
Africa, and Cyperus Esculentus  

Tubers (Patrysuintjies) as a C4 

Superfood. Open Quaternary, 8: 5, pp. 

1–21. DOI: https://doi. 

org/10.5334/oq.110 

INTRODUCTION 

Much has been made of stable 

carbon isotope studies that 

ABSTRACT 

Since it was established that the early hominins of the Cradle of Humankind in South Africa ate 
13C-enriched foods that may have included sedges with C4 photosynthetic pathways, much 

work has focused on the reconstruction of hominin dietary ecologies in both southern and 

eastern Africa. Through the years emphasis was placed on Cyperus papyrus as a possible 

source, even inspiring an ‘aquatic diet’ hypothesis for all hominins. Baboon feeding habits and 

sedge regimes observed in South Africa’s ‘Lowveld’ have provided a proxy for the dietary 

ecology of the southern ‘Highveld’ hominins, and from the Cradle of Humankind sedges, 

amongst other plants, have been collected for nutritional studies. To date, however, there has 

been no attempt to compile an inventory of the sedge species currently growing in the 

demarcated area of the Cradle of Humankind. Here I list 29 Cyperaceae taxa currently recorded 

as growing in the Cradle of Humankind. I show that, contrary to previous inference, most of 

them have C4 photosynthetic pathways and do not need aquatic ecologies or permanent 

wetland settings. I discuss and provide photographic records for the six species identified as 

current baboon and human foodplants, and highlight Cyperus esculentus as a possible 

nutritious and prolific C4-sedge-USO food source for southern African hominins based on its 

energy, protein and fat/lipid profile. 
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provide evidence of a C4 component in early hominin diets 

(e.g., Cerling et al. 2013; Ungar & Sponheimer 2011; Lee-Thorp 

et al. 2012; Sponheimer et al. 2013; Levin et al. 2015). Such 

studies often focus on the underground/ underwater storage 

organs (USOs) of sedges, in particular Cyperus papyrus (e.g., 

van der Merwe et al. 2008; Dominy 2012; Stewart 2014). So 

much so, that Wrangham et al. (2009) hypothesised that access 

to shallow-water aquatic habitats was not only a subsistence 

opportunity, but ‘a necessary condition’ for hominin 

adaptation to Savanna habitats. Yet, as Peters and Vogel (2005: 

219) pointed out, most palaeo-environmental reconstructions 

of early hominin sites in South Africa do not support the 

presence of large wetlands even though carbon isotope 

analyses of hominin tooth enamel show ‘a significant but not 

dominant contribution of C4 biomass in their diets’. They 

suggested that the isotope signature for the Cradle of 

Humankind (henceforth also referred to as the Cradle) 

hominins could stem from a broad range of animal foraging 

(e.g., invertebrates, reptiles, birds, and small mammals), in 

combination with some C4 plant foods; concluding that the 

Cradle’s dryland environment probably restricted a greater 

reliance on a C4 plant diet, but that elsewhere large wetlands 

would have offered better opportunities for such subsistence 

behaviour (Peters & Vogel 2005).  

Although several edible C4 grasses grow in the Cradle that 

may have contributed to the dietary signature (Lombard & van 

Aardt 2022), Peters and Vogel’s (2005: 219) observations seem 

to agree with Sponheimer et al.’s (2005) suggestion that 

aquatic habitats were probably too rare in South Africa to be 

important sources of sedge foods, but as Caley et al. (2018: 82) 

point out, ‘they only studied the sedges from four riverine sites 

located in the Kruger National Park and it remains unknown 

whether their conclusions are valid for the whole Limpopo 

catchment and larger scales’. Sedge USOs collected from the 

Cradle by Henry et al. (2019) showed rather high cellulose and 

hemicellulose values compared to various parts of other 

plants, and were apparently unreliable regarding antifeedant 

content so that the authors questioned whether the available 

sedge USOs may have provided an important food resource for 

the Cradle hominins. The full inventory of 223 foodplant taxa 

currently growing in the Cradle (Lombard & van Aardt 2022), 

however, shows that 23% of the plant parts collected and 

eaten by humans today are USOs – including some sedge 

tubers – and that 11.2% of the foodplants have C4 

photosynthetic pathways.  

Herries et al. (2010) also problematised the shallowwater 

habitat hypothesis of Wrangham et al. (2009) for the southern 

hominins on meteorological and palaeoclimatic grounds. 

According to them, the small riverine and vleiland seasonal 

wetlands of the southern African interior ‘are all shallow, with 

little open water, and dry up in winter’, including those in the 

Cradle, and welldeveloped sedge regimes are not abundant in 

the riverine environments of South Africa today, so that it is 

doubtful that wetlands were widespread during the Plio-

Pleistocene (Sponheimer et al. 2005; Herries et al. 2010: 643). 

Reynolds and Kibii (2011) on the other hand, argue that the 

geo-morphology of the terrain around Sterkfontein Cave 

(Member 4), in combination with the biodiversity of its plant 

and animal records, suggest a riverine landscape that 

supported a gallery forest (also see Bamford 1999). They 

ascribe the presence of aquatic and wetland species in the 

Sterkfontein record as suggesting that ‘swamps’ used to exist 

in the region (also see Reynolds et al. 2011; Bailey et al. 2011). 

Another potential blow to a sedge dietary specialisation in the 

Cradle according to Sponheimer (2013: 231) is that ‘in 

environments roughly analogous to the ancient Sterkfontein 

Valley, the vast majority of sedges use C3 photosynthesis, so 

that even if the South African australopiths ate sedges, they 

might have needed to eat significant quantities of other C4 

foods as well’. 

Trying to reconstruct sedge populations that may have been 

part of the hominin dietary ecology in the Cradle of Humankind 

is not uncomplicated. For example, Murungi and Bamford 

(2020) highlighted the fact that the Cyperaceae family is the 

most diverse in Africa. Here Cyperus L. represents the largest 

genus consisting of more than 600 species occurring in a wide 

range of habitats (Larridon et al., 2011). Being so numerous, 

and with their classifications in continuous revision (see 

discussion in Muringi and Bamford 2020), it may be difficult to 

distinguish between the species collected for palaeo-scientific 

research. For example, Henry et al. (2019) collected numerous 

sedge samples, generating some nutritional data for them, but 

none were identified to species level, instead they were 

described as Kyllinga sp., Mariscus sp., unknown big sedge 

(Cyperus dives), unknown sedge, unknown sedge 2 (very small 

infl), and unknown small sedge BV. In sum, as Sponheimer et 

al. (2013: 10315) emphasise, the 13C-enriched resources that 

hominins ate ‘remain unknown and must await additional 

integration of existing paleodietary proxy data and new 

research on the distribution, abundance, nutrition, and 

mechanical properties of C4 (and CAM) plants’. From the above 

four questions arise: 

1. What is the current sedge population of the Cradle of 

Humankind, and what proportion of these plants has a C4 

photosynthetic pathway? 

2. Do all the Cradle sedges necessarily require aquatic 

habitats or extensive wetlands to thrive? 

3. Which of the Cradle sedge species are being used as 

foodplants by humans and/or primates today, and do 

these have C3 or C4 photosynthetic pathways? 

4. Is there a Cradle C4-sedge foodplant that stands out in 

terms of nutritional value in the way that it was claimed 

for C. papyrus in eastern Africa? 



  

STUDY AREA AND APPROACH 

To date, the dolomitic palaeo-caves located within the 51.5 

thousand hectares of the UNESCO Cradle of Humankind World 

Heritage Site have yielded an abundant and varied hominin 

record, with more than 3300 fossil fragments including 

Australopithecus africanus, A. sediba, A. prometheus, 

Paranthropus robustus, and early Homo including H. habilis, H. 

naledi, H. erectus/ ergaster and H. sapiens (pers. comm. 

Bernhard Zipfel and Stephanie Baker, 2019). Almost nowhere 

else do we find a similarly varied, but spatially confined fossil 

record spanning more than 2 Ma (Lombard & van Aardt 2022). 

The footprint of the Cradle of Humankind, located within the 

greater UNESCO Magaliesberg Biosphere, forms part of the 

ecotone between the Grassland and Savanna Biomes of 

southern Africa. The largest vegetation unit or veld type (i.e., a 

complex of plant communities ecologically and 

spatiotemporally occupying habitat complexes at the 

landscape scale [Mucina & Rutherford, 2011]) represented in 

the Cradle is the Carletonville Dolomite Grassland running 

through the centre of the Cradle landscape. This zone is bound 

by the Gauteng Shale Bushveld and Andesite Mountain 

Bushveld veld types to the northwest, including a narrow strip 

of Gold Reef Mountain Bushveld at its extreme north-western 

boundary. Pockets of the Moot Plains Bushveld encroach in the 

west, and the south-easterly boundary comprises pockets of 

Gold Reef Mountain Bushveld, Egoli Granite Grassland, and 

Andesite Mountain Bushveld (Mucina & Rutherford, 2011; 

Figure 1).  

For plants – sedges or otherwise – to thrive in the Cradle of 

Humankind today they must be adapted to the summer-rainfall 

regime of southern Africa with heavy short-lived 

thunderstorms sometimes generating flash floods and raging 

veldfires by the end of the winter’s dry season. The mean 

annual precipitation is lowest on the Carletonville Dolomite 

Grassland (593 mm) and highest in the Gold Reef Mountain 

Bushveld (666 mm). The annual precipitation coefficient of the 

area is relatively high (26–28%). The mean annual potential 

evaporation is much higher than the mean precipitation 

ranging between 2086 mm in the Andesite Mountain Bushveld 

and 2388 mm on the Carletonville Dolomite Grassland. As a 

result, the mean annual soil moisture stress levels – the 

percentage of days when evaporative demand is more than 

double the soil moisture supply – are also very high ranging 

from 75% to 78% of the days (Table 1: all data from Mucina & 

Rutherford, 2011). Plant regimes are further narrowly linked to 

the soils or land types they grow in. I therefore provide 

information about these in the table below as additional 

context for the study area.  

The vegetation units and land types (Table 1) are underlain 

by the ancient geology of the Cradle landscape (e.g., Carruthers 

2014), and several factors suggest that the current high relief 

of southern Africa has been in place since ~4 Ma (e.g., Partridge 

et al. 2010). The plateau uplift, in combination with global 

patterns in climate change, brought about the shift towards 

the now-typical cool winters and violent summer 

thunderstorms (Dirks & Berger 2013). Dirks et al. (2016) 

showed that the low basin-averaged erosion values for the 

Cradle indicate an old, slow-eroding landscape that did not 

change much during the last 3 Ma of hominin occupation (also 

see Makhubela et al. 2019). The relative stability of the Cradle 

hominin landscape is further reflected in the development of 

the Grassland and Savanna Biomes of southern Africa at the 

transition of the Pliocene towards the Pleistocene by ~3 Ma 

(Carruthers 2014; Neumann & Bamford 2015). Similar to today, 

the Cradle landscape hosted a variety of different habitats 

throughout the Plio-Pleistocene, including riparian, forested, 

edaphic and open grassland habitats – often in combination 

with each other (Watson 1993; Reed 1997; Sponheimer et al. 

2005; Henry et al. 2019). Between ~3 Ma and 2.5 Ma an ‘El 

Niñolike state’ may have prevailed over southern Africa, likely 

characterised by pulses of intense rainfall and drought (e.g., 

Hopley et al. 2007). After ~1.8 Ma the region became 

increasingly dry resulting in the proliferation of C4-dominated 

grasslands (e.g., Scott 2002; Luyt & LeeThorp 2003; Lee-Thorp 

et al. 2007).  

To compile a list of indigenous Cyperaceae currently 

growing in the Cradle that may serve as one of the proxies for 

palaeo-dietary reconstruction, I used Siebert and Siebert 

(2005), Eloff (2010), and the Flora of Southern Africa (FSA) 

Checklist (May 2021) provided by the South African National 

Biodiversity Institute (SANBI). I present basic information in 

terms of growth form, water dependency and distribution 

mainly using the  

African Plant Database (http://www.ville-ge.ch/musinfo/bd/ 

cjb/africa/index.php?langue=an, consulted August 2021). I also 

noted maximum growth-height for each plant and the altitudes 

at which they occur habitually. The resulting list was then 

systematically assessed for any species that are known 

foodplants from current and/or recent human foraging records 

and/or baboon feeding contexts, as best-fit scenarios for 

hypothesising about hominin diets in southern Africa (e.g., 

Mogg 1975; Dunbar 1976; Vincent 1985; Peters et al. 1992; 

Codron 2003; Codron et al. 2008; Botha et al. 2019; Welcome 

& van Wyk 2019; Elton & Dunn 2020; Lombard & van Aardt 

(2022). For each of the sedge foodplants, I provide its general 

distribution in southern Africa as captured on the iNaturalist 

Researchgrade Observations database (https://www.gbif.org/ 

dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7 consulted August 

2021), a basic description of the plant’s growth form and 

habitat and a brief discussion of their use as  

http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?langue=an
http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?langue=an
http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?langue=an
http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?langue=an
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7


  

 

Figure 1 The footprint of the UNESCO Cradle of Humankind World Heritage Site within the Magaliesberg Biosphere and its associated veld types 

and approximate elevations. Background maps by Matt Caruana, University of Johannesburg. 



  

foodplants. Finally, I highlight one of the Cradle’s sedges by comparing energy, protein and fat/lipids as basic as a ‘superfood’ that 

may have contributed, amongst nutritional values amongst African USO crops as well as other things, to the C4 signature in early 

hominin diet South American potatoes.  

VEGETATION UNIT MAP IN 

MM 
APCV MAT  

IN °C 
#  
MFD 

MAPE IN 

MM 
% MASMS LAND TYPE 

Carletonville Dolomite 

Grassland 
593 28 16.6 37 2388 78 Freely drained, red and yellow, dystrophic/mesotropic, 

apedal soils comprise >40% of the land type. 

Egoli Granite Grassland 682 26 16 29 2194 75 Red and yellow, dystrophic/mesotropic, apedal soils with 

plintic subsoils. 

Moot Plains Bushveld 636 27 17 28 2373 77 Complex profile with: a) Freely drained, red and yellow, 

dystrophic/mesotropic, apedal soils; b) Black and red clays; 

c) Red and yellow, dystrophic/mesotropic, apedal soils with 

plintic subsoils. 

Gold Reef Mountain 

Bushveld 
666 27 16.4 26 2267 76 Rock outcrops with shallow soils and lime in some of the 

bottomlands. 

Gauteng Shale Mountain 

Bushveld 
661 27 15.6 33 2209 76 Rock outcrops with shallow soils and lime in some of the 

bottomlands. 

Andesite Mountain 

Bushveld 
660 27 15.6 34 2186 76 Rock outcrops with shallow soils and lime in some of the 

bottomlands, and some red and yellow, 

dystrophic/mesotropic, apedal soils with plintic subsoils. 

Table 1 General climatic and land-type indicators for the vegetation units associated with the Cradle of Humankind (data from Mucina & 

Rutherford, 2011). Key: MAP = mean annual precipitation, APCV = annual precipitation coefficient of variation, MAT = mean annual temperature, 

MFD = mean frost days with a screen temperature below 0°C, MAPE – mean annual potential evaporation,  
MASMS = mean annual soil moisture stress.  

CYPERACEAE GROWING IN THE CRADLE OF 

HUMANKIND 

There are currently 29 taxa belonging to 12 genera in the 

Cyperaceae family on record as growing in the Cradle of 

Humankind, one of which is not indigenous to southern Africa, 

namely Carex acutiformis. Ehrh. (Table 2). Perennial plants 

dominate the population with only two (Bulbostylis humilis and 

Isolepis cernua) being annual. The Cyperus genus is best 

represented (n = 11, 39%), followed by Carex (n = 4, 14%), 

Bulbostylis (n = 3, 11%), Scleria and Kyllinga are both 

represented by two (7%) species in the Cradle, whilst the 

Fimbristylis, Fuirena, Isolepis, Pycreus, Schoenoplectus and 

Schoenoxiphium genera each only have one species currently 

recorded for the Cradle (Figure 2a). Some of these lineages have 

considerable time depth, for example Bulbostylis dates back to 

14.9 ± 4.7 Ma, Cyperus to 9.7 ± 1.3 Ma, and Fimbristylis to 9.1 

± 3.2 Ma (Besnard et al., 2009; Larridon et al., 2013; Sage, 

2017), so that most of the Cyperaceae growing in the Cradle 

today could have been part of the Plio-Pleistocene hominin 

dietary ecology. 

All the plants, bar two from the Carex genus (i.e., C. 

rhodesiaca and the non-indigenous C. acutiformis), are listed 

as having cyperoid growth forms – thus, being true sedges 

(Table 2). Amongst them, three (10%) are also classified as 

geophytes (i.e., Cyperus esculentus, Cyperus rotundus and 

Scleria bulbifera), that is plants with growth forms that include 

specifically modified stem or root systems for the storage of 

energy or water in the form of tubers, corms, rhizomes, or 

bulbs (see Beentjie 2016) (Figure 2b). Cumulatively, at least 15 

(52%) of the Cradle Cyperaceae have C4 photosynthetic 

pathways as opposed to the 12 (41%) with C3 pathways. For two 

Cyperus species I could not find information about their 

pathways (i.e., C. austro-africanus and C. uitenhagensis), but, 

even if they both turn out to have C3 pathways, C4 sedges are 

still best represented on the Cradle landscape today (Figure 2c).  

When it comes to the relationship of the Cradle sedges with 

water, only two (7%) are emergent hydrophytes that habitually 

grow in shallow water (i.e., Cyperus sexangularis and 

Schoenoplectus brachyceras), and Fuirena stricta is the solitary 

aquatic, sudd hydrophyte that grows rooted in an impenetrable 

mass of floating vegetable matter. Helophytes – plants typical 

of marshy or lake-edge environments (sometimes also salty), in 

which the USOs are generally submerged in soil or mud with 

the aerial shoots protruding above the surface – comprise 41% 

of the Cradle’s Cyperaceae, with Fimbristylis dichotoma also 

able to thrive in drier settings. However, more than half (55%) 

of the Cradle’s Cyperaceae taxa are mesophytes. These plants 

are adapted to neither particularly dry nor particularly wet 

environments needing only moderate amounts of water. 

Different from hydrophytes and helophytes, they typically 

avoid soils with standing and/ or salty water (Table 2; Figure 2d). 

Unlike Cyperus papyrus, an emergent sudd hydrophyte that 

grows up to 4.5 m tall and at altitudes of 7–1000 m.a.s.l., most 



  

of the Cradle’s sedges never grow more than a metre tall, with 

only three taxa (i.e., Cyperus fastigiatus, C. leptocladus and C. 

sexangularis) ever reaching 1.5 m or more. Tiny species never 

growing taller than ~30 cm include Bulbostylis humilis, Cyperus 

rupestris, C. uitenhagensis and Isolepis cernua (Figure 2e). Most 

of the sedges growing in the Cradle never outgrow the 

surrounding grasses, and several of them are grass-like,  

SPECIES/TAXA GROWTH FORM & PATHWAY WATER DEP. MAX 

HGHT 
ALTITUDE DISTRIBUTION 

Abildgaardia ovata (Burm.f.) 

Kral 
Perennial herb, cyperoid, C4 Mesophyte 490 180–1830 BOT, ESW, NAM, EC, FS, GA, KN, LP, 

MP, NW 

Bulbostylis burchellii (Ficalho & 

Hiern) C.B.Clarke 
Perennial herb, cyperoid, C4 Mesophyte 490 180–1830 BOT, ESW, NAM, EC, FS, GA, KN, LP, 

MP, NW 

Bulbostylis humilis (Kunth) 

C.B.Clarke 
Annual herb, cyperoid, C4 Mesophyte 250 10–2955 BOT, ESW, NAM, EC, FS, GA, KN, LP, 

MP, NC, NW, WC 

Bulbostylis oritrephes (Ridl.) 

C.B.Clarke 
Perennial herb, cyperoid C4 Mesophyte 450 200–2200 LES, ESW, EC, FS, GA, KN, LP, MP,  

NW 

Carex acutiformis Ehrh.  Perennial herb, emergent 

hydrophyte, C3 
Helophyte 800 0–2440 Not indigenous, but occurs in LES, EC, 

FS, GA, KN, MP, NW, WC 

Carex cognata Kunth Perennial herb, cyperoid, C3 Helophyte 800 10–2000 BOT, ESW, LES, NAM, EC, FS, GA, KN, 

LP, MP, NW, WC 

Carex rhodesiaca Nelmes Perennial herb, emergent 

hydrophyte, C3 
Helophyte 600 610–2225 ESW, LES, EC, GA, KN, LP, MP 

Carex uhligii  
K.Schum. ex C.B.Clarke 

Perennial herb, cyperoid, C3 Mesophyte 600 120–1510 EC, FS, GA, KN, LP, MP, NW, WC 

Cyperus austro-africanus C.Archer & 

Goetgh. 
Perennial herb, cyperoid Mesophyte 910 45–1731 ESW, NAM, EC, GA, KN, LP, MP, NW 

Cyperus congestus Vahl Perennial herb, cyperoid, C4 Helophyte 910 2–2425 BOT, ESW, LES, NAM, EC, FS, GA, KN, 

LP, MP, NC, NW, WC  

Cyperus esculentus L. 

var. esculentus 
Perennial herb, geophyte, 

cyperoid, C4 
Mesophyte 100 5–2100 BOT, ESW, LES, NAM, EC, FS, GA, KN, 

LP, MP, NC, NW, WC  

Cyperus fastigiatus Rottb. Perennial herb, cyperoid, C4 Helophyte 2590 5–1735 EC, FS, GA, KN, LP, MP, NC, NW, WC 

Cyperus leptocladus Kunth Perennial herb, cyperoid C3 Mesophyte 1750 393–2035 ESW, GA, KN, LP, MP, NW 

Cyperus margaritaceus Vahl 

var. margaritaceus 
Perennial herb, cyperoid, C4 Mesophyte 750 12–2100 BOT, ESW, NAM, FS, GA, KN, LP, MP, 

NC, NW 

Cyperus obtusiflorus Vahl 

var. obtusiflorus 
Perennial herb, cyperoid, C4 Mesophyte 450 5–1770 BOT, ESW, LES, EC, GA, KN, LP, MP,  

NW 

Cyperus rotundus  
L.  

Perennial herb, geophyte, 

cyperoid, C4 
Mesophyte 650 5–1370 BOT, ESW, NAM, EC, GA, KN, LP, MP, 

NC, NW, WC 

Cyperus rupestris Kunth 

var. rupestris 
Perennial herb, cyperoid, 

C4 

Mesophyte 150 200–2375 ESW, LES, EC, FS, GA, KN, LP, MP,  
NC, NW 

Cyperus sexangularis Nees Perennial herb, cyperoid, 

emergent hydrophyte, C3 
Helophyte 1500 15–1500 BOT, ESW, EC, GA, KN, LP, MP, NC,  

NW 

Cyperus uitenhagensis (Steud.) 

C.Archer & Goetgh. 
Perennial herb, cyperoid Mesophyte 300 20–2000 ESW, LES, EC, FS, GA, KN, LP, MP,  

NW, WC 

Fimbristylis dichotoma (L.) 

Vahl subsp. dichotoma 
Perennial herb, cyperoid, C4 Mesophyte 

/Helophyte 
1260 10–1675 BOT, ESW, NAM, EC, FS, GA, KN, LP, 

MP, NW 

Fuirena stricta Steud. 

var. stricta 
Perennial herb, cyperoid, sudd 

hydrophyte, C3 
Helophyte 750 105–1670 BOT, ESW, NAM, GA, KN, LP, MP, NW, 

SWZ 

Isolepis cernua (Vahl) Roem. & Schult. 

var. cernua 
Annual herb, cyperoid, C3 Helophyte 200 3–1830 LES, NAM, EC, FS, GA, KN, LP, MP, NC, 

NW, WC 

Kyllinga alba Nees Perennial herb, cyperoid, C4 Mesophyte 520 85–2000 BOT, ESW, LES, NAM, EC, FS, GA, KN, 

LP, MP, NC, NW 

Kyllinga melanosperma Nees Perennial herb, cyperoid, C4 Helophyte 1000 5–1675 BOT, ESW, EC, GA, KN, LP, MP, NW 



  

Pycreus unioloides (R.Br.) Urb. Perennial herb, cyperoid, C4 Helophyte 700 25–1950 BOT, ESW, LES, EC, GA, KN, LP, MP,  
NW 

Schoenoplectus brachyceras (Hochst. 

ex A.Rich.) Lye 
Perennial herb, cyperoid, 

emergent hydrophyte, C3 
Helophyte 500 850–2000 ESW, EC, FS, GA, KN, LP, MP, NW 

Schoenoxiphium sparteum 

(Wahlenb.) C.B.Clarke 
Perennial herb, cyperoid, C3 Mesophyte 600 30–2000 ESW, LES, EC, FS, KN 

Scleria bulbifera Hochst. ex 

A.Rich. 
Perennial herb, cyperoid, 

geophyte, C3 
Mesophyte 600 150–2070 ESW, EC, GA, KN, LP, MP, NW 

Scleria dregeana Kunth Perennial herb, cyperoid, C3 Helophyte 800 610–1950 BOT, ESW, LES, EC, GA, KN, LP, MP 

Table 2 Cyperaceae currently growing in the Cradle of Humankind. Key: BOT = Botswana; ESW = Eswatini; LES = Lesotho; NAM =  
Namibia; EC = Eastern Cape, South Africa; FS = Free State, South Africa; GA = Gauteng, South Africa; KN = KwaZulu-Natal, South Africa; LP = 

Limpopo Province, South Africa; MP = Mpumalanga, South Africa; NC = Northern Cape, South Africa; NW = Northwest Province, South Africa; WC 

= Western Cape, South Africa.  



  

 

Figure 2 Aspects of the current Cyperaceae population of the Cradle of Humankind. a) Percentages of C3 vs C4 photosynthetic pathways 

represented. b) Percentages of genera represented amongst the Cradle’s sedges. c) Aspects of the growth forms represented. d) Levels of water 

dependence represented wherein helophytes require aquatic conditions and mesophytes usually avoid growing in the water-logged soils and can 

thrive in dryland ecologies. e) The maximum heights to which the different  



  

Cyperaceae of the Cradle grow. f) The general elevations at which the different Cyperaceae of the Cradle grow with the textured bars indicating 

the elevation of the vegetation units. 

so that they easily disappear within their surroundings. The 

veld types associated with the Cradle of Humankind (Figures 1 

and 2f; see Mucina and Rutherford, 2011), range in altitude 

from ~1050 to ~1750 m.a.s.l., and all the sedges currently 

growing there have altitude ranges that fit these vegetation 

units with Carex uhligii, Cyperus rotundus and C. sexangularis 

perhaps limited to the lowerlaying areas of the Cradle 

landscape (Figure 2f). Based on these data, we could probably 

rule out both Cyperus papyrus and the ‘unknown big sedge’, 

identified by Henry et al. (2019) as possibly being Cyperus 

dives, as growing in the Cradle of Humankind. Both these 

species usually grow at altitudes of ≤1000 m and neither has 

yet been identified as indigenous to the high-altitude 

grasslands of the Gauteng and Northwest Provinces of South 

Africa where the Cradle is located. Also, if the plateau uplift 

happened at ~4 Ma, it may be that these species were not 

around since the Plio-Pleistocene transitional period 

associated with the appearance of the hominins. 

FOODPLANT SEDGES OF THE CRADLE OF 

HUMANKIND 

From the list above (Table 2), three species have been recorded 

in the context of baboon feeding, two of which are also foraged 

and eaten by humans, and three more by humans only. At least 

six of the Cradle’s current Cyperaceae species can therefore be 

identified as potential hominin food sources. Bulbostylis 

burchellii (Ficalho & Hiern) C.B.  

Clarke (Figure 3) is a small, grass-like perennial sedge with a C4 

pathway that is prolific in Gauteng, South Africa, where it 

grows amongst the grasses on rocky ridges (e.g., Bredenkamp 

& Theron 1978; Bredenkamp et al. 2006). It is adapted to an 

environment with little water, making it a hardy, drought-

resistant, densely tufted plant, growing from a delicate woody 

rhizome. Marais (2005) recorded baboons feeding on its roots 

during the winter in the Blyde River Canyon (Mpumalanga, 

South Africa). Little else seems to be known about this species 

in terms of its suitability as a foodplant. Its observation as a 

baboon food source during the dry winter, however, together 

with its hardiness and proliferation in the Cradle region may 

warrant further exploration as a fallback food when other more 

luscious sources have been depleted.  

Cyperus congestus Vahl (Figure 4. Previously: Mariscus 

congestus, commonly known as dense flat-sedge or clustered 

flat-sedge, and in South Africa as hedgehog sedge) is a 

perennial, facultative palustrine wetland plant, that grows as a 

grass-like sedge with a C4 pathway (e.g., Sonnenberg & Botha 

1992; Verloove 2014). As an emergent narrow-leaved aquatic 

plant, its habitats include damp stream banks, moist 

depressions in grasslands, and the margins of temporary 

waterbodies throughout much of South Africa (van Ginkel & 

Cilliers 2020; also see Gordon-Gray et al. 2006). The sweetish, 

crisp USOs have a slightly astringent juice, and light roasting 

improves their flavour. They are an important food source of 

the !Kung hunter-gatherers of Namibia (e.g., Story 1958; 

Marshall 1976; Fox & Norwood Young  

 



  

Figure 3 Bulbostylis burchellii (Ficalho & Hiern) C.B. Clarke. a) Distribution in southern Africa (https://www.gbif.org/species/5292413); b) 

inflorescence (photo by Matthew Fainman); c) growing in the veld (photo by David Hoare); d) rootstock (photo by Nick Helme).  

All photographs are licensed for use under http://creativecommons.org/licenses/by-sa/4.0/. 

 

Figure 4 Cyperus congestus Vahl. a) Distribution in southern Africa (https://www.gbif.org/species/2714656); b) inflorescence (photo by David 

Hoare); c) growing in the veld (photo by Namhla); d & e) rootstock and USO (photos by David Hoare). All photographs are licensed for use 

under http://creativecommons.org/licenses/by-sa/4.0/. 

1982), and in the Eastern Cape, South Africa, Bhat et al. (2002) 

recorded how the leaves are pulled from the ground and the 

white part of the plant consumed as a wild vegetable found 

year-round near riverbanks.  

Cyperus esculentus L. (Figure 5. A.k.a. yellow nutsedge, earth 

almond, chufa, tiger nut; in South Africa patrysuintjie) may 

have been part of the Paranthropus boisei diet in eastern Africa 

(e.g., Macho 2014). It is a perennial cyperoid herb with a C4 

pathway, needing only a moderate amount of water. The USOs 

are sweet with a nutty flavour and is used as a vegetable in 

southern Africa and elsewhere (Watt & Breyer-Brandwijk 

1962). For example, herd boys, women and children of the 

high-altitude uKhahlamba-Drakensberg and Lesotho 

grasslands eat the raw or baked tubers that are available year-

round (Vinnicombe 1976; Fox & Norwood Young 1982, and see 

Mabogo 1990 for an account from the Limpopo Province). 

Nama-speaking people of Namaqualand and Namibia also eat 

the lower stem raw or roasted (Archer 1994), whilst in both 

Namibia and South Africa, the tubers are sometimes pounded 

and stirred with water into a paste, to which milk and honey is 

added. Mixed with a grain porridge, it provides a delicious and 

hearty meal (von Koenen 2001; Roberts & Roberts 2017). 

Further north in Africa the wild USOs are foraged, cleaned and 

sold in markets as ‘tiger nuts’, and in west Africa the plant is 

cultivated for its sweet corms in the context of milk production 

and making fortifying gruels (Roberts & Roberts 2017). As one 

of the earliest cultivated crops in ancient Egypt, it was used 

widely, perhaps because as little as 150–200 g of USO tissue 

satisfies the human daily requirements for lipid/fat intake 

(Eteshola & Oraedu 1996; Dominy 2012).  

Cyperus rotundus L. (Figure 6. A.k.a. purple nutsedge) is a 

perennial, grass-like sedge with a C4 pathway, preferring dry 

conditions but will tolerate moist soils. Similar to C. esculentus 

its tubers somewhat resemble ‘nuts’. The plant is widespread 

throughout Africa, growing in almost every soil type, humidity, 

and pH, but not in the shade or soils with a high salt content, 

and perhaps not in the higher lying mountainous regions. Its 

robustness earned it the reputation as ‘one of the world’s 

worst weeds’ (e.g., Holm et al. 1977). The tubers are edible raw 

or cooked (e.g., Tanaka 1976; Lim 2016). It is one of the sedges 

most often recorded in the context of baboon USO feeding in 

eastern Africa (e.g., Swedell et al. 2008; Schreier 2010; Bentley-

Condit & Power 2018). Soaking the tuber will overcome its 

hardness, and the bitterness is reduced by drying it for a few 

days before consumption (Lim 2016). The dried tubers can be 

ground into a powder and used as a cereal (Moerman 1998), 

and the tiny seeds of this sedge are also edible (Kunkel 1984). 

The USOs have been recorded in southern Africa as food 

foraged by both the Topnaar of Namibia and the Kalahari !Kung 

hunter-gatherers (Van damme et al. 1922; Lee 1979). In 

western Africa the slightly fragrant tubers are gathered and 

chewed by herdsmen and boys (Irvine 1952). There are several 

archaeological reports for C. rotundus as a foodplant. For 

example, tuber remains from Wadi Kubbaniya, Egypt, at ~18 

ka, and microfossils from human dental calculus from Al 

https://www.gbif.org/species/5292413
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gbif.org/species/2714656
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


  

Khiday, Central Sudan, at ~7 ka (e.g., Buckley et al. 2014; Dwyer 

2016).  

Cyperus sexangularis Nees (Figure 7) is the only taxon 

amongst the Cradle sedge foodplants that has a C3 

photosynthetic pathway and is also the tallest – growing up to 

1500 mm. It is a robust, tufted grass-like cyperoid herb 

belonging to the emergent narrow-leaved aquatic  

plants of southern Africa associated with palustrine and 

riverine wetlands where it grows along the edges of pans, rivers 

and streams, often rooted in wet/watery substrates, but 

occasionally also found in drier soils (van Ginkel & Cilliers 

2020). San hunter-gatherer children would uproot and eat the 

young shoots, while still enfolded in their basal sheaths, 

drawing out the soft pith between their teeth (Smith 1966).  

 

Figure 5 Cyperus esculentus L.: a) Distribution in southern Africa (https://www.gbif.org/species/2716226); b) inflorescence (photo by David Hoare); 

c) growing in the veld (photo by Dave Richardson); d) culm and stalk (photo by David Hoare); e) rootstock and tubers (photo by Dan Spaulding). All 

photographs are licensed for use under http://creativecommons.org/licenses/by-sa/4.0/. 

 

Figure 6 Cyperus rotundus L.: a) Distribution in southern Africa (https://www.gbif.org/species/2714818); b) inflorescence (photo by Yael Orgad); c) 

growing in the veld (photo by David Hoare); d) inflorescence closeup; e) rootstock (photos by Bry Celee). All photographs are licensed for use 

under http://creativecommons.org/licenses/by-sa/4.0/. 

https://www.gbif.org/species/2716226
https://www.gbif.org/species/2716226
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gbif.org/species/2714818
https://www.gbif.org/species/2714818
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


  

Kyllinga alba Nees (Figure 8) is a small robust, densely 

tufted, grass-like cyperoid herb with a C4 pathway  

needing only a moderate amount of water. The USO is eaten 

by children in Kenya (Ichikawa 1987; Mutie et al. 2020), and 

baboons from the Laikipia Plateau, Kenya, also eat the 

flower/seed heads (Barton et al. 1993). In southern Africa, the 

roots are traditionally used as   

 

Figure 7 Cyperus sexangularis Nees: a) Distribution in southern Africa (https://www.gbif.org/species/2716106); b) inflorescence (photo by Kate 

Braun); c) growing in the veld (photo by Vuyiswa Sithatu); d) young shoots (photo by David Hoare); e) stem crosssection (photo by Wynand Uys); 

f) inflorescence closeup (photo by David Hoare). All photographs are licensed for use under http:// 

 

Figure 8 Kyllinga alba Nees: a) Distribution in southern Africa (https://www.gbif.org/species/2718781); b) growing in the veld; d) inflorescence; e) 

rootstock. All photographs by Christfried Naumann from http://en.wikipedia.org/wiki/Public_domain. 

   

https://www.gbif.org/species/2716106
https://www.gbif.org/species/2716106
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gbif.org/species/2718781
https://www.gbif.org/species/2718781
http://en.wikipedia.org/wiki/Public_domain
http://en.wikipedia.org/wiki/Public_domain
http://creativecommons.org/licenses/by-sa/4.0/


  

stoppers in ostrich eggshell bottles, possibly because of 

antibacterial properties that keep the water fresh, and the 

pleasant fresh taste the roots give to the water (van Wyk & 

Gericke 2000).  

CYPERUS ESCULENTUS  

(PATRYSUINTJIES) IN TERMS OF  

ENERGY, PROTEIN AND FAT  

Of the six foodplants above, the USOs of Cyperus esculentus, 

elsewhere also known as ‘tiger nuts’, stand out as a 

contemporary ‘superfood’ (e.g., Vega-Morales et al. 2019). The 

plant may well have been available during the Plio-Pleistocene 

in sub-Saharan Africa considering that its bio-geographical 

history indicates a dispersal from Africa with the most recent 

common ancestor between C. esculentus taxa dating to 5.1 Ma 

(de Castro et al. 2015). In South Africa and Namibia one of the 

Afrikaans names for this plant is patrysuintjie. Uintjie 

(pronounced /ˈeˈki/ or /ˈœˈki/) is a general term used by the 

local populations (including the Khoe-San) for a number of 

Cyperaceae and Iridaceae species known for their edible USOs. 

Thunberg (1794–5) recorded the vernacular as deriving from 

the Dutch word for onion (ajuin), used in the 1600s by Van der 

Stel for corms (in this instance Moraea edulis [now M. aristata]) 

eaten by the indigenous Khoe people living at the Cape of Good 

Hope when the Europeans first arrived there (Smith 1966). 

Most of the uintjie species subsequently received descriptive 

names based on a special characteristic. In the case of C. 

esculentus, patrys = partridge, refers to the fact that guineafowl 

and other indigenous partridge species enthusiastically scratch 

for the tubers whenever they can find them (e.g., Roberts & 

Roberts 2017). The keen ethological eye of hunter-gatherer 

women and children would undoubtedly find patches of C. 

esculentus on their foraging forays by observing bird behaviour 

– much in the same way they find honey (e.g., Guy 1972; Kahn 

& Weiss 2017). For the southern African context, patrysuintjie 

is therefore a more accurate and appropriate vernacular than 

‘tiger nut’, seeing that there were/are no wild tigers in sub-

Saharan Africa, the USOs have nothing to do with nuts 

botanically, and it acknowledges their status as indigenous, 

pre-colonial Khoe-San food source.  

Today, C. esculentus is an important crop of the Spanish 

Mediterranean where the tubers are used to produce a 

refreshing milk-like beverage called horchata de chufa 

(Mosquera et al., 1996). Spain and other European countries 

also import tons of cultivated C. esculentus tubers from African 

countries such as Nigeria, Niger, Mali, Senegal, Ghana, the 

Ivory Coast and Togo. In these countries they are mostly used 

as an uncooked vegetable or side dish (e.g., Omode et al. 1995), 

but in Nigeria similar to Spain, it is used to make kunnu, a non-

alcoholic beverage sometimes also prepared from cereals such 

as millet and sorghum. Here, Belewu and Abodunrin (2008) 

showed that whilst the energy content of kunnu prepared from 

C. esculentus tubers, millet and sorghum were similar, the 

sedge-corm drink had the highest percentages of fat and 

protein, and that it was the most palatable.  

The plant is also cultivated in American countries such as 

Chile, Brazil and the USA in Louisiana, Missouri, New Mexico 

and Florida where it is mainly used to supplement animal feed 

(Sánchez-Zapata et al. 2012). Although C. esculentus is still 

considered a weed in many countries (e.g., De Vries 1991; 

Adejuyitan 2011; Ukwuru et al. 2011; Lauwers et al. 2020), it is 

now widely recognised as a ‘health food’. For example, the 

tubers are considered to help prevent heart disease, diabetes 

and thrombosis, activate blood circulation, and assist in the 

treatment of gastrointestinal diseases and/or reducing the risk 

of colon cancer (Borges et al. 2008; Adejuyitan et al. 2009; 

Chukwuma et al. 2010; Sánchez-Zapata et al. 2012; Kiyashko et 

al. 2020). Below, I explore the nutritional values of C. 

esculentus tubers sourced from various markets in Africa 

mostly provided by subsistence farming in terms of energy, 

protein, and fat/lipids to assess their potential as C4-USO food 

source within the dietary ecology of the Cradle of Humankind 

(also see Supplementary file 1). 

As hominin brain sizes increased, they also progressively 

required foods with a high energy, protein and fat/lipid yield 

(e.g., Aiello & Wheeler 1995; Milton 1999; Ben-Dor et al. 2011). 

The current daily requirement for energy in adult humans is 

~8400 kj, for protein 46–56 g, and for fat 44–77 g (e.g., National 

Health Services, UK). In terms of energy (kj/100 g), all the C. 

esculentus samples are in the top 50% of a sample of 71 

different USO foods (Figure 9a). They group favourably with 

peanuts (Arachis hypogaea) as the top energy-USO crop (e.g., 

Eshun et al. 2013; Mustapha et al. 2015), Yams (Dioscorea spp.) 

(e.g., Lewu et al. 2010; Adepoju et al. 2018; Ezeabara & Anona 

2018; Erena & Alemu 2019), Vigna frutescens a tuber eaten by 

Hadza foragers in Tanzania (e.g., Schoeninger et al. 2001), 

African potatoes (Hypoxis spp.) (e.g., Wadley 1978; Otunola & 

Afolayan 2019), and C. rotundus or purple nutsedge (e.g., 

Wehmeyer 1986; Ibrahim et al. 2013; Eltilib et al. 2016; Ikon et 

al. 2020). The five African C. papyrus samples, on the other 

hand, are all in the bottom 50% together with potatoes 

(Solanum tuberosum) (e.g., Wehmeyer 1986; Jimenez et al. 

2015), Cladium mariscus (e.g., Sievers 2015), and the Cradle-

sedge USOs tested by Henry et al. (2019). 

Protein values for both C. esculentus and C. Papyrus are 

variable, with that of the 15 C. esculentus samples ranging 

between 3.3 and 9.7 g/100 g (mean = 5.2, SD = 1.9, median = 

5), which is generally higher compared to that of five available 

C. papyrus samples ranging from 0.5–7 g/100 g (mean = 3.7, SD 

= 2.9, median = 4.1) (Figure 9b). C. esculentus USOs (together 

with peanuts) stand out, however, in terms of fat/lipid content 

amongst  



  

all the other samples, with C. rotundus the only another Cradle 

sedge with two samples amongst the top 40% out of the 54 

samples in total (Figure 9c). By contrast, all the C. papyrus 

samples fall within the bottom 40% in terms of their fat/lipid 

nutritional values. Collectively, these data demonstrate that C. 

esculentus or patrysuintjies  

are consistently more nutritious – and in terms of both energy 

and fat/lipid content exponentially so – compared to C. 

papyrus and domesticated potatoes that up to now served as 

standard for ‘high nutrient quality’ amongst the potential 

hominin sedge-USO foods (e.g., Wrangham et al. 2009 

following Van der Merwe et al. 2008).  

In terms of bioavailability (the fraction of an ingested 

nutrient that reaches systemic circulation), Codina-Torella et 

al. (2015) showed that C. esculentus tubers have low tannin 

and phytate levels. Tannins are known to interfere with the 

 

Figure 9 Energy, protein and fat/lipid values of Cyperus esculentus (golden bars) compared to Cyperus papyrus (grey bars) and other  
USO foods from Africa and potatoes from Argentina (green bars). For the energy values I use kilojoules, converting values that were originally 

published in Kilocalories or carbohydrates into the approximate kilojoules using the relevant Google calculator. Key to abbreviations: R = raw, D = 

dried. See Supplementary file 1 for raw data. 



  

bioavailability of some nutrients in the intestinal track, 

decreasing their absorption, and low levels may indicate good 

digestibility, especially for proteins (e.g., Glew et al. 2006; 

Okoye & Ene 2018). Phytates can form insoluble complexes 

with minerals such as calcium, iron, potassium, magnesium, 

zinc and manganese, causing reduction in bioavailability and 

absorption of such minerals in the body. Its relative low levels 

in C. esculentus tubers limit such reduction so that these 

minerals can be absorbed (Codina-Torella et al. 2015). C. 

esculentus oil contains high proportions of oleic acid, which is 

considered high-quality oil in terms of digestibility or 

bioavailability (Guo et al. 2021). Guo et al. (2021) also found 

that the content of unsaturated fatty acids is considerably 

higher than saturated fatty acids so that C. esculentus oil is an 

edible oil with an excellent fatty acid composition.  

C. esculentus tubers produce 47.9% of its weight as 

digestible carbohydrates (Addy & Eteshola 1984), and a low-

digestible viscous starch (Li et al. 2017). According to Li et al. 

(2017) such starches are gaining interest because they are 

related to the improved metabolism of lipids and cholesterol, 

and pre-biotic effects on the microbiome of the colon where 

they ferment and become more digestible. They also show 

benefits regarding low glycaemic response, causing satiety and 

improved physical performance and glucose tolerance, as well 

as reduced blood lipid level and insulin resistance (Li et al. 

2017; also see Grabitske & Slavin 2008). The total digestible 

nutrients in four C. esculentus tuber verities from Turkey 

ranged from 71.59% to 73.78% (Ayaşan et al. 2020). 

Bioavailability levels will vary contextually, but the existing 

information generally shows good systemic availability for the 

nutrients contained in C. esculentus tubers. Relatively little is 

known about the bioaccessibility (the amount of an ingested 

nutrient that is available for absorption in the gut after 

digestion) of C. esculentus tubers, and further in vivo studies 

are needed to evaluate this aspect (e.g., Moral-Anter et al. 

2021). 

In terms of biomass, the tuber dispersal of C. esculentus is 

profuse. In a single year’s growth, one ‘mother tuber’ can 

produce more than 1900 shoots and up to ~6900 tubers in an 

area of 3.2 m2 (Tumbleson et al. 1961; Jordan-Molero & Stoller 

1978; Lauwers et al. 2020). Depending on circumstance, the 

tubers may lie dormant for several years at a depth of up to 20 

cm (Stoller et al. 1973; Lauwers et al. 2020), so that even during 

times of extreme drought or after destructive veldfires, when 

the aerial parts of the plants are dry or ruined, the corms are 

protected and remain a reliable food source. The fact that the 

nutritious USOs grow from thin roots, some distance from the 

culm (Figure 10a), may be one of the reasons why this sedge 

foodplant has not yet been collected or reported on from the 

Cradle of Humankind or other areas in southern Africa as 

possible hominin dietary source. When collectors are 

unfamiliar with the ethno-historical use of foodplants in the 

region and their growth habits, it is easy to miss patrysuintjies 

because they often break off from the brittle roots when pulled 

from the soil or when the collecting strategy is too shallow – 

resulting in a culm with roots but no tubers (Figure 10b). 

Sometimes the USOs are only pea-sized, making them even 

more difficult to find and collect for study (Figure 10c).  

CONCLUDING DISCUSSION 

At the beginning of this contribution, I identified four questions 

arising from previous literature that may benefit from an 

inventory of the sedge species currently growing in the Cradle 

of Humankind, and from an understanding of the human use of 

indigenous foodplants in the region. The first question pertains 

to the sedge population and its proportion of plants with C4 

 

Figure 10 Cyperus esculentus USOs: a) Corms growing from thin, brittle roots several centimetres below the culm (photo by Dan Spaulding). b) 

Culm and rootstock collected without corms (photo by David Hoare). c) Pea-sized corms that can be easily missed during collection (photo by 

J.M. Neiva). All photographs are licensed for use under http://creativecommons.org/licenses/by-sa/4.0/. 

http://creativecommons.org/licenses/by-sa/4.0/


  

photosynthetic pathways. Here I demonstrated that the Cradle 

currently has a recorded sedge population of 29 species, which 

is considerably more, and more diverse, than the six sedge 

groups recently collected and studied by Henry et al. (2019). At 

least half of them have C4 photosynthetic pathways. These 

results from the high-altitude Grassland-Savanna ecotone of 

the Cradle landscape itself contrasts notably with the 28% of C4 

sedges reported by Sponheimer et al. (2005) for the 

comparative low-altitude Savanna Biome of the Kruger 

National Park, South Africa. Using the inventory provided here, 

future studies can now focus on the actual sedge population 

growing in the Cradle of Humankind for the reconstruction of 

the local hominin dietary ecology, instead of relying on proxies 

from locations with completely different vegetation units – 

such as the Kruger National Park (see Mucina & Rutherford, 

2011 for differences in vegetation units between the Cradle of 

Humankind and the Kruger National Park) – or small-scale plot 

sampling within the Cradle that cannot accurately or fully 

assess the vegetation richness of the landscape. Importantly, 

the notion that the Sterkfontein Valley may have contained a 

preponderance of C3 sedges (much more so than their C4 

counterparts) can be rejected as a working hypothesis for the 

dietary ecology of the Cradle’s hominins. 

The second question asked whether all the sedges growing 

in the Cradle necessarily require aquatic habitats or extensive 

wetlands to thrive. In this context, I established that more than 

half of the Cradle’s Cyperaceae taxa are mesophytes that thrive 

without needing permanent, extensive wetland ecologies. 

Instead, most species are mesophytes, and therefore well 

adapted to the Cradle’s ecology with its seasonal fluctuation in 

precipitation and for thriving in drier substrates. The current 

Cradle sedge data therefore reveal that a shallow-water 

ecology is not a requirement for all African sedge regimes – 

consequently drawing into question the inference that access 

to shallow-water aquatic habitats was ‘a necessary condition’ 

for all hominin adaptation to the Savanna and/or Grassland 

Biomes of sub-Saharan Africa as suggested by Wrangham et al. 

(2009).  

Thirdly, I asked which of the sedges growing in the Cradle 

are known human and/or primate foodplants, and whether 

these have C3 or C4 pathways. I identified six of the Cradle’s 

Cyperaceae species as known baboon and/or human 

foodplants used throughout sub-Saharan Africa. Five of them 

have C4 pathways. This outcome contradicts Sponheimer’s 

(2013) suggestion that, especially in terms of the foodplants 

available to hominins in the Sterkfontein Valley, the ‘vast 

majority’ was C3 sedges. What is more, only two of the USO-

sedge foodplants are ‘wetland’ plants, the rest being well-

adapted to the drier, summerrain conditions of the Cradle 

landscape. Thus, by focussing on the sedges actually growing in 

the Cradle, and through insight provided by the ethno-

historical records of the use of foodplants in southern Africa, it 

becomes clear that local non-aquatic sedges may have directly 

contributed to the C4 signatures observed in the diets of the 

South African hominins – even if other components added to 

such a signature (e.g., Peters & Vogel 2005).  

Lastly, I wanted to explore whether there is a Cradle C4-

sedge foodplant that stands out in terms of nutritional value in 

the way that it was claimed for C. papyrus in eastern Africa by 

van der Merwe et al. (2008) and Wrangham et al. (2009). By 

comparing the nutritional values in terms of energy, protein 

and fat/ lipids, I could highlight the local patrysuintjies or the 

USOs of Cyperus esculentus as a C4-sedge foodplant that 

exceeds the nutrition potentially provided by C. papyrus to 

early hominins. In fact, only a few hands full of these sweet-

tasting raw corms easily fulfils the current daily requirement 

for energy, protein and fat/lipids in adult humans – something 

that C. papyrus cannot do.  

Unlike C. papyrus, patrysuintjies do not grow in wetland or 

aquatic ecologies, instead they thrive amongst the grasses on 

drier ground, well-adapted to withstand the cyclic drought and 

fire regimes of the high-altitude Cradle ecotone landscape.  

Whilst C. esculentus is a likely candidate for a staple food in 

the Cradle, it is equally important not to ignore the greater 

nutritional landscape (e.g., Henry et al. 2019). The full 

inventory (n = 223) of the Cradle’s foodplant taxa (Lombard & 

van Aardt 2022), highlights the most species-rich foodplant 

families such as the Poaceae, Apocynaceae, and Fabaceae. It 

shows that the Cradle’s geophytic foodplants are dominated by 

the Apocynaceae, which is in contrast with the Cape Fynbos 

region where the high geophyte frequency is largely ascribed 

to the Iridaceae (Welcome & Van Wyk, 2019). The Cradle’s 

foodplant population also contains a good proportion of non-

geophytic plants (i.e., plants without specifically modified root 

systems such as tubers, corms, rhizomes, or bulbs) with growth 

forms that range from perennial trees to annual herbs whose 

USOs or roots are known to be eaten (for species and 

discussion see Lombard & van Aardt 2022). Most of these 

plants require further investigation in terms of their potential 

nutritional potential – as well as their (including C. esculentus 

tubers) mechanical properties to assess how they align with 

Cradle-hominin tooth microwear (e.g., Scott et al. 2005; Grine 

et al. 2012; Ungar et al. 2008; Casteren et al. 2020). 

However, with their evolutionary time depth of more than 

5 Ma, and their extraordinary ability to generate a prolific and 

nutritious geophytic biomass year-round, C. esculentus tubers 

may well have provided a dependable superfood to the 

Cradle’s hominins, as they still do to many Africans today, as 

well as to the world’s rapidly growing health-food industry. I 

therefore suggest that future studies may benefit from 

exploring the phytolith characterisation of C. esculentus, the 

potentially tool-assisted foraging strategies that would have 

enabled hominins to access the corms, as well as testing the 

outcomes presented here with further dental microwear and 

isotopic research. My own exploration will continue into fine-

grained macro- and micro-nutrient analyses of C. esculentus 

and the potential adaptive benefits access to such plants and 

their nutrients may have provided the hominins who roamed 

the Cradle of Humankind landscape.  
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