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Abstract Although evidence c-means clustering (ECM) based on evidence theory overcomes the limitations of fuzzy theory

to some extent and improves the capability of fuzzy c-means clustering (FCM) to express and process the uncertainty of

information, the ECM does not consider the spatial information of pixels, which makes it to be unable to effectively deal

with noise pixels. Applying ECM directly to image segmentation cannot obtain satisfactory results. This paper proposes a

robust evidence c-means clustering combining spatial information for image segmentation algorithm. Firstly, an adaptive

noise distance is constructed by using the local information of pixels to improve the ability to detect noise points. Secondly,

the pixel’s original, local and non-local information are introduced into the objective function through adaptive weights to

enhance the robustness to noise. Then, the entropy of pixel membership degree is used to design an adaptive parameter

to solve the problem of distance parameter selection in credal c-means clustering (CCM). Finally, the Dempster’s rule of

combination was improved by introducing spatial neighborhood information, which is used to assign the pixels belonging

to the meta-cluster and the noise cluster into the singleton cluster. Experiments on synthetic images, real images and remote

sensing SAR images demonstrate that the proposed algorithm not only suppress noise effectively, but also retain the details

of the image. Both the segmentation visual effect and evaluation indexes indicate its effectiveness in image segmentation.

Keywords Image segmentation · Evidence c-means clustering · Fuzzy c-means clustering · Noise distance · Spatial

information

1 Introduction

As an important pre-processing step of image analysis, im-

age understanding and image description, image segmenta-

tion aims to assign pixels to several categories enabling pix-

els belonging to the same category have strong correlation.

Heretofore, many image segmentation methods have been

proposed to address the image segmentation problems in dif-

ferent situations [1]. The commonly used image segmenta-
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tion methods include threshold-based algorithm, edge-based

algorithm, region-based algorithm, graph-based algorithm

and clustering-based algorithm [2-6]. Clustering analysis as

an unsupervised learning method is an important tool in data

mining [7]. Presently various clustering algorithms have been

proposed. Since there is no need to label the image pixels,

clustering algorithm are commonly used in image segmen-

tation [8]. As a clustering algorithm based on fuzzy theory,

FCM is widely applied in image segmentation for its sim-

plicity. However, fuzzy theory has certain limitations [9],

thus limiting the capability of FCM to describe uncertainty

of information, resulting in its inability to effectively han-

dle boundary pixels. Simultaneously, the FCM algorithm is

more sensitive to noise or outliers since the neighborhood

information of pixels is not considered.

In view of the above disadvantages of FCM, Dave [10]

proposed a noise clustering (NC), which introduces the con-

cept of noise cluster on the basis of FCM. The outliers are

assigned to the noise cluster by noise distance, which re-
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duces the influence of outliers on the clustering result to

some extent. Ahmed et al [11] proposed a fuzzy c-means

clustering with spatial information constraint (FCM S), which

enhances the robustness of FCM. Due to the high time cost

of computing spatial information, Chen and Zhang [12] pro-

posed FCM S1 and FCM S2, which improves the efficiency

of FCM S by replacing the spatial information with the neigh-

borhood mean or median value. For noisy images, the ef-

fectiveness of local information may decrease with the in-

crease of noise intensity. Thus, Zhao et al [13] proposed a

fuzzy c-means clustering with non-local spatial information

(FCM NLS), which further improves the anti-noise perfor-

mance of the algorithm. In the above algorithms, the param-

eter that controls the local or non-local spatial information

constraint needs to be manually selected. To solve the pa-

rameter selection problem, Krinidis et al [14] proposed a ro-

bust fuzzy local information c-means clustering (FLICM).

The FLICM algorithm introduces the local spatial informa-

tion and local gray information of pixels into the objective

function in the form of a local fuzzy factor, which preserves

rich detail information while resisting noise. Lei et al [15]

proposed a fast and robust fuzzy c-means clustering (FR-

FCM) based on morphological reconstruction and member-

ship filtering. The FRFCM algorithm is faster and more ro-

bust than FCM, but it cannot effectively handle weak edge

regions contaminated by noise. Wang et al [16] proposed a

robust fuzzy c-means clustering with adaptive spatial and

intensity constraint and membership linking (FCM SICM).

The FCM SICM algorithm first acquires the local spatial

and intensity information by fast bilateral filtering before

clustering. Then, the spatial intensity information is intro-

duced into the objective function through adaptive weight.

Finally, the number of iterations is reduced through mem-

bership linking. In order to further improve the robustness

of FLICM, Zhang et al [17] introduced non-local informa-

tion into FLICM and proposed a FLICM with local and non-

local information (FLICMLNLI). The FLICMLNLI algo-

rithm utilizes the two distances from a pixel and its neigh-

borhood pixels to the cluster center. However, assigning the

same weight to these two different distances may incorrectly

magnify the importance of the neighborhood information.

Therefore, Song et al [18] proposed a self-learning weighted

fuzzy local information clustering integrating local and non-

local information. This algorithm calculates distance weights

by self-learning and adaptively balances the anti-noise abil-

ity and detail retention ability.

In order to extend the existing hard, fuzzy and possibilis-

tic partition and improve the processing ability of FCM for

uncertain and imprecise data. Masson et al [19] integrated

and improved FCM and NC, proposed an evidence c-means

clustering (ECM) based on the concept of credal partition

under the theoretical framework of belief functions. For ob-

jects that cannot be precisely assigned, ECM assigns them to

meta-clusters united by several singleton clusters, which re-

duces the risk of misclassification. Meanwhile, the inclusion

of the noise cluster makes the ECM algorithm overcome the

influence of outliers to a certain extent. In ECM, when the

center of a meta-cluster is close to the center of a single-

ton cluster, it may produce unreasonable clustering results.

Therefore, Liu et al [20] proposed a belief c-means cluster-

ing (BCM). In BCM, the mass of belief on a meta-cluster

is calculated according to the distance between the object

and the centers of singleton clusters (contained in the meta-

cluster) and the distance between the centers of these sin-

gleton clusters, so it is not necessary to calculate the center

of the meta-cluster. Due to the complexity of using and im-

plementing BCM, Liu et al [21] proposed a credal c-means

clustering (CCM) to overcome the limitations of ECM. In

CCM, an object has a higher probability of being assigned

to the meta-cluster if it is close to both a meta-cluster and

singleton clusters contained in the meta-cluster. To address

the problem that the ECM needs to determine the number of

clusters in advance, Su et al [22] proposed an evolutionary

version of evidential c-means clustering (E2CM). E2CM is

based on a variable string length artificial bee colony (VABC)

algorithm, which can optimize the number of clusters and

the center position at the same time. Although credal parti-

tion has outstanding advantage in depicting uncertainty and

imprecision, it is time-consuming due to a lot of redundant

computations. To overcome the drawbacks of high time com-

plexity and long running time of ECM and CCM, Zhang

et al [23] proposed a dynamic evidential clustering (DEC),

which includes two steps: preliminary adaptive credal par-

tition and partial credal redistribution. In the preliminary

adaptive credal partition, by minimizing an objective func-

tion similar to FCM, the mass of beliefs of each object be-

longing to the single cluster and the noise cluster is obtained.

Then a given rule is used to adaptively assign all objects

as outliers, precise points or imprecise points. For impre-

cise points, the mass of beliefs on each cluster is reassigned

by partial credal redistribution with the corresponding dy-

namic frame of discernment. In the field of image segmen-

tation, Zhu [24] proposed an algorithm for image segmenta-

tion using automatic determined mass functions. This algo-

rithm uses the membership degrees of the center pixel and

neighborhood pixels to determine the mass function of the

center pixel, then uses Dempster’s rule of combination and

decision to achieve image segmentation. Wen et al [25] pro-

posed an improved evidential fuzzy c-means algorithm for

MRI image segmentation. This algorithm first fuses the in-

put image averagely to reduce the uncertainty and conflict-

ing information in the image. Then one mass function is gen-

erated using the membership degree of the center pixel and

the other mass function is generated using the membership

degrees and spatial information of neighborhood pixels. Fi-

nally, evidence theory is used to implement image segmenta-
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tion and sensor data fusion. Makni et al [26] introduced local

information into ECM and took the spatial distance as the

weight to combine the mass functions of the center pixel and

neighborhood pixels by using Dempster’s rule of combina-

tion, and applied this algorithm to prostate multi-parametric

MRI image segmentation. Wang et al [27] proposed an adap-

tive kernelized evidential clustering (AKEC), which uses

adaptive kernel distance instead of Euclidean distance and

introduces local information into the objective function to

achieve automatic 3D tumor segmentation in FDG–PET im-

ages.

In conclusion, ECM improves the capability of tradi-

tional FCM to deal with boundary points and outliers. How-

ever, ECM does not introduce any spatial information, re-

sulting in it cannot segment noisy images effectively. To fur-

ther improve the robustness of ECM, this paper proposes a

robust evidence c-means clustering combining spatial infor-

mation for image segmentation algorithm. The main contri-

butions of the proposed algorithm are summarized as fol-

lows:

(1) In order to avoid the influence of the noise distance

proposed for general dataset on the performance of the im-

age segmentation algorithm, an adaptive noise distance is

constructed by using the probability that the pixel is a noise

point. This proposed adaptive noise distance is used to as-

sign the detected noise points to the noise cluster, thus re-

ducing the impact of noise points on image segmentation.

(2) To effectively deal with high intensity noise in the

local window, local and non-local information of pixels are

introduced in the objective function of ECM. A parameter

for evaluating the reliability of the local window is defined

and the weights of the original ECM term and the spatial

information term are adaptively determined by combining

the noise probability.

(3) The distance metric between pixel and the meta-cluster

in CCM is improved. The entropy of pixel membership de-

gree is used to define an adaptive parameter, which solves

the problem that the distance parameter in CCM need to be

selected manually.

(4) To obtain the final segmentation image, the Demp-

ster’s rule of combination was improved by introducing spa-

tial neighborhood information, which is used to assign the

pixels belonging to the meta-cluster and the noise cluster

into the singleton cluster.

The rest of this paper is organized as follows. Section 2

introduces the work related to the proposed algorithm. Sec-

tion 3 describes the proposed algorithm in detail. Section 4

is the comparison experiments and results analysis. Section

5 draws the conclusion.

2 Related work

2.1 Belief functions

Dempster-Shafer evidence theory, as a generalization of prob-

ability theory, is a mathematical method to deal with uncer-

tain reasoning problems [28].

Let Ω = {ω1, · · ·,ωc} be a set of clusters to which object

x belongs and the finite elements in Ω are mutually exclu-

sive, then Ω is called the frame of discernment of object x.

The set consists of all subsets of Ω is called the power-set

of Ω , denoted by 2Ω .

The basic belief assignment (BBA) is denoted as m(·),
also known as the mass of belief, satisfying ∑

A⊆Ω
m(A) = 1,

0 ≤ m(A) ≤ 1. The BBA maps the membership degree of

object x belonging to a subset of Ω to [0,1]. Let the dataset

X = {x1, · · ·,xn}, the BBA of xi is denoted as mi, then M =
{m1, · · ·,mn} is defined as a credal partition of dataset X .

The BBA can be transformed into the pignistic proba-

bility by pignistic transformation [29], then the object can

be assigned to a specific singleton cluster according to the

pignistic probability. The pignistic probability is calculated

as:

BetP(ω) = ∑
A⊆Ω ,A ̸=∅,ω∈A

1

|A|
m(A)

1−m(∅)
(1)

where |A| denotes the cardinality of the non-empty subset A.

The fuzzy partition of data set X is obtained by transforming

m(·) to BetP(·) for each object, where BetPi (ω j) represents

the membership degree of xi belonging to ω j.

Let m1 and m2 represent two independent BPAs on the

frame of discernment Ω . The combined BBA is obtained by

Dempster’s rule of combination [28]:

(m1 ⊕m2)(A) =

{

∑
B∩C=A

m1(B)m2(C)

1−K
, A ̸= /0,A,B,C ⊆ Ω

0, A = /0
(2)

where K = ∑
B∩C= /0

m1 (B)m2 (C) denotes the degree of con-

flict between m1 and m2.

2.2 Evidence c-means clustering algorithm

ECM is a clustering algorithm based on the concept of credal

partition. In ECM, the object can be assigned not only to the

noise cluster or singleton cluster, but also to the meta-cluster

united by several singleton clusters. Extending the existing c

clusters into 2c clusters is a significant feature of ECM. This

additional flexibility is beneficial to describe the uncertainty

of the dataset more accurately and improve the robustness to

outliers.
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Let X = {x1, · · ·,xn} be the objects to be assigned and

Ω = {ω1, · · ·,ωc} be the frame of discernment of X . The

objective function is defined as follows:

JECM =
n

∑
i=1

∑
{ j|A j⊆Ω ,A j ̸= /0}

cα
j m

β
i jd

2
i j +

n

∑
i=1

δ 2m
β
i /0 (3)

where c j =
∣

∣A j

∣

∣ denotes the cardinality of the non-empty

subset A j. The weighting coefficient cα
j aims at penalizing

the subset A j with high cardinality, α is used to control the

degree of penalization. mi j = mi (A j) and mi∅ = mi (∅) rep-

resent the mass of belief of object xi belonging to cluster

A j and the noise cluster respectively. β is used to control the

fuzziness of the partition. δ denotes the distance between the

object and the noise cluster, which is calculated as follows:

δ =

√

√

√

√

λ

c ·n

(

n

∑
i=1

c

∑
j=1

dis2
i j

)

(4)

where disi j denotes the distance between object xi and the

j th cluster center obtained by FCM. λ is a parameter that

needs to be manually selected.

In Eq. (3), di j denotes the distance between object xi and

cluster A j, which is calculated as follows:

di j =
∥

∥xi − v j

∥

∥ (5)

v j =
1

c j

c

∑
k=1

sk jvk (6)

sk j =

{

1, ωk ∈ A j

0, ωk /∈ A j
(7)

where vk denotes the center of singleton cluster ωk and v j

denotes the barycenter of meta-cluster A j.

Utilizing the Lagrange multiplier method, the update for-

mulas of mi j and mi /0 can be obtained by:

mi j =
c
−α/(β−1)
j d

−2/(β−1)
i j

∑
Ak ̸= /0

ck
−α/(β−1)dik

−2/(β−1)+δ−2/(β−1)
(8)

mi∅ = 1− ∑
A j ̸=∅

mi j (9)

The cluster center matrix V is the solution of the follow-

ing linear equations:

HV = B (10)

where H is a matrix of size c×c, V is a matrix of size c× p,

B is a matrix of size c× p. c is the number of clusters, p is

the dimension of objects and cluster centers.

The elements in matrix H are calculated as follows:

Hlk =
n

∑
i=1

∑
A j ̸= /0

cα−2
j m

β
i jsl jsk j =

n

∑
i=1

∑
{ωl ,ωk}⊆A j

cα−2
j m

β
i j

l,k = 1, · · ·,c
(11)

The elements in matrix B are calculated as follows:

Blq =
n

∑
i=1

xiq ∑
A j ̸= /0

cα−1
j m

β
i jsl j =

n

∑
i=1

xiq ∑
ωl∈A j

cα−1
j m

β
i j

l = 1, · · ·,c,q = 1, · · ·p
(12)

3 The proposed algorithm

Applying ECM directly to image segmentation has the fol-

lowing problems: First, the noise cluster in ECM directly

refers to the definition in NC [10]. For noisy images, the

selection of parameter λ in the original definition of noise

distance will affect the capability of the algorithm to detect

noise points. Second, ECM is proposed for general dataset

without considering the spatial information of pixels, which

makes it impossible to effectively segment noisy images.

Third, it lacks a strategy for assigning pixels belonging to

the meta-cluster and the noise cluster to a specific single-

ton cluster. Aiming at the above problems of ECM, this pa-

per proposes a robust evidence c-means clustering combin-

ing spatial information for image segmentation algorithm.

The proposed algorithm mainly includes three steps: deriv-

ing a credal partition, specifying meta-clusters, recovering

the noise cluster. The framework is shown in Fig. 1.

First, an adaptive noise distance is constructed to im-

prove the algorithm’s capability to detect noise points. Then,

the spatial information of pixels is adaptively introduced to

calculate the distance between the pixel and the cluster cen-

ter, while a distance parameter in CCM is determined adap-

tively. After iteration termination, the credal partition is de-

rived. Finally, through Dempster’s rule of combination intro-

ducing spatial neighborhood information, the meta-clusters

are first specified and then the noise cluster is recovered to

obtain the segmentation image.

3.1 Deriving a credal partition

Deriving a credal partition is the first step of the proposed al-

gorithm. The main purpose of this step is to obtain the mass

of belief on each cluster for any pixel and then determine

the classification of pixels based on the mass of belief. It is

primarily necessary to determine the kinds of cluster in the

proposed algorithm.

In an image, it is difficult to determine the classifica-

tion of pixels located in the boundary region. These pixels

may be assigned similar membership degrees to singleton

clusters that are close to them, i.e., the gray values of these

pixels are closer to the barycenter of a meta-cluster com-

posed of two close singleton clusters. From the perspective

of credal partition, it is more reasonable to assign these pix-

els with high uncertainty to a meta-cluster. Since the bound-

ary region of an image is often between two singleton clus-

ters, there is no need to consider a meta-cluster composed of



5

Dempster’s rule of 

combination introducing 

spatial neighborhood 

information for meta-

clusters

deriving a credal partition specifying meta-clusters

recovering the noise cluster

noise image

segmentation image

 meta-clusters

singleton clusters

the noise cluster

singleton clusters

using the 
maximum 

mass of belief 
principle

Dempster’s rule of 

combination introducing 

spatial neighborhood 

information for the noise 

cluster

Fig. 1 The framework of the proposed algorithm
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Fig. 2 Composition of meta-clusters

more than two singleton clusters. Based on the above anal-

ysis, three kinds of clusters are determined, which are the

noise cluster, singleton clusters and meta-clusters. As shown

in Fig. 2, the meta-cluster is composed of two adjacent sin-

gleton clusters. After obtaining the centers V = {v1, · · ·,vc}
of c singleton clusters, the barycenter of c−1 meta-clusters

are calculated by Eq. (6) and Eq. (7).

When determining the classification of pixels, construct-

ing reasonable distance measurement formulas is conducive

to improving the accuracy of discrimination. Therefore, af-

ter determining the kinds of clusters, defining the distance

measurement formulas between the pixel and the three kinds

of clusters according to the characteristics of the different

clusters is the key problem to be solved in this section. Fi-

nally, the defined distance measurement formulas are substi-

tuted into the objective function and the credal partition of

pixels is obtained by minimizing the objective function. The

specific steps are as follows.

3.1.1 Distance metric between the pixel and the noise

cluster

The distance between pixels and the noise cluster is called

the noise distance, which affects the detection of noise pix-

els. In an image, the pixels that are heavily contaminated

by noise need to be assigned to the noise cluster using a

smaller noise distance. On the contrary, they should be far

away from the noise cluster. In ECM, the noise distance ob-

tained by Eq. (4) cannot be calculated adaptively according

to the degree of noise contamination of pixels. Also, for dif-

ferent images, it is necessary to select the best value of pa-

rameter λ by experiment. If the value of λ is too large, the

noise pixels will not be assigned to the noise cluster.

In this paper, the degree to which a pixel is affected by

noise is characterized as the probability that the pixel being

a noise point i.e., the higher the probability that a pixel is

a noise pixel, the more seriously the original gray informa-

tion of the pixel is corrupted by noise. Intuitively, the higher

the noise probability, the smaller the noise distance should

be. Therefore, the noise distance δi between pixel xi and the

noise cluster can be defined as:

δi =
1− pi /0

pi /0 + eps
dmin

i (13)

where eps is a small positive number to avoid the denomina-

tor equaling to 0, pi /0 denotes the probability that pixel xi is a

noise pixel and dmin
i denotes the minimum distance between

pixel xi and cluster centers.

In Eq. (13), δi is close to positive infinity when pi /0 = 0,

δi equals dmin
i when pi /0 = 0.5 and δi is 0 when pi /0 = 1. It

can be found that the higher the probability that pixel xi is

a noise pixel, the smaller the distance between pixel xi and

the noise cluster.

In order to calculate the noise probability pi /0, the neigh-

borhood pixels of pixel xi need to be fully utilized. First, the

reliable neighborhood pixels that are weakly contaminated

by noise are found. Then, the similarity of the gray value be-

tween center pixel xi and neighborhood pixels is measured.

When the center pixel xi is more similar to neighborhood

pixels with high reliability, the noise probability of pixel xi

is smaller. Therefore, by defining the calculation formula for

evaluating the similarity and reliability of pixel gray value,

pi /0 is defined as follows:

pi /0 = 1−
∑

r∈Ni

wrsir

∑
r∈Ni

sir

(14)

where Ni denotes a local window centered at pixel xi, sir de-

notes the similarity between pixel xi and pixel xr, wr denotes

the reliability of pixel xr.
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Fig. 3 Clustering result of FCM for pixel xi and pixel xr , pixel xi

belongs to cluster ω1 and pixel xr belongs to cluster ω2

Higher reliability means that pixel xr is less corrupted

by noise and the gray value is closer to the original value.

In Eq. (14), if there are many pixels with high reliability in

local window Ni and pixel xi has a similar gray value to these

pixels, then pi /0 is small.

Before defining the reliability of a pixel, the formula for

measuring the similarity between the center pixel xi and the

neighborhood pixel xr is first defined. In general, the closer

the gray value between two pixels, the higher the similarity.

However, in the noisy image, if the centers of two singleton

clusters are not far apart, the gray value of pixels belong-

ing to one of the clusters may be shifted toward the other

cluster due to the presence of noise, resulting in two pixels

belonging to different singleton clusters having high simi-

larity. Therefore, the distance between centers of adjacent

singleton clusters is fully considered when calculating the

similarity sir. Thus, sir is defined as follows:

sir = e
−∥xi−xr∥2

Gi (15)

where the value of Gi depends on the distance between the

singleton cluster centers.

For an image, the clustering result of pixels is obtained

by FCM algorithm in advance. As shown in Fig. 3, let the

two adjacent singleton clusters nearest to xi be ω1 and ω2,

with centers vi
1 and vi

2, respectively, and let li =
∥

∥vi
1 − vi

2

∥

∥.

Then, Gi is calculated as follows:

Gi =

[

1− log2

(

1+

√

li

255

)]

(

li

2

)2

(16)

Combining Fig. 3 with Eq. (16), it can be seen that the

closer the centers of two adjacent singleton clusters are, the

smaller li is and the smaller Gi is, resulting in the similarity

sir decay faster and preventing a higher similarity between

pixel xi belonging to ω1 and pixel xr belonging to ω2. On

the contrary, as li increases, Gi is not too large, preventing

the similarity sir from decaying too slowly.

In order to calculate the reliability of pixels in the lo-

cal window Ni, a reliable gray value needs to be determined

as a reference value. Morphological reconstruction is able

to preserve the contour of the object in the image and re-

move the noise without prior knowledge of the type of noise

[30]. Therefore, in this paper, the noisy image is filtered us-

ing morphological closing reconstruction proposed in [15],

which is defined as follows:

RC (g) = RE
RD

g (E(g))

(

D
(

RD
g (E (g))

))

(17)

where g denotes noisy image, E denotes erosion operation,

RE denotes morphological erosion reconstruction, D denotes

dilation operation and RD denotes morphological dilation re-

construction.

Since morphological reconstruction cannot effectively

handle the weak edge regions of noisy images, pixel xMR
i

in the morphological reconstruction image is corrected by

the following equation:

ηi =

∑
r∈NMR

i

√
ρ1rρ2rx

MR
r

∑
r∈NMR

i

√
ρ1rρ2r

(18)

where ρ1r and ρ2r are weight coefficients. NMR
i denotes the

local window centered at pixel xMR
i in the morphological re-

construction image.

To further enhance the robustness of the proposed algo-

rithm to noise, the neighborhood pixel xMR
r whose gray value

is closer to the original value in the filtered image should

be given a larger value of ρ1r. In general, if the difference

between the gray value of a pixel in the noisy image and

the corresponding pixel in the filtered image is smaller, it

means that this pixel in the noisy image is relatively weakly

contaminated by noise. After morphological reconstruction,

the filtered value of this pixel is closer to the original value.

Therefore, the weight coefficient ρ1r is defined as follows:

ρ1r =

(

1−
√

∥xr − xMR
r ∥

255

)2

(19)

where xr denotes the pixel in local window Ni of the noisy

image and xMR
r denotes the pixel in local window NMR

i of

the filtered image. The spatial coordinates of pixel xMR
i and

pixel xi correspond.

To improve the detail retention ability of the proposed al-

gorithm, the neighborhood pixel xMR
r with similar gray value

to the center pixel xMR
i should be given a larger value of ρ2r.

Therefore, the weight coefficient ρ2r is defined as follows:

ρ2r = e
− ∥xMR

r −xMR
i ∥2

ϕi ·mean(xMR
r −xMR

i ) (20)

mean
(

xMR
r − xMR

i

)

=
1

∣

∣NMR
i

∣

∣

∑
r∈NMR

i

∥

∥xMR
r − xMR

i

∥

∥

2
(21)

where
∣

∣NMR
i

∣

∣ denotes the number of pixels in local window
∣

∣NMR
i

∣

∣, ϕi is used to control the decay rate of ρ2r.
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In this paper, the value of ϕi can be calculated adaptively.

According to whether the pixel xMR
i is in the boundary re-

gion, ϕi is calculated as follows:

ϕi = ln

{

1+

[

255−
(

max
(

NMR
i

)

−min
(

NMR
i

))]

2∗ std
(

NMR
i

)

}

(22)

where max
(

NMR
i

)

and min
(

NMR
i

)

denote the maximum and

the minimum gray value of the pixels in NMR
i , respectively.

std
(

NMR
i

)

denotes the standard deviation of pixels in NMR
i .

According to Eq. (22), when pixel xMR
i is located in the

boundary region, there may be pixels belonging to other

clusters in its neighborhood. The gray values of these pix-

els may differ significantly, i.e., max
(

NMR
i

)

−min
(

NMR
i

)

is

larger, resulting in ϕi being smaller and ρ2r decays faster,

preventing a larger ρ2r from being given to the pixel be-

longing to other clusters. When pixel xMR
i is located in the

flat region, both max
(

NMR
i

)

−min
(

NMR
i

)

and std
(

NMR
i

)

are

smaller. Considering the trend of logarithmic function, ϕi

can be prevented from being too large. At this time, the de-

cay rate of ρ2r is slower, a larger ρ2r will be given to the

neighborhood pixel.

The gray value of pixel xMR
i in the morphological recon-

struction image is corrected to ηi by Eq. (18). If the gray

value of neighborhood pixel xr in the noisy image is closer

to the corrected value ηi, the reliability of xr is higher. There-

fore, in this paper, the reliability wr of pixel xr is defined as:

wr = e
− ∥xr−ηi∥2

τi ·mean(xr−ηi) (23)

mean(xr −ηi) =
1

|Ni| ∑
r∈Ni

∥xr −ηi∥2
(24)

where τi is used to control the decay rate of wr. Due to the

influence of noise, when there are many pixels in local win-

dow Ni with gray values that differ from the corrected value

ηi, τi should be smaller to accelerate the decay of wr, so as

to prevent higher reliability from being given to some neigh-

borhood pixels. Thus, in this paper, τi is defined as:

τi = ln






1+

√

√

√

√

|Ni|
∑

r∈Ni

∥xr −ηi∥






(25)

In Eq. (25), the logarithmic function is also used to prevent

τi from being too large.

Fig. 4 illustrates the process of calculating the noise prob-

ability pi /0. It can be seen from Fig. 4 that although mor-

phological reconstruction smooths most of the noise pixels,

some noise pixels are over-preserved in the boundary region

of the image. After correction by Eq. (18), it can be seen that

the over-preserving phenomenon is decreased.

3.1.2 Distance metric between the pixel and the singleton

cluster

In Fig. 4, there are some over-preserved noise blocks in the

corrected image, which is due to the uncertainty of the noise

resulting in the intensity and position distribution of the noise

pixels being random in the noisy image. As a result, there

may be a large number of noise pixels with high intensity

in a local window of the image. Therefore, it is imprecise to

calculate the probability that the central pixel is a noise point

only by using the local information of the image, which will

result in the pixels in these noise blocks not being assigned

to the noise cluster based on the noise distance.

A reasonable method is to introduce the non-local infor-

mation of the pixel into the distance metric, so the distance

between pixel xi and singleton cluster ω j is defined as fol-

lows:

d2
si j = κi

[

(1− pi /0)
∥

∥xi − v j

∥

∥

2
+ pi /0

∥

∥ηi − v j

∥

∥

2
]

+(1−κi)
∥

∥ηnl
i − v j

∥

∥

2
(26)

where ηnl
i denotes the non-local information of pixel xi, v j

denotes the center of singleton cluster ω j and κi denotes the

reliability of local window Ni centered at pixel xi.

The formula for exploiting the non-local information of

pixel xi is as follows:

ηnl
i =

∑
r∈W S

i

r ̸=i

zirηr

∑
r∈W S

i

r ̸=i

zir

(27)

zir = e
−∥η(WR

i )−η(WR
r )∥2

σ
+(1−pi /0)∥ηi−ηr∥2

h2 (28)

h =
1

n

n

∑
i=1

std (Ni) (29)

where ηi is obtained by Eq. (18) and W S
i denotes the search

window of size S×S centered at pixel ηi in the corrected im-

age. η
(

W R
i

)

is the gray vector set of pixels in local window

W R
i of size R×R centered at pixel ηi.

∥

∥η
(

W R
i

)

−η
(

W R
r

)∥

∥

2

σ
is Gaussian weighted squared Euclidean distance between

two local windows.

In Eq. (28), the smaller the noise probability pi /0, the

more accurate the gray value of center pixel ηi. When mea-

suring the difference between two local windows, the weight

of the gray difference between central pixels should be in-

creased. std (Ni) denotes the standard deviation of local win-

dow Ni in the noisy image. When the image to be segmented

is heavily contaminated by noise, h increases with std (Ni),

so the pixels in the search window have more influence on

center pixel ηi to enhance the denoising ability.

In order to reasonably utilize the non-local information

of the image, making the algorithm to be more robust to
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Fig. 4 The process of calculating the noise probability pi /0

noise while also having better detail retention ability. In this

paper, the reliability κi of local window Ni is calculated adap-

tively by the following formula:

κi = e
−∥mean(Ni)−mean(WR

i )∥+∥std(Ni)−std(WR
i )∥

mean(Ni−WR
i ) (30)

where mean(Ni) and mean
(

W R
i

)

denote the mean values of

local window Ni in the noisy image and local window W R
i

in the corrected image, respectively. std (Ni) and std
(

W R
i

)

denote the standard deviations of Ni and W R
i , respectively.

mean
(

Ni −W R
i

)

denotes the mean value of the absolute gray

difference of the corresponding pixels in Ni and W R
i .

It can be found from Eq. (30) that if the difference be-

tween the standard deviation and mean value of local win-

dow Ni in the noisy image and local window W R
i in the cor-

rected image is smaller, it means that the two local windows

are more similar and the reliability of Ni is higher.

In summary, when reliability κi of Ni is high, d2
si j de-

pends mainly on
∥

∥xi − v j

∥

∥

2
if noise probability pi /0 is low,

otherwise d2
si j depends mainly on

∥

∥ηi − v j

∥

∥

2
. When the reli-

ability κi is low, d2
si j depends mainly on

∥

∥ηnl
i − v j

∥

∥

2
. There-

fore, the original, local and non-local information of pixels

is fully used to calculate the distance between the pixel and

the singleton cluster.

3.1.3 Distance metric between the pixel and the

meta-cluster

In ECM, when the centers of single clusters contained in a

meta-cluster are closer to the barycenter of this meta-cluster,

an unreasonable clustering result may be generated. In fact,

the distance between pixel xi and meta-cluster A j depends

not only on the distance between the pixel and the barycen-

ter v j, but also on the distance between the pixel and all sin-

gleton clusters ωk contained in meta-cluster A j. Therefore,

the CCM algorithm solves the above problem to some extent

by defining a new metric formula to calculate the distance

between object xi and meta-cluster A j(
∣

∣A j

∣

∣ > 1). However,

there is a parameter that needs to be manually selected in

this distance metric. In order to avoid the influence of man-

ually selecting the parameter on the performance of the al-
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gorithm, an adaptive parameter selection method is designed

in this paper. The distance between pixel xi and meta-cluster

A j is defined as follows:

d2
mi j =

∑
ωk∈A j

d2
sik +χid

2
si j

∣

∣A j

∣

∣+χi

(31)

where dsik denotes the distance between pixel xi and the cen-

ter of singleton cluster ωk, dsi j denotes the distance between

pixel xi and the barycenter of meta-cluster A j. The barycen-

ter v j is obtained by Eq. (6) and Eq. (7). χi is an adaptive

weight parameter.

In an image, it is difficult to assign the pixels in the

boundary region to a specific singleton cluster. It is more

reasonable to assign these pixels with high uncertainty to the

meta-cluster. In CCM, the author considers that a larger χi

will make object xi have a higher probability to be assigned

to the meta-cluster. Therefore, the pixels in the boundary re-

gion should have a large χi. By analyzing the characteristics

of the pixels in the boundary region, it can be seen that these

pixels may assign similar membership degrees to singleton

clusters that are close to them, so the classification of pix-

els is ambiguous, i.e., the entropy of membership degree is

large. Thus, in this paper χi is defined by the concept of en-

tropy as follows:

χi = H (BetPi) (32)

where BetPi is obtained by Eq. (1), which denotes the mem-

bership degree of pixel xi belonging to singleton clusters,

H (BetPi) denotes the Shannon entropy of BetPi.

3.1.4 Minimization of the objective function

In summary, the objective function of this paper is defined

as follows:

J =
n

∑
i=1

∑
{ j|A j⊆Ω}

m
β
i jD

2
i j

D2
i j =







δi
2, A j = /0

d2
si j,
∣

∣A j

∣

∣= 1

d2
mi j,

∣

∣A j

∣

∣> 1

(33)

where δi, dsi j and dmi j denote the distance between pixel

xi and the noise cluster, singleton cluster and meta-cluster,

respectively.

By minimizing J, credal partition matrix M = {m1, · · ·,mn}
and cluster center matrix V can be obtained. Using the con-

straint ∑
{ j|A j⊆Ω}

mi j = 1, Lagrange function L is given as:

L(M,λ1, · · ·,λn) = J−
n

∑
i=1

λi



 ∑
{ j|A j⊆Ω}

mi j −1



 (34)

Considering that V is fixed, let the partial derivatives of

L with respect to mi j and λi be zero, we obtain:

∂L

∂mi j

= βm
β−1
i j D2

i j −λi = 0 (35)

∂L

∂λi

= ∑
{ j|A j⊆Ω}

mi j −1 = 0 (36)

From Eq. (35), we obtain:

mi j =

(

λi

β

) 1
β−1

(

1

D2
i j

) 1
β−1

(37)

Using Eq. (36) and Eq. (47), we obtain:

(

λi

β

) 1
β−1

=
1

∑
{ j|A j⊆Ω}

D
−2

β−1

i j

(38)

Using Eq. (37) and Eq. (38), we obtain:

mi j =
D

−2
β−1

i j

∑
{k|Ak⊆Ω}

D
−2

β−1

ik

(39)

Using Eq. (39), we can get the detailed mass of belief

respectively on noise cluster, singleton cluster and meta-

cluster as follows:

mi /0 = δ
−2

β−1

∑D
, A j = /0 (40)

mi j = d

−2
β−1

si j

∑D
,
∣

∣A j

∣

∣= 1
(41)

mi j = d

−2
β−1

mi j

∑D
,
∣

∣A j

∣

∣> 1
(42)

where ∑D is defined as follows:

∑D = ∑
A j= /0

δ
−2

β−1 + ∑
|A j|=1

d
−2

β−1

si j + ∑
|A j|>1

d
−2

β−1

mi j (43)

Considering that M is fixed, the partial derivatives of J

with respect to vl are obtained by:

∂J

∂vl

=
n

∑
i=1

∑
Al∩A j ̸= /0

m
β
i j

∂D2
i j

∂vl

(44)

with

∂D2
i j

∂vl

= 2(ξi − vl) , |Al |= 1 (45)

∂D2
i j

∂vl

=
2(ξi−vl)+

2χi

|A j|
(

ξi−
∑ωg∈A j

vg

|A j|
)

|A j|+χi
, Al ∈ A j,

∣

∣A j

∣

∣> 1
(46)



10

Thus,

∂J
∂vl

=
n

∑
i=1

2m
β
il (ζi − vl)

+
n

∑
i=1

∑
Al∈A j

m
β
i j

2(ξi−vl)+
2χi

|A j|
(

ξi−
∑ωg∈A j

vg

|A j|
)

|A j|+χi

(47)

with,

ξi = κi [(1− pi /0)xi + pi /0ηi]+ (1−κi)ηnl
i (48)

Letting these partial derivatives be zero obtains c linear

equations:

n

∑
i=1

m
β
il ζi +

n

∑
i=1

∑
Al∈A j

m
β
i j

1+
χi

|A j|
|A j|+χi

ζi

=
n

∑
i=1

m
β
il vl +

n

∑
i=1

∑
Al∈A j

m
β
i j

vl+
χi ∑ωg∈A j

vg

|A j|2
|A j|+χi

(49)

The system of linear equations can be represented as:

Bc×nXn×1 = Hc×cVc×1 (50)

where the elements in these matrices are obtained as fol-

lows:

Bli = m
β
il + ∑

Al∈A j

m
β
i j

1+ χi

|A j|
∣

∣A j

∣

∣+χi

(51)

Hll =
n

∑
i=1

m
β
il +

n

∑
i=1

∑
Al∈A j

m
β
i j

1+ χi

|A j|2
∣

∣A j

∣

∣+χi

(52)

Hlq =
n

∑
i=1

∑
Al∈Ak,Aq∈Ak

m
β
ik

χi

|Ak|2(|Ak|+χi)
, l ̸= q (53)

V is the solution of the linear equation system (50) and

the solution procedure is as follows:

Vc×1 = H−1
c×cBc×nXn×1 (54)

3.2 Specifying meta-clusters

Since there are pixels belonging to the meta-cluster and the

noise cluster in the credal partition, in order to obtain the

final segmentation image, it is necessary to specify meta-

clusters and recover the noise cluster. Therefore, this sec-

tion proposes a method for specifying meta-clusters based

on Dempster’s rule of combination.

Let xi be a pixel belonging to a meta-cluster and there

are pixels belonging to both the singleton cluster and the

meta-cluster in its neighborhood.

First, the size of the local window of pixel xi can be de-

termined adaptively. Let
∣

∣Na×a
i

∣

∣ denote the number of sin-

gleton clusters in local window
∣

∣Na×a
i

∣

∣ of size a× a cen-

tered at pixel xi. As the size of the window increases, if the

number of the singleton cluster in the window is constant, it

means that the local window is a block containing complete

cluster information and pixel xi can be specified by using

the cluster information. Therefore, if the size of the window

satisfies the following conditions, set it to a×a.

∣

∣

∣N
(a+2)×(a+2)
i

∣

∣

∣=
∣

∣Na×a
i

∣

∣ , a ≥ 3 (55)

where a is an odd number. To prevent a from being large, let

a ≤ 9.

After determining the size of local window Na×a
i , Eq.

(56) is used to recalculate the mass of belief of all pixels be-

longing to the singleton cluster and the meta-cluster in Na×a
i ,

thereby the mass of belief on the noise cluster is equally re-

assigned to all clusters except the noise cluster.

r ∈ Na×a
i ,∀A j ⊆ Ω

m
′
r j =

{

mr j +
mr /0

2c−1
, A j ̸= /0

0, A j = /0

(56)

Then, m
′

of all the pixels belonging to the meta-cluster

in Na×a
i are combined using Dempster’s rule of combination

as follows:

m∩
i j =

(

m
′
1 ⊕· · ·⊕m

′
nc

)

(A j) , ∀A j ⊆ Ω ,A j ̸= /0 (57)

where m∩
i j denotes the mass of belief of center pixel xi be-

longing to cluster A j after combination. Dempster’s rule of

combination satisfies associative law, so Eq. (2) can be used

to combine successively.

Next, the local spatial information is used to correct m
′

of pixels belonging to the singleton cluster in Na×a
i as fol-

lows:

r ∈ Na×a
i ,∀A j ⊆ Ω ,A j ̸= /0

m
′′
r j =

{

1
dr

m
′
r j, A j ̸= Ω

1− 1
dr
+ 1

dr
m

′
r j, A j = Ω

(58)

where dr denotes the spatial Euclidean distance between the

neighborhood pixel belonging to the singleton cluster and

center pixel xi.

Finally, m∩
i is combined with m

′′
of all pixels belonging

to the singleton cluster in Na×a
i as follows:

m⊙
i j =

(

m∩
i ⊕m

′′
1 ⊕· · ·⊕m

′′
nc

)

(A j) , ∀A j ⊆ Ω ,A j ̸= /0 (59)

where m⊙
i j denotes the mass of belief of center pixel xi be-

longings to cluster A j.

In order to assign pixel xi to a specific singleton cluster,

m⊙
i j is transformed into BetPi (ω j) by Eq. (1) and BetPi (ω j)

is considered as the membership degree of pixel xi belonging

to specific singleton cluster ω j. In addition, the maximum

membership principle is used to determine the classification

of pixel xi.
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3.3 Recovering the noise cluster

In order to assign the pixels belonging to the noise cluster to

a specific singleton cluster, this section proposes a method

for recovering the noise cluster. When pixel xi belongs to the

noise cluster, it means that the gray value of this pixel has

been severely corrupted by noise. It is necessary to use the

spatial information of this pixel to recalculate the gray value

to improve the accuracy of image segmentation.

First, the gray value of pixel xi is recalculated as follows:

ξi = κi ·ηi +(1−κi) ·ηnl
i (60)

where ηi, ηnl
i and κi are obtained by Eq. (18), Eq. (27) and

Eq. (30), respectively.

Since pixel xi has the maximum mass of belief on the

noise cluster, the mass of belief of pixel xi needs to be recal-

culated by Eq. (61).

m
′
i j =

d
−2/(β−1)
i j

∑
Ak⊆Ω ,Ak ̸= /0

d
−2/(β−1)
ik

(61)

where di j denotes the Euclidean distance between pixel ξi

and cluster A j.

Then, the size of the local window is determined adap-

tively by using the method proposed in Section 3.2. Next,

Eq. (56) and Eq. (58) are used to correct m of all pixels be-

longing to the singleton cluster in the local window to obtain

m
′′
. Finally, m

′
i and m

′′
are combined as follows:

m⊙
i j =

(

m
′
i ⊕m

′′
1 ⊕· · ·⊕m

′′
nc

)

(A j) , ∀A j ⊆ Ω ,A j ̸= /0 (62)

As in Section 3.2, m⊙
i j is transformed into BetPi (ω j) by

Eq. (1) and BetPi (ω j) is considered as the membership de-

gree of pixel xi belonging to specific singleton cluster ω j.Then,

the maximum membership principle is used to determine the

classification of pixel xi.

Through the above analysis, the flow of the algorithm

proposed in this paper is as follows:

4 Experiments

In order to objectively analyze the performance of the pro-

posed algorithm, this section is presented in six parts. The

first part introduces the comparison algorithms and the ex-

perimental parameters. The second part introduces the eval-

uation indexes used in the experiment. In the third part, three

synthetic images with size of 256×256 are constructed and

used in the experiment. In the fourth part, images from Weiz-

mann segmentation evaluation database [31] and Berkeley

Segmentation Dataset and Benchmark (BSDS) [32] are used

in the experiment. In the third and fourth parts, evaluation

indexes are calculated utilizing the ground truth, which are

Algorithm 1 A robust evidence c-means clustering combin-

ing spatial information for image segmentation algorithm

1: Set the number of clusters c, exponent β , minimum error ε and

maximum number of iterations T .

2: Set iteration number t = 1, initialize randomly cluster center ma-

trix V (t) and credal partition matrix M(t), the centers in V (t) are

sorted according to the values of the cluster centers, and the

barycenter of the meta-cluster is obtained using Eq. (6) and Eq.

(7).

3: Using Eq.(15) to calculate similarity sir between center pixel xi

and neighborhood pixel xr , using Eq. (23) to calculate reliability

wr of neighborhood pixel xr .

4: Using Eq. (14) to calculate noise probability pi /0.

5: Using Eq. (13) to calculate noise distance δi.

6: Using Eq. (26) to calculate distance d2
si j between pixel xi and sin-

gleton cluster ω j .

7: Using Eq. (31) to calculate distance d2
mi j between pixel xi and

meta-cluster A j .

8: Using Eqs. (40) - (42) to update credal partition matrix M(t+1).

9: Using Eq. (54) to update cluster center matrix V (t+1).

10: If

∥

∥

∥V (t+1)−V (t)
∥

∥

∥ < ε or iteration number t > T , then end the it-

eration. Otherwise, let t = t +1, return to step 6.

11: After obtaining V (t) and M(t), using Eq. (55) to adaptively deter-

mined the size of the local window for pixels belonging to the

meta-cluster and the noise cluster.

12: Using Eqs. (56) - (59) to update the basic belief assignment for

pixels belonging to the meta-cluster.

13: Using Eqs. (56), (58) and (60) - (62) to update the basic belief

assignment for pixels belonging to the noise cluster.

14: The updated basic belief assignment is transformed into the mem-

bership degree using Eq (1), and using the maximum membership

principle to determine the classification of pixel xi.

used to compare the segmentation performance of algorithms.

In the fifth part, Synthetic Aperture Radar (SAR) [33] im-

ages are used in the experiment. Since there is no ground

truth in the SAR database, the segmentation performance

and robustness of algorithms are compared by clustering va-

lidity index, image quality evaluation index and visual ef-

fect. Finally, the average number of iterations and the av-

erage running time of algorithms on the selected synthetic

images, real images and SAR images are shown in the form

of histograms, the efficiency of algorithms is objectively es-

timated. The experimental environment is Windows 11, Intel

Core i7-10875H, 32G RAM, MATLAB R2020a.

4.1 Comparison algorithms and parameters setting

The proposed algorithm is compared with two clustering al-

gorithms based on evidence theory and seven clustering al-

gorithms based on fuzzy theory. The two clustering algo-

rithms based on evidence theory are ECM [19] and DEC

[23]. The seven clustering algorithms based on fuzzy theory

are FCM S1 [12], FCM S2 [12], FLICM [14], FCM NLS

[13], FRFCM [15], FCM SICM [16], and IFLICMLNLI [18].

In ECM, set penalization exponent α = 2 according to

[19]. In DEC, the meta-cluster threshold is set to 0.3 accord-
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ing to [23]. Exponent β and the noise distance parameter

λ in ECM and DEC are set to 2 and 0.5, respectively. The

fuzzy exponent in all fuzzy clustering algorithms is set to 2.

In FCM S1 and FCM S2, the weight coefficient of the lo-

cal spatial constraint term is set to 6 according to [12]. In

FCM NLS, the weight coefficient of the non-local spatial

constraint term is set to 6 and the size of the search window

is set to 21× 21 according to [13]. In FRFCM, set a 3× 3

square structuring element for morphological reconstruction

and set a 3× 3 median filter window. In FCM SICM, set

σd = 3.5, σr = 3.5 according to [16]. In FCM S1, FCM S2,

FLICM, FCM NLS, FCM SICM and the proposed algorithm,

the size of the local window is set to 3×3. In IFLICMLNLI,

since the size of the local window and the search window are

the same, set the size of both to 5×5. In the proposed algo-

rithm, the size of the search window is set to 7× 7 and set

a 3×3 square structuring element for morphological recon-

struction.

4.2 Evaluation indexes

In order to objectively and quantitatively compare the seg-

mentation and anti-noise performance of algorithms, Seg-

mentation Accuracy (SA) [11], Normalized Mutual Infor-

mation (NMI) [34], Mean Intersection-over-Union (mIoU)

[35], Adjusted Rand index (ARI) [36], Peak Signal-to-Noise

Ratio (PSNR) [37], Partition Coefficient (Vpc) [38] and Par-

tition Entropy (Vpe) [39] are used to evaluate the image seg-

mentation results of the proposed algorithm and nine com-

parison algorithms. The calculation formula of above evalu-

ation indexes are as follows:

SA =
c

∑
i=1

|Bi ∩Ci|
∑

c
j=1 C j

(63)

where Bi denotes the set of pixels belonging to the ith clus-

ter in the segmentation result, Ci denotes the set of pixels

belonging to ith cluster in the ground truth, c is the number

of clusters. The larger the value of SA, the better segmenta-

tion result.

NMI =
2MI (I1; I2)

H (I1)+H (I2)
(64)

where I1 denotes the category label image of segmentation

result, I2 denotes the category label image of ground truth.

MI (I1; I2) is the mutual information of I1 and I2, H (I1) and

H (I2) are the entropy of I1 and I2. The larger the value of

NMI, the closer the segmentation result is to the ground

truth.

mIoU =
1

c

c

∑
i=1

|Bi ∩Ci|
|Bi ∪Ci|

(65)

where Bi, Ci and c have the same meaning as in Eq. (63). The

larger the value of mIoU, the better segmentation result.

ARI =
RI −E [RI]

max(RI)−E [RI]
(66)

RI =
a+b

n(n−1)/2
(67)

where a denotes the number of pairs of pixels that belong to

the same cluster both in the segmentation result and in the

ground truth. b denotes the number of pairs of pixels that be-

long to different clusters both in the segmentation result and

in the ground truth. n is the number of pixels, RI is the Rand

index and E(RI) denotes the expected value of the Rand in-

dex. The larger the value of ARI, the better the clustering

performance of the algorithm.

PSNR = 10log10

[

(L−1)2

MSE

]

(68)

where L denotes the gray level of the image, MSE denotes

the mean square error of the segmentation result and the

ground truth. The larger the value of PSNR, the better the

image segmentation quality of the algorithm.

Vpc =
∑

n
i=1 ∑

c
j=1 u2

i j

n
(69)

Vpe =
−∑

n
i=1 ∑

c
j=1 ui j logui j

n
(70)

where ui j denotes the membership degree of pixel xi belong-

ing to the jth cluster, n is the number of pixels, c is the num-

ber of clusters. The larger the value of Vpc and the smaller

the value of Vpe, the better the clustering performance of the

algorithm.

4.3 Results on synthetic images

To demonstrate the anti-noise ability of the proposed algo-

rithm on synthetic images, three synthetic images are con-

structed in this section. Synthetic image 1 is shown in Fig.

5(a) which contains four clusters with gray values of 0, 100,

170 and 255, respectively. Synthetic image 2 is shown in

Fig. 6(a) which contains three clusters with gray values of

0, 75 and 140, respectively. Synthetic image 3 is shown in

Fig. 7(a) which contains four clusters with gray values of 0,

75, 185 and 245, respectively. Firstly, Gaussian noise with

mean 0 and variance 0.2 is added into each synthetic image,

then Salt & Pepper noise with intensity of 20% is added.

The noisy synthetic images are shown in Figs. 6(b), 7(b)

and 8(b), the segmentation results are shown in Figs. 6(c-l),

7(c-l) and 8(c-l).

It can be seen from Figs. 5, 6, and 7, ECM and DEC are

not directly used for noisy image segmentation because the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5 Segmentation results of synthetic image 1, a Ground truth, b

Image with 20% mixed noise, c ECM, d DEC, e FCM S1, f FCM S2,

g FLICM, h FCM NLS, i FRFCM, j FCM SICM, k IFLICMLNLI

and l Proposed algorithm

pixels belonging to the noise cluster are not effectively re-

covered in the segmentation results. Meanwhile, ECM and

DEC do not introduce the spatial information of image pix-

els, a large number of pixels are assigned to the wrong clus-

ter as a result. FLICM only utilizes the local gray and spatial

information of pixels, it cannot effectively suppress noise

pixels when the noise intensity is high. FCM S1 and FCM S2,

which introduce the local spatial information of pixels, also

cannot achieve satisfactory segmentation results. Although

FCM NLS introduces the non-local spatial information of

pixels into the objective function, the denoising performance

of non-local mean filtering is limited. In addition, the param-

eter that controls the spatial information constraint term is a

fixed value, which cannot be adaptively calculated according

to the characteristics of pixels, resulting in poor segmenta-

tion results. FRFCM utilizes morphological reconstruction

for filtering, therefore the segmentation results are slightly

better than FLICM. For synthetic images 1 and 3, it can be

seen from Fig. 5(k) and Fig. 7(k) that IFLICMLNLI has

the problem of overlapping cluster centers when high in-

tensity mixed noise is added. For synthetic image 2, when

20% mixed noise is added, IFLICMLNLI can effectively

suppress the noise in the right and middle regions of Fig.

6(k), but there are still many noise blocks in the left region.

FCM SICM uses fast bilateral filter to smooth the noise and

introduces adaptive weights, which considers not only the

spatial and intensity information of the filtered image, but

also the original information of the image, so the segmenta-

tion results are better than FRFCM. The proposed algorithm

uses the noise distance to assign the detected noise points

to the noise cluster, which suppresses the influence of noise

points on updating the cluster centers. Simultaneously, the

spatial information of pixel is utilized to calculate the dis-

tance between the pixel and the cluster center, which im-

proves the accuracy of pixel classification. The image seg-

mentation result is better than comparison algorithms.

Next, all algorithms are run on synthetic images cor-

rupted by mixed noise of different intensities. SA, NMI,

mIoU, ARI and PSNR are selected to quantitatively evaluate

the segmentation results of different algorithms, the numer-

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6 Segmentation results of synthetic image 2, a Ground truth, b

Image with 20% mixed noise, c ECM, d DEC, e FCM S1, f FCM S2,

g FLICM, h FCM NLS, i FRFCM, j FCM SICM, k IFLICMLNLI

and l Proposed algorithm

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 7 Segmentation results of synthetic image 3, a Ground truth, b

Image with 20% mixed noise, c ECM, d DEC, e FCM S1, f FCM S2,

g FLICM, h FCM NLS, i FRFCM, j FCM SICM, k IFLICMLNLI

and l Proposed algorithm

ical results are shown in Table 1-5. In Table 1-5, the steps of

adding mixed noise are as follows: Firstly, Gaussian noise

with mean 0 and variance 0.01, 0.05, 0.1, 0.15, 0.2 are added

into each synthetic image. Then Salt & Pepper noise with in-

tensity of 1%, 5%, 10%, 15%, 20% are added in turn.

Table 1-5 shows that ECM and DEC have lower SA,

NMI, mIoU, ARI, and PSNR due to the lack of a recovery

method for noise points. FCM S1 and FCM S2 introduce lo-

cal filtering and have similar anti-noise performance in the

three synthetic images. When the intensity of mixed noise

is lower, FCM NLS has higher SA, NMI, mIoU, ARI, and

PSNR than FCM S1 and FCM S2 due to FCM NLS intro-

ducing non-local filtering. However, when the intensity of

mixed noise increases, the anti-noise performance of these

three algorithms decreases to some extent. FLICM intro-

duces local information and membership of pixels. Although

FLICM algorithm has higher SA, NMI, and ARI than other

comparison algorithms in synthetic image 1 corrupted by

1% mixed noise, the SA, NMI, mIoU, ARI, and PSNR de-

crease substantially with the increase of mixed noise inten-

sity in the three synthetic images. FRFCM has the high-

est SA, NMI, mIoU, ARI, and PSNR in synthetic image 2

and synthetic image 3 corrupted by 1% mixed noise, which

is because morphological reconstruction has strong denois-

ing ability when the intensity of mixed noise is low, but

the denoising ability of morphological reconstruction gradu-

ally decreases with the increase of noise intensity. Although
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Table 1 SA of ten algorithms on synthetic images corrupted by mixed noise of different intensities

Image
Mixed

noise
ECM DEC FCM S1 FCM S2 FLICM FCM NLS FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

synthetic

image 1

1% 0.6364 0.6759 0.7127 0.7363 0.9993 0.8095 0.8062 0.9790 0.9833 0.9989

5% 0.4054 0.5120 0.4152 0.4580 0.4752 0.5232 0.6902 0.7303 0.1989 0.9946

10% 0.3533 0.4017 0.3508 0.4090 0.2524 0.3553 0.6395 0.7159 0.1985 0.9889

15% 0.3073 0.3451 0.3122 0.3819 0.3978 0.3384 0.6034 0.7036 0.2031 0.9829

20% 0.2712 0.2983 0.2751 0.3553 0.1944 0.3093 0.4079 0.7089 0.1950 0.9769

synthetic

image 2

1% 0.6205 0.8425 0.9821 0.9942 0.9986 0.9954 0.9993 0.9822 0.9833 0.9986

5% 0.5178 0.6146 0.8369 0.8407 0.7958 0.9360 0.9903 0.9803 0.9854 0.9949

10% 0.4881 0.5142 0.7556 0.7534 0.6850 0.7769 0.7677 0.9767 0.9896 0.9909

15% 0.4804 0.4888 0.7066 0.6998 0.6595 0.6943 0.7332 0.9682 0.9878 0.9844

20% 0.4707 0.4757 0.6696 0.6583 0.6417 0.6368 0.7069 0.9519 0.9450 0.9755

synthetic

image 3

1% 0.7560 0.8761 0.9787 0.9932 0.7313 0.9952 0.9989 0.9725 0.9786 0.9984

5% 0.5385 0.5929 0.7674 0.8021 0.7416 0.9248 0.9849 0.9673 0.9775 0.9925

10% 0.4626 0.4925 0.6139 0.6541 0.6230 0.6952 0.9105 0.9591 0.4604 0.9871

15% 0.4158 0.4354 0.5553 0.5976 0.5792 0.5738 0.7833 0.9417 0.4614 0.9796

20% 0.3878 0.3999 0.5072 0.5504 0.5243 0.5055 0.6250 0.9055 0.4611 0.9751

Table 2 NMI of ten algorithms on synthetic images corrupted by mixed noise of different intensities

Image
Mixed

noise
ECM DEC FCM S1 FCM S2 FLICM FCM NLS FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

synthetic

image 1

1% 0.4212 0.5473 0.6837 0.7344 0.9941 0.7737 0.7765 0.9026 0.9180 0.9912

5% 0.1717 0.2316 0.4404 0.4543 0.4945 0.5365 0.7162 0.6868 0.5828 0.9639

10% 0.0893 0.1184 0.3322 0.3469 0.4027 0.4262 0.5949 0.6729 0.5715 0.9349

15% 0.0667 0.0804 0.2564 0.2726 0.3156 0.2990 0.5218 0.6641 0.5383 0.9119

20% 0.0446 0.0511 0.1887 0.2061 0.2084 0.1850 0.3834 0.6306 0.5498 0.8844

synthetic

image 2

1% 0.5248 0.6304 0.9178 0.9667 0.9904 0.9737 0.9945 0.9216 0.9257 0.9898

5% 0.2044 0.2736 0.6173 0.6378 0.6411 0.7791 0.9475 0.9151 0.9321 0.9678

10% 0.1137 0.1390 0.4600 0.4741 0.5095 0.5362 0.6154 0.8986 0.9466 0.9490

15% 0.0765 0.0859 0.3453 0.3665 0.4094 0.4087 0.5768 0.8692 0.9341 0.9260

20% 0.0508 0.0581 0.2528 0.2791 0.3231 0.2634 0.5363 0.8232 0.8103 0.8950

synthetic

image 3

1% 0.5536 0.6938 0.9188 0.9695 0.8207 0.9778 0.9936 0.9085 0.9236 0.9902

5% 0.2673 0.3162 0.6012 0.6407 0.6489 0.8042 0.9407 0.8927 0.9181 0.9626

10% 0.1639 0.1883 0.4713 0.4935 0.5268 0.5397 0.7896 0.8661 0.7949 0.9403

15% 0.1071 0.1201 0.3897 0.4066 0.4474 0.4261 0.6212 0.8211 0.7405 0.9156

20% 0.0775 0.0836 0.3129 0.3315 0.3654 0.3367 0.4975 0.7512 0.6522 0.8999

Table 3 mIoU of ten algorithms on synthetic images corrupted by mixed noise of different intensities

Image
Mixed

noise
ECM DEC FCM S1 FCM S2 FLICM FCM NLS FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

synthetic

image 1

1% 0.3961 0.5363 0.6357 0.6705 0.9984 0.7161 0.7156 0.9315 0.9499 0.9974

5% 0.2452 0.3216 0.2911 0.3284 0.2773 0.4078 0.6466 0.6411 0.1564 0.9815

10% 0.1924 0.2320 0.2347 0.2771 0.1962 0.2532 0.5598 0.6296 0.1479 0.9691

15% 0.1646 0.1928 0.1995 0.2472 0.2142 0.2267 0.4867 0.6222 0.1473 0.9555

20% 0.1438 0.1630 0.1655 0.2179 0.0963 0.1869 0.3053 0.6058 0.1244 0.9354

synthetic

image 2

1% 0.4236 0.7049 0.9523 0.9839 0.9961 0.9870 0.9982 0.9522 0.9551 0.9969

5% 0.3141 0.4335 0.6732 0.6837 0.6307 0.8444 0.9742 0.9475 0.9605 0.9871

10% 0.2923 0.3333 0.5639 0.5662 0.4897 0.5906 0.6052 0.9386 0.9715 0.9765

15% 0.2875 0.3047 0.5001 0.5011 0.4545 0.4967 0.5632 0.9185 0.9674 0.9603

20% 0.2731 0.2895 0.4510 0.4532 0.4307 0.4294 0.5332 0.8828 0.8479 0.9384

synthetic

image 3

1% 0.6163 0.7883 0.9573 0.9878 0.5574 0.9906 0.9982 0.9438 0.9562 0.9970

5% 0.3617 0.4244 0.6009 0.6500 0.5489 0.8522 0.9753 0.9355 0.9554 0.9857

10% 0.2893 0.3254 0.4285 0.4713 0.4235 0.5135 0.8670 0.9213 0.3507 0.9752

15% 0.2478 0.2715 0.3750 0.4174 0.3851 0.3927 0.6460 0.8916 0.3363 0.9616

20% 0.2228 0.2394 0.3293 0.3706 0.3315 0.3328 0.4638 0.8312 0.3019 0.9534
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Table 4 ARI of ten algorithms on synthetic images corrupted by mixed noise of different intensities

Image
Mixed

noise
ECM DEC FCM S1 FCM S2 FLICM FCM NLS FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

synthetic

image 1

1% 0.3292 0.4323 0.5057 0.5357 0.9977 0.6124 0.6093 0.9515 0.9594 0.9967

5% 0.1113 0.1587 0.2798 0.2738 0.3600 0.3754 0.5087 0.5187 0.4163 0.9849

10% 0.0268 0.0695 0.2272 0.2159 0.3092 0.2990 0.4292 0.5057 0.4165 0.9684

15% 0.0135 0.0385 0.1760 0.1626 0.2373 0.2170 0.3744 0.4947 0.4612 0.9506

20% 0.0058 0.0197 0.1242 0.1160 0.1441 0.1274 0.2244 0.4839 0.6176 0.9345

synthetic

image 2

1% 0.4586 0.6668 0.9551 0.9851 0.9964 0.9888 0.9981 0.9562 0.9588 0.9959

5% 0.1769 0.2971 0.6642 0.6711 0.6145 0.8510 0.9743 0.9518 0.9642 0.9857

10% 0.1048 0.1529 0.5205 0.5197 0.4812 0.5750 0.5817 0.9430 0.9743 0.9752

15% 0.0739 0.0958 0.4183 0.4146 0.3944 0.4510 0.5463 0.9220 0.9684 0.9582

20% 0.0453 0.0659 0.3307 0.3272 0.3191 0.3182 0.5128 0.8827 0.8767 0.9359

synthetic

image 3

1% 0.4786 0.6893 0.9436 0.9800 0.7323 0.9865 0.9967 0.9294 0.9444 0.9953

5% 0.2152 0.2681 0.5395 0.5901 0.5750 0.8185 0.9537 0.9139 0.9402 0.9788

10% 0.1415 0.1682 0.3740 0.4016 0.4107 0.4440 0.7517 0.8919 0.7749 0.9641

15% 0.0972 0.1145 0.3115 0.3317 0.3625 0.3365 0.5351 0.8463 0.7113 0.9432

20% 0.0736 0.0846 0.2603 0.2801 0.3157 0.2788 0.3814 0.7592 0.5672 0.9305

Table 5 PSNR of ten algorithms on synthetic images corrupted by mixed noise of different intensities

Image
Mixed

noise
ECM DEC FCM S1 FCM S2 FLICM FCM NLS FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

synthetic

image 1

1% 13.0392 18.6126 20.6682 21.7289 32.3575 21.6306 22.8539 25.8291 26.2693 35.5927

5% 9.3737 12.4439 17.0553 17.7403 17.8593 17.8093 21.3475 20.3011 17.3496 29.4019

10% 8.2384 10.0750 15.2190 16.1359 16.3277 16.1744 19.0284 18.9235 15.6304 27.0308

15% 7.6851 8.9765 14.2829 15.0973 15.0476 14.9826 17.4403 18.0265 14.5740 25.3435

20% 7.2923 8.1672 13.5445 14.1005 12.1865 13.8858 15.4857 16.8876 12.1827 23.7610

synthetic

image 2

1% 16.4816 19.2559 26.1732 30.3957 31.5675 28.4839 39.1783 27.1477 26.7851 35.5039

5% 11.2583 13.3510 18.4827 20.2132 19.9392 19.9456 29.5163 22.6258 21.5921 31.0616

10% 9.3844 10.1447 15.8032 17.5103 17.8093 16.6702 19.6597 19.1395 18.0916 29.7870

15% 8.3681 8.8133 14.2534 15.9375 16.1428 15.0294 18.5749 17.3604 15.8951 27.4643

20% 7.6192 8.0019 13.1385 14.7693 14.9401 13.7138 17.4597 15.9848 14.1749 25.8111

synthetic

image 3

1% 16.5162 19.2912 24.5103 29.7864 20.8893 28.5295 37.4840 24.8473 25.2683 34.1478

5% 10.8583 12.6154 16.9086 18.4548 17.6465 19.3239 27.4740 21.0325 20.1820 28.2361

10% 8.9805 10.2872 14.6682 16.2983 16.3773 15.5975 21.8795 18.0618 15.1875 25.2593

15% 7.8674 8.8483 13.0273 14.8732 15.0095 13.8193 18.1825 15.9365 13.5106 23.7598

20% 7.2841 7.9550 11.9729 13.7004 13.6420 12.6574 16.1092 14.6881 12.2636 22.6401

FCM SICM does not have the best result in noisy synthetic

images, the performance of this algorithm is more stable in

noisy synthetic image 2 and noisy synthetic image 3. With

the increase of mixed noise intensity, there is no significant

decrease in evaluation indexes. However, in the noisy syn-

thetic image 1, the performance of FCM SICM algorithm

has a more substantial degradation, which is due to the fact

that this image contains two clusters with a large difference

in the number of pixels. Therefore, FCM SICM algorithm

is more sensitive to images containing unbalanced clusters.

IFLICMLNLI has better segmentation results in noisy syn-

thetic image 2. Within a certain range, SA, NMI, mIoU and

ARI will increase with the increase of mixed noise intensity,

which is due to this algorithm integrating local and non-

local information, and increasing the weight of neighbor-

hood information in the distance formula when the intensity

of mixed noise increases. IFLICMLNLI algorithm has the

highest SA, NMI, mIoU, and ARI when 15% mixed noise is

added in synthetic image 2, but the anti-noise performance

decreases significantly when 20% mixed noise is added. The

stability of this algorithm is poor in noisy synthetic image 1

and noisy synthetic image 3. According to Table 1-5, the

proposed algorithm has better results overall. In particular,

when the intensity of mixed noise is high, the proposed al-

gorithm has higher SA, NMI, mIoU, ARI and PSNR than

comparison algorithms, indicating that the proposed algo-

rithm has stronger robustness to noise on synthetic images.

4.4 Results on real images

In this section, images from Weizmann segmentation evalu-

ation database [31] and BSDS [32] are selected for experi-

ments to demonstrate the segmentation performance of the

proposed algorithm on noisy real images.
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(a) (b) (c) (d) (e)

Fig. 8 Images from Weizmann database, a mg 5707, b

3076180 cropped, c dsc04575, d b9vehicles air015 and e

bbmf lancaster july 06

4.4.1 Results on Weizmann segmentation evaluation

database

Five images are selected from Weizmann segmentation eval-

uation database for experiments. As shown in Fig. 8, which

are mg 5707, 3076180 cropped, dsc04575, b9vehicles air015

and bbmf lancaster july 06, respectively. From left to right

in Fig. 8, the images are corrupted by 5%, 5%, 10%, 10%

and 15% mixed noise. The noisy images, ground truth and

segmentation results are shown in the first row, the last row

and the remaining rows of Fig. 9, respectively.

It can be seen from Figs. 9(a) and (c) that when con-

taminated with mixed noise, especially Gaussian noise, the

gray values of the target and the upper part of the back-

ground are very close. ECM, DEC, FCM S1, FCM S2 and

FCM NLS not only assign a large number of pixels belong-

ing to the upper part of the background to the target, but also

have many misclassified pixels in the lower part of the back-

ground. The segmentation results of FLICM, FCM SICM

and IFLICMLNLI are slightly better than the above algo-

rithms, but the target region still cannot be segmented. In

the segmentation results of the proposed algorithm, although

there are a small number of misclassified pixels, the target

and background are accurately segmented. Fig. 8(b) con-

tains three clusters. Due to the relatively similar gray value

of the left screw and the background, as well as the influence

of mixed noise, all comparison algorithms produce incorrect

segmentation results. The proposed algorithm successfully

identifies the three clusters in the image and produces more

accurate segmentation result while suppressing noise pixels.

For the aircraft images shown in Fig. 8(d) and (e), in the seg-

mentation results of comparison algorithms except FLICM

and IFLICMLNLI, there are a large number of misclassified

pixels and the segmentation target is difficult to be iden-

tified. FLICM and IFLICMLNLI inaccurately segment the

aircraft from the sky. In particular, FLICM segments some

of the noise pixels in the sky as aircraft, IFLICMLNLI can-

not accurately segment the pixels in the boundary regions,

and even incorrectly segments the boundaries of two air-

crafts together in Fig. 8(d). The proposed algorithm can ef-

fectively segment both the foreground and background in

noisy images, and also retains rich details. The segmentation

numerical results are shown in Table 6. It can be seen that

the evaluation indexes of the proposed algorithm are better

than comparison algorithms.

ECM

Noisy 

images

DEC

FCM_S1

FCM_S2

FLICM

FCM_N

LS

FRFCM

FCM_SI

CM

IFLICM

LNLI

Proposed

algorithm

Ground 

truth 

(a) (b) (c) (d) (e)

Fig. 9 Segmentation results on images from Weizmann database, a

mg 5707 with 5% mixed noise, b 3076180 cropped with 5% mixed

noise, c dsc04575 with 10% mixed noise, d b9vehicles air015 with

10% mixed noise and e bbmf lancaster july 06 with 15% mixed noise

(a) (b) (c) (d) (e)

Fig. 10 Images from BSDB, a #55067, b #311068, c #238011, d

#167062 and e #3096

4.4.2 Results on Berkeley Segmentation Dataset and

Benchmark

Five images from BSDB are selected for experiments. As

shown in Fig. 10, which are #55067, #311068, #238011,

#167062 and #3096, respectively. From left to right in Fig.

10, the images are corrupted by 5%, 5%, 10%, 10% and 10%

mixed noise. The noisy images, ground truth and segmenta-

tion results are shown in the first row, the last row and the

remaining rows of Fig. 11, respectively.
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Table 6 Quantization results of ten algorithms on real images from Weizmann database

Image Index ECM DEC FCM S1 FCM S2 FLICM
FCM

NLS
FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

Fig.9(a)

SA 0.7039 0.6417 0.6997 0.7015 0.8130 0.6937 0.7388 0.6441 0.6846 0.9777

NMI 0.1898 0.1564 0.2279 0.2285 0.3366 0.2234 0.2588 0.1919 0.2178 0.7878

mIoU 0.4785 0.4245 0.4781 0.4797 0.5969 0.4725 0.5155 0.4288 0.4643 0.9135

ARI 0.1526 0.0794 0.1503 0.1527 0.3429 0.1422 0.2071 0.0826 0.1304 0.8809

PSNR 10.4930 12.2872 14.1597 14.3761 15.0627 14.2976 14.9819 14.9552 15.1253 15.5809

Fig.9(b)

SA 0.4827 0.4940 0.5994 0.5698 0.7333 0.6588 0.5719 0.7019 0.6403 0.9806

NMI 0.1099 0.1084 0.1687 0.1682 0.3704 0.2991 0.3272 0.3745 0.2314 0.7941

mIoU 0.2396 0.2518 0.2713 0.2623 0.5191 0.3630 0.4610 0.5631 0.3010 0.8505

ARI 0.0745 0.0934 0.1099 0.1012 0.2687 0.2168 0.1727 0.2257 0.1625 0.8755

PSNR 9.8886 12.8429 17.9335 18.3571 23.1901 19.7598 22.5082 23.4797 18.1783 28.9147

Fig.9(c)

SA 0.6511 0.5374 0.6412 0.6395 0.8491 0.6592 0.7039 0.6675 0.6556 0.9847

NMI 0.0604 0.0585 0.1056 0.1038 0.2545 0.1170 0.1363 0.1488 0.1541 0.7771

mIoU 0.3983 0.3431 0.4006 0.3991 0.5958 0.4150 0.4506 0.4250 0.4166 0.9131

ARI 0.0668 0.0745 0.0699 0.0684 0.3583 0.0860 0.1297 0.0974 0.0871 0.8898

PSNR 4.1645 5.4228 11.0538 16.1542 16.8094 15.9618 11.8262 17.0338 12.1438 18.1537

Fig.9(d)

SA 0.7301 0.6689 0.6147 0.6642 0.9856 0.6923 0.6339 0.7270 0.9595 0.9882

NMI 0.0239 0.0226 0.0463 0.0532 0.5664 0.0625 0.0539 0.0812 0.3988 0.6323

mIoU 0.4216 0.3866 0.3375 0.3673 0.7852 0.3855 0.3497 0.4097 0.6912 0.8267

ARI 0.0608 0.0474 0.0266 0.0441 0.7201 0.0576 0.0341 0.0795 0.5511 0.7833

PSNR 10.0199 10.5686 16.1219 19.8871 19.6993 16.8183 20.1706 16.4291 16.0495 27.4449

Fig.9(e)

SA 0.7258 0.6751 0.6121 0.6430 0.9628 0.6787 0.6641 0.7986 0.9426 0.9887

NMI 0.0513 0.0439 0.0718 0.0749 0.4660 0.0855 0.0839 0.1810 0.4502 0.7595

mIoU 0.4187 0.3860 0.3530 0.3708 0.7530 0.3971 0.3875 0.4968 0.7084 0.8928

ARI 0.0837 0.0567 0.0370 0.0525 0.6572 0.0742 0.0656 0.2002 0.5770 0.8704

PSNR 8.1208 9.7149 9.9384 16.0481 17.9373 15.1505 15.6739 15.2481 15.3892 19.6051

Table 7 Quantization results of ten algorithms on real images from BSDB

Image Index ECM DEC FCM S1 FCM S2 FLICM
FCM

NLS
FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

Fig.11(a)

SA 0.5841 0.6156 0.7116 0.7308 0.7884 0.7318 0.8463 0.8110 0.7748 0.9256

NMI 0.2333 0.2411 0.4825 0.5035 0.5848 0.5279 0.6267 0.6070 0.5848 0.7627

mIoU 0.4132 0.4494 0.5639 0.5855 0.6573 0.5863 0.7293 0.6828 0.6404 0.8672

ARI 0.1720 0.2020 0.3759 0.3992 0.4974 0.4025 0.5885 0.5243 0.4749 0.7700

PSNR 10.2906 12.4696 11.9535 18.3477 19.6905 18.5649 20.1175 20.2699 19.7786 21.1223

Fig.11(b)

SA 0.3642 0.4553 0.5309 0.5149 0.5430 0.5603 0.5011 0.5810 0.6039 0.9542

NMI 0.1135 0.1380 0.2862 0.2878 0.3834 0.3793 0.4132 0.4636 0.4484 0.7017

mIoU 0.1708 0.2348 0.2537 0.2484 0.2836 0.2783 0.2721 0.3036 0.3069 0.8053

ARI 0.0313 0.1133 0.2015 0.1991 0.2848 0.2789 0.2879 0.3361 0.3393 0.8252

PSNR 9.4324 12.6919 11.3452 17.6043 13.4123 17.5471 18.6382 18.3753 17.6602 18.7509

Fig.11(c)

SA 0.3704 0.4600 0.3044 0.3786 0.4117 0.2868 0.4875 0.6068 0.2728 0.9418

NMI 0.0214 0.0220 0.0848 0.0978 0.1040 0.1091 0.2464 0.4230 0.4771 0.6532

mIoU 0.1889 0.2235 0.1730 0.2132 0.2104 0.1627 0.3100 0.4213 0.2337 0.8759

ARI 0.0044 0.0037 0.0593 0.0597 0.0204 0.0695 0.2242 0.3567 0.5732 0.7731

PSNR 7.7291 10.5185 11.5171 20.4405 20.1639 19.5152 20.1704 21.1478 18.7923 26.8105

Fig.11(d)

SA 0.7255 0.7203 0.8015 0.8328 0.9618 0.8298 0.9052 0.9831 0.9740 0.9905

NMI 0.3421 0.3511 0.6955 0.7135 0.8492 0.7320 0.8018 0.9177 0.8972 0.9364

mIoU 0.4440 0.4578 0.5655 0.5848 0.6973 0.5853 0.5977 0.7753 0.7418 0.8454

ARI 0.3659 0.4133 0.6487 0.6856 0.9130 0.6865 0.8706 0.9663 0.9409 0.9782

PSNR 9.4381 10.2615 10.0544 18.5734 18.5363 15.9960 22.1225 15.8508 15.5187 23.5182

Fig.11(e)

SA 0.5248 0.5600 0.5697 0.5759 0.5993 0.5741 0.5908 0.7600 0.6821 0.9684

NMI 0.0230 0.0248 0.0619 0.0644 0.0836 0.0694 0.0751 0.1653 0.1276 0.5464

mIoU 0.2964 0.3172 0.3299 0.3340 0.3510 0.3335 0.3446 0.4718 0.4105 0.7970

ARI 0.0021 0.0120 0.0184 0.0213 0.0338 0.0207 0.0289 0.1653 0.0903 0.7268

PSNR 8.9965 11.5911 15.0927 20.1580 18.2374 20.4361 19.1052 21.8718 21.6235 23.5937
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Fig. 11 Segmentation results on images from BSDB, a #55067 with

5% mixed noise, b #311068 with 5% mixed noise, c #238011 with

10% mixed noise, d #167062 with 10% mixed noise and e #3096 with

10% mixed noise

It can be seen from Fig. 11 that for the hill image shown

in Fig. 10(a), due to the influence of mixed noise, there are a

large number of misclassified pixels in boundary regions be-

tween different clusters in the segmentation results of com-

parison algorithms. The proposed algorithm segments the

boundary regions between different clusters that are heav-

ily contaminated by noise more accurately. Fig. 10(b) con-

tains three clusters, all comparison algorithms segment the

birds and the sky into the same cluster, while the noise-

contaminated branch background is segmented into two clus-

ters. The proposed algorithm segments the three clusters con-

tained in the image more accurately and a large number of

noise pixels are suppressed, although there are a small num-

ber of misclassified pixels in bird’s edge and branch back-

ground. Figs. 10(c) and (d) contain three clusters. The moon

in Fig 10(c) and the wolf in Fig 10(d) has fewer pixels. It

can be seen from the third column of Fig. 11 that only the

proposed algorithm obtains the segmentation result close

(a) (b) (c) (d) (e) (f)

Fig. 12 Images from NWPU-RESISC45 dataset, a #airplane 086, b

#cloud 494, c #circular farmland 130 , d #golf course 332, e

#island 401 and f #lake 103

to the ground truth, all comparison algorithms are unable

to segment the moon from the sky. The fourth column of

Fig. 11 shows that FCM SICM can segment the background

and the target, but there are some misclassified pixels in

the boundary region between the black forest and the white

snow and a few noise points in the black forest. The segmen-

tation result of IFLICMLNLI is worse than FCM SICM.

None of the comparison algorithms except FCM SICM and

IFLICMLNLI can obtain ideal segmentation results. In the

segmentation result of the proposed algorithm, the details

of the wolf are well preserved, the number of misclassified

pixels in the boundary region between the upper and lower

backgrounds is reduced and the noise pixels in the back-

ground are well recovered. When mixed noise is added into

Fig. 10(d), some clouds in the sky have closer gray value

to the aircraft, resulting in all comparison algorithms can-

not segment the aircraft contour effectively. Although the

proposed algorithm classifies some clouds in the lower left

corner and some noise pixels as aircraft, the aircraft con-

tour is completely segmented, other clouds and noise points

are accurately segmented as background. The segmentation

numerical results are shown in Table 7. In summary, the pro-

posed algorithm not only has better segmentation visual ef-

fect on the real image contaminated with noise, but also has

better evaluation indexes than comparison algorithms and

stronger robustness to noise.

4.5 Results on SAR images

In order to further test the segmentation performance of the

proposed algorithm, six remote sensing SAR images from

NWPU-RESISC45 dataset [35] are selected for experiments

in this section. As shown in Fig. 12, which are #aircraft 086,

#cloud 494, #circular farmland 130, #golf course 332, #is-

land 401 and #lake 103. All images in Fig. 12 are corrupted

by 10% mixed noise. The noisy images and their segmenta-

tion results are shown in Fig. 13.

It can be seen from Fig. 13 that most of the compari-

son algorithms cannot effectively segment the target in noisy

SAR images and there are a large number of noise pixels

and misclassified pixels in the segmentation results. FLICM

only segments the cloud in Fig. 12(b) and FCM SICM only

segments the circular farmland in Fig. 12(c). IFLICMLNLI

can segment part of the target’s contour, but it incorrectly
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Fig. 13 Segmentation results on SAR images with 10% mixed noise, a

#airplane 086, b #cloud 494, c #circular farmland 130 , d

#golf course 332, e #island 401 and f #lake 103

classifies the heavily noise-contaminated region in the back-

ground as the target. At the same time, there is a serious

misclassification on the edge of the object and the image

details cannot be preserved, resulting in a large difference

between the segmentation result and the original image. The

proposed algorithm not only accurately segments the target

in the image, but also retains more detailed information and

the noise pixels are better suppressed.

Since there is no ground truth, the clustering validity

evaluation indexes Vpc and Vpe as well as the image quality

evaluation index PSNR are used to evaluate the segmenta-

tion results. The segmentation numerical results are shown

in Table 8. It can be seen that Vpc, Vpe and PSNR of the pro-

posed algorithm are better than all comparison algorithms.

In summary, the proposed algorithm has stronger noise

suppression ability and better detail retention ability, which

can achieve effective segmentation for noisy SAR images.
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Fig. 14 Average number of iterations and average running time of ten

algorithms

4.6 Number of iterations and running time

The number of iterations and running time are common in-

dexes to estimate the efficiency of clustering algorithm. All

the experimental images in sections 4.3, 4.4 and 4.5 are se-

lected. As shown in Fig. 14, the average number of itera-

tions and average running time of all algorithms are counted,

which are presented in the form of histogram.

It can be seen from Fig. 14 that the average number of it-

erations of the proposed algorithm is relatively less, because

this algorithm assigns noise pixels to the noise cluster, re-

ducing the impact of noise pixels on the iteration. But the

proposed algorithm is higher than FRFCM and FCM SICM

on the whole. Because FRFCM is a histogram-based cluster-

ing algorithm, FCM SICM reduces the number of iterations

by introducing membership linking in the objective func-

tion.

It is also clear from Fig. 14 that the average running

time of FCM NLS, IFLICMLNLI and the proposed algo-

rithm is significantly higher than other comparison algo-

rithms. Due to the large search window of FCM NLS, the

non-local mean filtering consumes a lot of time. IFLICMLNLI

has slow convergence and many iterations, resulting in the

longest average running time. Compared with the above two

algorithms based on non-local information, the proposed al-

gorithm improves the execution efficiency and the average

running time is shorter.

In summary, although the average number of iterations

of the proposed algorithm is relatively less, the recovery of

noise pixels consumes more running time.

5 Conclusion

This paper mainly studies the gray image segmentation based

on evidence clustering and proposes a robust evidence c-
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Table 8 Quantization results of ten algorithms on SAR images

Image Index ECM DEC FCM S1 FCM S2 FLICM
FCM

NLS
FRFCM

FCM

SICM

IFLICM

LNLI
Proposed

Fig.13(a)

Vpc 0.7391 0.7602 0.5559 0.6350 0.6248 0.5364 0.6935 0.6298 0.7638 0.9801

Vpe 0.1744 0.1637 0.2748 0.2347 0.2416 0.2839 0.2043 0.2393 0.1723 0.0175

PSNR 9.1565 10.5021 15.2900 19.6571 18.7333 19.8197 18.3368 20.2901 20.5029 23.9212

Fig.13(b)

Vpc 0.7372 0.7599 0.5937 0.4952 0.7681 0.5001 0.6660 0.6458 0.8031 0.9883

Vpe 0.1747 0.1629 0.2563 0.3709 0.1653 0.3010 0.2200 0.2304 0.1492 0.0113

PSNR 7.9263 8.9280 12.1381 18.3774 13.8949 17.2680 13.0294 17.9943 12.7836 22.0637

Fig.13(c)

Vpc 0.7605 0.7846 0.6160 0.6857 0.6454 0.6285 0.6607 0.7693 0.7976 0.9400

Vpe 0.1598 0.1480 0.2455 0.2089 0.2307 0.2391 0.2228 0.1668 0.1525 0.0461

PSNR 9.8523 10.4535 18.5733 19.4052 18.2534 18.9290 20.1967 21.2924 20.5807 24.0634

Fig.13(d)

Vpc 0.7470 0.7711 0.5564 0.6390 0.6478 0.5331 0.6963 0.6264 0.7716 0.9797

Vpe 0.1685 0.1564 0.2745 0.2326 0.2298 0.2854 0.2028 0.2408 0.1682 0.0181

PSNR 9.5041 10.5057 19.6530 19.7471 19.5961 19.6974 18.4948 20.0480 20.3614 24.4691

Fig.13(e)

Vpc 0.7301 0.7450 0.5496 0.6268 0.5861 0.5323 0.7071 0.6180 0.7549 0.9280

Vpe 0.1801 0.1726 0.2777 0.2388 0.2608 0.2858 0.1969 0.2450 0.1770 0.0541

PSNR 7.7999 9.7325 14.4756 14.1074 18.8839 14.3844 13.3886 14.1619 24.0280 26.3948

Fig.13(f)

Vpc 0.7723 0.7953 0.5962 0.6804 0.6541 0.5878 0.6713 0.7262 0.7693 0.9324

Vpe 0.1517 0.1407 0.2552 0.2116 0.2262 0.2592 0.2171 0.1876 0.1684 0.0517

PSNR 9.7361 10.4752 18.1703 19.5426 17.6150 18.5274 19.6118 18.8595 18.6848 24.1004

means clustering combining spatial information for image

segmentation algorithm, then applies it to the segmentation

of noisy image. In order to improve the capability of ECM to

detect noise points, this paper first calculate the probability

that the pixel is a noise point utilizing the local information

of pixels, and then construct an adaptive noise distance uti-

lizing the noise probability and assign noise points to the

noise cluster according to the adaptive noise distance, thus

the adverse effect of noise on updating the cluster center is

overcome.Next, the original information, local information

and non-local information of pixels are introduced into the

distance metric through adaptive weight, which further im-

proves the robustness of the proposed algorithm while pre-

serving rich image details. In the iteration, the entropy of

pixel membership degree is used to design an adaptive pa-

rameter to solve the problem of selecting the distance pa-

rameter in CCM. Through the iterative formula, a credal

partition is derived. Because there are pixels belonging to

the meta-cluster and the noise cluster in the credal partition,

the Dempster’s rule of combination was improved by intro-

ducing spatial neighborhood information. Using this combi-

nation rule, the meta-clusters are first specified, and then the

noise cluster is recovered to obtain a complete segmentation

image. In order to verify the effectiveness of the proposed

algorithm, synthetic images, real images and SAR images

are used for experiments. The experimental results show that

the proposed algorithm has better noise suppression ability

and detail retention ability for experimental images contami-

nated by mixed noise, and its segmentation performance and

clustering performance are better than the related compar-

ison algorithms. The segmentation model of the proposed

algorithm makes full use of local information, non-local in-

formation and noise distance. However, it takes long time to

specify meta-clusters and recover the noise cluster. There-

fore, how to shorten the running time of the proposed algo-

rithm and design an efficient noise cluster recovery strategy

to improve the practicability will be the next research goal.
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