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a b s t r a c t 

Weakly supervised semantic segmentation (WSSS) has gained significant popularity as it relies only on 

weak labels such as image level annotations rather than the pixel level annotations required by super- 

vised semantic segmentation (SSS) methods. Despite drastically reduced annotation costs, typical feature 

representations learned from WSSS are only representative of some salient parts of objects and less re- 

liable compared to SSS due to the weak guidance during training. In this paper, we propose a novel 

Multi-Strategy Contrastive Learning (MuSCLe) framework to obtain enhanced feature representations and 

improve WSSS performance by exploiting similarity and dissimilarity of contrastive sample pairs at im- 

age, region, pixel and object boundary levels. Extensive experiments demonstrate the effectiveness of our 

method and show that MuSCLe outperforms current state-of-the-art methods on the widely used PASCAL 

VOC 2012 dataset. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Deep learning (DL)-based semantic segmentation is a well- 

stablished computer vision task that has been widely used in var- 

ous pattern recognition applications, e.g. , autonomous driving [1] , 

edical imaging [2] and satellite image analysis [3] . However, gen- 

ralising DL models to wider applications is difficult since they re- 

uire high-quality pixel-level annotations that are costly to obtain. 

ne way to address this issue focuses on how to distill and trans- 

er knowledge from either pre-trained networks [4–6] or intrinsic 

ata connections [7] , while another is to develop weakly super- 

ised methods that use inexpensive weak labels to achieve fine- 

rained tasks. In particular, weakly supervised semantic segmen- 

ation (WSSS) approaches use coarse labels, typically image-level 

nnotations, to achieve pixel-wise semantic segmentation [8–10] . 

Since the introduction of class activation maps (CAMs) [8] , a lot 

f effort has focused on improving DL-based WSSS. One type of 

pproach is to introduce extra cues, such as saliency maps [11,12] , 

cribbles [13] , or bounding boxes of objects [14] , to yield stronger 

onstraints to supervise the learning. Another group of methods 
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tilise either global context correlations [10] or local pixel correla- 

ions [9,15] to enhance image level WSSS. 

Despite continuously improved performance of image level 

SSS methods, most approaches focus on maximising inter- 

lass variations of feature representations belonging to differ- 

nt classes [9,11,16] . Consequently, their segmentation results only 

dentify the most salient parts of objects since these are suffi- 

ient to optimise their defined loss functions. Although some re- 

ent work explores pixel correlations [10] or sub-category cluster- 

ng in feature space [17] to enhance object representations, the dis- 

inctiveness between contrastive object sample pairs is still under- 

xplored. 

Inspired by recent success of contrastive learning frame- 

orks [18–20] , in this paper, we propose a multi-level contrastive 

earning strategy to further enhance both the feature represen- 

ation and mapping function of image-level WSSS by embedding 

ontrastive learning metrics at image, region, pixel and object 

oundary levels. As illustrated in Fig. 1 , we use image level con- 

rast between different objects as well as region and pixel level 

ontrast extracted from overlapping regions of the same objects to 

mprove the object feature representation. We further propose a 

oundary-based contrast extracted from the pseudo labels to en- 

ance our decoder for better segmentation. Overall, the contribu- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Our proposed MuSCLe framework, composed of an MCL encoder and a BEACON decoder, exploits different levels of contrast information to enhance both the feature 

representation extracted from the encoder and the mapping function of the decoder for better WSSS performance. CAM = class activation map; SAM = spatial attention module; 

BiFPN = bi-directional feature pyramid network. 
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ions of our Multi-Strategy Contrastive Learning (MuSCLe) frame- 

ork for WSSS are: 

• We propose a multi-contrast learning (MCL) encoder to im- 

prove both the generalisation and distinctiveness of object fea- 

ture extraction. In addition to the classification loss term used 

in a typical WSSS method, we explore image level contrast 

(IMC), pixel level contrast (PIXC), and pairwise regional contrast 

(PRC) based on overlapping regions of paired randomly cropped 

object patches to enhance the encoder representation. 
• We design a novel boundary-based contrastive learning 

method, Boundary Enhancement viA Contrastive Orientation 

Navigation (BEACON), to enhance the decoder by learning fea- 

tures across boundaries extracted from pseudo masks, which 

are derived from our improved activation maps. 
• Extensive experiments show that MuSCLe outperforms current 

state-of-the-art methods in WSSS on the PASCAL VOC 2012 

dataset [21] . 

Our code is made available at https://github.com/SCoulY/ 

uSCLe . 

. Related work 

.1. Weakly supervised semantic segmentation 

WSSS refers to segmenting semantic objects in images at 

he pixel level when only weak labels are available for train- 

ng [10,11,15] . Our focus in this paper is to perform WSSS with only 

he weakest supervision cue in the form of image labels rather 

han additional cues such as saliency maps [11,12] , scribbles [13] , 

r bounding boxes [14] . 
2

To achieve pixel level semantic segmentation from image level 

nnotations, [11] is one of the pioneering works to use saliency 

aps generated by a classification network as seeds ( i.e. , pseudo 

abels) to guide the training of a segmentation network. To en- 

ance initial seeds, some recent approaches utilise class activa- 

ion maps as pseudo labels [8] . However, early CAM methods 

nly highlight the most distinctive parts of objects, leading to 

nsufficient segmentation performance. To address this, follow- 

p works introduce gradient-refined CAMs [22] and class-aware 

ross-entropy loss [23] to improve CAM performance. More re- 

ent approaches explore adversarial erasing [24] , adjacent affinity 

ransformations [9,15] , self-supervised attention [10] , sub-category 

ining [17] , boundary exploration [16] and adversarial climb- 

ng [25] to enhance the quality of pseudo labels. Most recently, 

12] and [26] perform online updates on the pseudo labels while 

raining through incremental checkpoints and decomposition of 

lassification and segmentation branches. 

.2. Contrastive learning 

Contrastive learning [18] originates from self-supervised learn- 

ng [27] and aims to learn generalised feature representations of 

n image from positive and negative sample pairs. To further ex- 

lore the pairwise contrast information of image level annotations, 

28] use image labels to improve the learned features by maximis- 

ng the distances between paired samples belonging to different 

lasses ( i.e. , negative samples) while minimising the distances be- 

ween same object pairs ( i.e. , positive samples). 

Introduction of pixel level contrast allows to place constraints 

n feature maps for better generalisation [29] and maintenance 

f fine details [30] . Wang et al. [10] utilise pixel-level contrast 

rom positive samples after geo-transformations to extract so- 

https://github.com/SCoulY/MuSCLe
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alled equivariant features, while [31] employ two feature maps 

rom different Siamese heads as two sets of marginal probability 

istributions and the earth mover’s distance (EMD) to minimise 

he distance between paired patches in the two sets. 

Ke et al. [32] integrates four types of semantic relationships into 

 uniform pixel-wise contrastive learning paradigm. However, their 

ow-level similarity relies on extra supervision from a pre-trained 

dge detector and segmentation network to generate coarse seg- 

ents, rendering the method inflexible and not image-label super- 

ised only. In contrast, both our multi-strategy contrastive learning 

ramework and CAM refinement module are trained strictly with 

mage-level labels. Additionally, we impose contrastive constraints 

ot only at pixel-level, but also at image-, regional- and boundary- 

evels. 

.3. Boundary enhancement 

Exploitation of object boundaries is another promising option 

o enhance WSSS performance. In [11] , a constrain-to-boundary 

oss is introduced to align a conditional random field (CRF) with 

he output of the trained network to support more detailed object 

egmentation [9] . propose an affinity network to generate consis- 

ent outputs on pixels that share similar semantics by construct- 

ng an affinity matrix to enhance object segmentation results, es- 

ecially at boundaries. Ye et al. [33] leverages a set of guided mat- 

ing filters to make edges sharper at body contours while fuzzier in 

air regions. The network designed in [15] predicts pixel displace- 

ents and boundary probabilities to directly obtain an affinity ma- 

rix for boundary enhancement, whereas in [16] , boundary anno- 

ations are extracted from an attention-pooling CAM and used to 

rain a boundary exploration net (BENet) to identify object bound- 

ries. These boundary maps form constraints to propagate pixels 

etween salient semantic regions and their corresponding bound- 

ries. Despite its effectiveness, various heuristic parameters need 

o be set at the training stage to enable BENet to distinguish real 

bject boundaries from low-level edges. 

. Approach 

In the following, after clarifying the motivation of our work, 

e present our novel MuSCLe framework in detail, introducing its 

ulti-contrast learning (MCL) encoder and its Boundary Enhance- 

ent viA Contrastive Orientation Navigation (BEACON) decoder. 

.1. Motivation 

State-of-the-art WSSS methods use enhanced CAMs to gener- 

te pseudo labels in order to provide supervision on an encoder- 

ecoder-based network for semantic image segmentation. Inspired 

y the recent success [19,34] of employing contrastive learning 

o improve feature representations as well as to promote dense 

ownstream tasks’ performance ( i.e. , detection and segmentation), 

e design a multi-level contrastive learning approach to enforce 

onstraints to learn more reliable feature representations and dis- 

inctive semantics at both encoder and decoder for better segmen- 

ation. In particular, paired samples for contrastive learning are 

xtracted at image level, pixel level, regional level and boundary 

evel in order to ensure consistency of features in the same ob- 

ect classes while maximising distances between different object 

ategories. This simple yet effective strategy facilitates the genera- 

ion of high-quality pseudo labels as well as improves the encoder- 

ecoder network for better segmentation performance. 

.2. MCL encoder 

The encoder in a WSSS network not only extracts salient fea- 

ure representations to be used in its decoder but generates pseudo 
3 
asks to provide additional cues for fine-grained segmentation. As 

llustrated in Fig. 1 , we propose contrastive learning loss terms to 

uild our multi-contrast learning encoder, which can generate gen- 

ralised feature representations and high-quality pseudo masks. 

.2.1. Image level contrast 

Given a query sample x i in the batched images X from dataset 

and its label y i = (y i ;1 , y i ;2 , . . . , y i ;K ) as K-dimensional multi-

ot vector representing the presence of K object categories with 

resent categories indicated by ones and absent categories by ze- 

os, in each training batch. We propose a novel way to process 

ontrast pairs in each batch which significantly increases the ef- 

ciency of contrastive learning compared to Siamese networks. To 

easure similarity of both positive and negative pairs, we extract 

mage embeddings by average pooling of the feature maps from 

he last convolutional layer of the CNN feature extractor and using 

he dot product to calculate scores. 

The image-level contrastive learning loss term we employ is 

alculated as 

 imc = − log 

( ∑ 

Z + exp (z i · ˜ z i ) ∑ 

Z + exp (z i · ˜ z i ) + 

∑ 

Z − exp (z i · z j ) 

)
, (1) 

here z i is the vector embedding of the query sample, ˜ z i ∈ Z + rep- 

esents each embedding of positive samples, and z j ∈ Z − represents 

ach embedding of negative samples. In contrast to [18,19] , our 

 imc does not rely on augmented views to generate positive sam- 

les which significantly reduces memory consumption. Addition- 

lly, to alleviate single positive pair bias and to enforce batch-wise 

ttention on positive pairs, we compute the integral of exp (z i · ˜ z i ) 

efore taking the logarithm. We show, empirically and theoreti- 

ally, that this leads to more effective training compared to the loss 

erm from Khosla et al. [28] in Appendix A . 

.2.2. Pixel level contrast 

Given two random regions cropped from an image, pixel level 

ontrastive learning aims to maximise the feature similarity of pix- 

ls in their overlapping region even though their representations 

re not exactly the same due to their distinct contexts within the 

eceptive field. As highlighted in [29] , pixel level contrast imposes 

ixel-wise feature consistency to enhance the feature representa- 

ions for its dense-prediction downstream task ( i.e. , image segmen- 

ation in this paper). 

As illustrated in Fig. 2 , we obtain the pixel level contrastive loss 

y calculating the similarity between paired pixel-wise features in 

he overlapping region from two types of feature maps, the original 

AM and a spatial attention module (SAM) map [10,35] . 

The SAM utilises a global self-attention mechanism, capable of 

xploiting long-range contexts, to enhance the CAM, and is ob- 

ained as 

 

′ = SAM (M ) = softmax (g 1 (M) T × g 2 (M)) × g 3 (M) , (2)

here g 1 (·) , g 2 (·) , and g 3 (·) denote individual linear projections,

nd M is the CAM response map. 

To alleviate inconsistencies and learn generalised features of the 

verlapped area from crops of CAM and SAM [20,34] , we employ 

n alignment using the pixel-wise contrastive loss 

 pixc = − 1 

HW 

HW ∑ 

k =1 

cos (u 

′ 
k , sg ( ̃  v k )) , (3) 

here u ′ 
k 

and 

˜ v k are feature vectors from overlapping regions 

n M 

′ and 

˜ M extracted from SAM and CAM, respectively, H and 

 are the height and width of the regions, and sg (·) denotes 

he stop gradient operator which avoids interference of cross- 

ptimisation [20,34] . This design also reduces the computational 

ost, thus improving the efficiency of our method. 
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Fig. 2. Illustration of pixel level contrast and pairwise regional contrast. Blocks of the same colour share the same weights. 

Fig. 3. Illustration of dynamic cropping and matching. 
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.2.3. Pairwise regional contrast 

In addition to the image level and pixel level contrastive loss 

erms, we propose a novel dynamic pairwise regional contrastive 

oss term to further enhance the scale-invariant characteristics of 

he extracted features. As illustrated in Fig. 3 , to provide sufficient 

exibility while keeping complexity low, we divide the CAM re- 

ponse map into static ( e.g. , 2 × 2 ) non-overlapping patches. To im-

ose feature consistency from paired objects of different scales, 

e introduce four parameters, patch width w , patch height h , 

nd horizontal and vertical sliding strides s w 

and s h , to randomly 

ample regions at different scales from the SAM feature map. Al- 

hough metrics like KL-divergence and cosine similarity are pop- 

lar for aligning two well-defined probability distributions, the 

arth mover’s distance (EMD) [36] is more suitable to align the 

rops of CAM and SAM from potentially different spatial locations 

nd, more importantly, of differing sizes. 

To obtain a more reliable EMD measure, we aim to avoid the 

ias introduced from background response maps, and estimate the 

ackground activation map as 

 bg = 1 − max 
1 ≤c ≤C−1 

(M c ) , (4) 

ith 

 c ← 

exp (M c ) ∑ 

1 ≤c ≤C−1 

exp (M c ) 
, (5) 
4

here M c belongs to one of the C − 1 foreground activation maps 

nd M bg represents the estimated background activation map. The 

oncatenation of all foreground activation maps and the back- 

round activation map yields the background-included CAM ( M ∈ 

 

C×H×W ). 

Our pairwise regional contrast can be seen as a transportation 

roblem if we consider a cropped static patch from CAM as a ship- 

er and a dynamic matched patch from SAM as a receiver. The goal 

s to find an optimal path that minimises the global transportation 

ost ( i.e. , the discrepancy or dissimilarity in our case). The optimal 

atch is solved by the earth mover’s distance (EMD) and once the 

est match is found, we again minimise the dissimilarity between 

atches that have the lowest transportation cost as 

 prc = argmin 

(a,b) 

EMD (p a , sg ( ̃  p b )) , (6) 

here p a ∈ { p} A 
1 

⊂ M 

′ and ˜ p b ∈ { ̃  p } B 
1 

⊂ ˜ M are feature vectors from 

aired patches generated from the original feature maps M 

′ and 

˜ 
 , respectively. As in pixel level contrastive loss, we use the stop 

radient operator sg (·) to avoid cross-optimisation. 

.2.4. Overall loss function 

In addition to the loss terms introduced above, we use the well- 

stablished multi-label multi-class classification loss ( i.e. , binary 

ross entropy loss), focal loss [37] , and a pair loss [38] to address

ample imbalance and over-confidence of negative sample issues, 

nd combine them to form a hybrid classification loss (HCL) term 

 hcl (y, ̂  y ) = L bce (y, ̂  y ) + L f ocal (y, ̂  y ) + L pair (y, ̂  y ) , (7)

hich improves WSSS performance compared to using individual 

erms. 

The overall loss function of our MCL encoder is then defined as 

 MCL = L hcl + L imc + L pixc + L prc . (8) 

.3. BEACON decoder 

During training of a typical WSSS network, pseudo labels gen- 

rated from the encoder output are used to supervise the learn- 

ng process. Consequently, these pseudo labels are key to the fi- 

al segmentation performance. Although some recent work im- 

roves the quality of pseudo labels by introducing an extra pro- 

essing stage, such as an AffinityNet [9] or conditional random 

elds [39] , to enhance implicit boundary smoothness, the result- 

ng hard masks lead to supervision bias during training. To allevi- 

te this and achieve more consistent segmentation results across 



K. Yuan, G. Schaefer, Y.-K. Lai et al. Pattern Recognition 137 (2023) 109298 

Fig. 4. Illustration of inward/outward point set division. (a) original image; (b) seg- 

mentation map during training; (c) pseudo mask; (d) in/out-ward division based on 

boundary map. 
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Algorithm 2: In-/out-ward division function InOutDiv (·) . 
Input : orientation map M; step size s 

Output : inward point set �; outward point set: �

� ← ∅ , � ← ∅ ; 

P ← points in M with gradient magnitude in top 20%; 

for p in P do 

// retrieve gradient orientation of p:; 

�
 o ← M p ; 

// quantise � o into 8-directional vector:; 

�
 q ← Quantise( � o ) ; 

// get inward and outward points:; 

obtain inward point φ by stepping from p along −�
 q with 

step size s ; 

obtain outward point ψ by stepping from p along � q with 

step size s ; 

// add new points to the sets:; 

append φ to �; 

append ψ to �; 

end 

w

t

w

(  

a

t

c

o

t

s

f

p

s  

i

i

(

bject boundaries, we propose a novel boundary contrastive loss 

erm, named Boundary Enhancement viA Contrastive Orientation 

avigation (BEACON), to further improve our segmentation net- 

ork. 

The detailed algorithm for BEACON is given in Algorithm 1 . We 

rst form two boundary candidate point sets, an inward point set 

nd an outward point set. To do so, we apply the Sobel opera- 

or on the segmentation map, and identify object boundary points 

s those points that exhibit the top 20% largest gradient magni- 

udes. This allows to build reliable sets to select paired samples 

or contrastive learning. Note that the obtained boundary map (see 

ig. 4 (d) for an example) has a strong semantic meaning and is dif-

erent from applying the Sobel operator directly on the input im- 

ge. We obtain the gradient directions of the boundary points and 

niformly divide the continuous gradient orientation from 0 to 2 π
nto 8 equally sized bins to fit an 8-neighbourhood of a pixel (see 

lgorithm 2 ). Based on a step parameter, we then calculate a dis- 

lacement from a boundary point along the gradient direction as 
Algorithm 1: BEACON algorithm. 

Input : orientation map M; dense feature map ˜ y ; soft 

pseudo mask y ; parameters steps , k 

Output : BEACON loss L beacon 

// select in/out-ward point sets from M:; 

�, � ← InOutDiv( M, steps ) ; 
randomly select k samples from �, � as I, O ; 

// anchor I, O back onto y and ˜ y to yield inward set ( I d , I m ) 

and outward set ( O 

d , O 

m ) on dense feature map and pseudo 

mask:; 

I m , O 

m ← y I , y O ; 

I d , O 

d ← ˜ y I , ˜ y O ; 

// calculate similarity matrix S for the two sets:; 

S d ← f(sg( I d ) , O 

d ) ; 
S m ← f( I m , O 

m ) ; 
// obtain point-wise signs:; 

sign I , sign O ← Sign( S m 

i,o 
, S d 

i,o 
) ; 

// calculate and return loss:; 

L beacon ← 

1 
| O | 

∑ 

o∈ O 
log (sign O · 1 

| I| 
∑ 

i ∈ I 
S d 

i,o 
) + 

1 
| I| 

∑ 

i ∈ I 
log (sign I · 1 

| O | 
∑ 

o∈ O 
S d 

i,o 
) 

s

5 
ell as the opposite direction to generate candidate points for the 

wo sets. 

Having obtained the inward and outward boundary point sets, 

e use the soft pseudo masks generated from our MCL encoder 

 Fig. 4 (c)) and the dense map from the decoder to define a bound-

ry contrastive loss term. As illustrated in Fig. 4 (b), the segmenta- 

ion map is far from perfect at the early training stages. Thus, we 

alculate the point-wise one-to-all similarity between the two sets 

n both the dense feature map and the pseudo mask to enhance 

he object boundary feature consistency. In particular, we define a 

ign function Sign (·) to identify if the similarity values calculated 

rom the dense feature map ˜ y coincide with those from the soft 

seudo mask y by comparing their scores to a threshold τ . 

The sign determines the direction of optimisation imposed on 

imilarity as shown in Algorithm 3 . Intuitively, if S d < τ , the query

n-out pair is recognised as dissimilar and thus a positive edge (P) 

s assigned. Furthermore, if S m < τ is also satisfied, a true positive 

TP) case is identified, yielding a similarity suppression (positive 

ign) to make them more dissimilar. Integrating TP, FP, FN, and TN 
Algorithm 3: Sign (·) function. 

Input : mask similarity matrix S m 

i,o 
; feature similarity matrix 

S d 
i,o 

Output : point-wise signs sign I , sign O 

S m 

I 
← 

1 
| O | 

∑ 

o∈ O 
S m 

i,o 
; 

S d 
I 

← 

1 
| O | 

∑ 

o∈ O 
S d 

i,o 
; 

F P I ← AND( I (S m 

I 
> τ ) , I (S d 

I 
< τ ) ) ; 

F N 

I ← AND( I (S m 

I 
< τ ) , I (S d 

I 
> τ ) ) ; 

T P I ← AND( I (S m 

I 
< τ ) , I (S d 

I 
< τ ) ) ; 

T N 

I ← AND( I (S m 

I 
> τ ) , I (S d 

I 
> τ ) ) ; 

convert F P I , F N 

I , T P I and T N 

I into binary values {-1, 1}; 

// assign negative to actual condition negative cases:; 

T N 

I ← −T N 

I ; 

F P I ← −F P I ; 

// compute signs for inward set:; 

sign I ← F N 

I ∪ T P I ∪ T N 

I ∪ F P I ; 

// compute signs for outward set:; 

sign O ← F N 

O ∪ T P O ∪ T N 

O ∪ F P O ; 
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Table 2 

Pseudo label quality on train set in terms of mIoU. ∗= random 

walk with affinity refinement; † = random walk with IRN re- 

finement. 

method backbone CAM CAM 

∗ CAM 

† 

AffinityNet ResNet50 48.0 58.1 –

IRN ResNet50 48.3 59.3 66.5 

MCL ResNet50 52.6 60.9 63.1 

SC-CAM Wide-ResNet38 50.9 63.4 –

SEAM Wide-ResNet38 55.4 63.6 –

MCL Wide-ResNet38 58.3 64.9 66.6 

MCL EfficientNet 58.4 64.6 66.8 

Table 3 

Ablation study for segmentation network architec- 

ture. mIoU reflects segmentation performance on val 

set with IRN refined pseudo label. 

backbone # BiFPN BEACON mIoU 

EfficientNet-b3 1 no 63.2 

EfficientNet-b3 2 no 64.1 

EfficientNet-b3 3 no 64.9 

EfficientNet-b5 3 no 65.5 

EfficientNet-b7 3 no 65.8 

EfficientNet-b3 3 yes 65.2 

EfficientNet-b5 3 yes 65.9 

EfficientNet-b7 3 yes 66.6 

p

e

N

t

f

c

m

t

t  

a

c

t

4

m

c

b

w

w

a

1

i

ases, point-wise signs are obtained and are used to calculate the 

oundary contrastive loss. 

The loss function for this training stage is defined as 

 seg = L ce + λL beacon , (9) 

here parameter λ allows for balancing between the global pixel- 

ise cross entropy loss L ce and the near-boundary pixel represen- 

ation enhancement. 

. Experimental results 

.1. Implementation details 

Our experiments are conducted on the PASCAL VOC 2012 

ataset [21] with 20 foreground classes and 1 background class. 

ollowing [10,40] , we build an augmented training set with 10,582 

mages. During classification training, only the 20 foreground class 

ogits are taken into consideration, while the background class ac- 

ivation map is estimated for pairwise regional contrast. We use 

osine similarity to compute the transportation cost matrix and 

se Sinkhorn iteration [41] for fast computation of the EMD. We 

et equal weights for the HCL, IMC, PIXC, and PRC loss terms and 

nable them one after another at fixed epoch intervals to avoid po- 

ential interference. 

Our MuSCLe implementation comprises an EfficientNet encoder 

nd a BiFPN decoder [42] . To efficiently scale up the model, we use

atch sizes of 16, 8 and 6 for EfficientNet-b3, EfficientNet-b5, and 

fficientNet-b7, respectively, with the same decoder which has 3 

iFPN layers. Experiments are conducted on an RTX 3090 GPU us- 

ng PyTorch. Unless otherwise noted, all presented results are aver- 

ged over 3 random runs. 

The input of image level contrast and classification head is re- 

ized while keeping the original image aspect ratio and padded 

o 448 × 448 , while the pixel level contrast and pairwise regional 

ontrast heads use random crops of size 224 × 224 as inputs. CRF 

nd random walk refinement [9,15] are executed after SAM output 

o generate pseudo masks. 

.2. Improved CAM quality 

We quantitatively evaluate the effectiveness of each component 

f our MuSCLe approach in Table 1 . From there, it is evident that

ach proposed module leads to a notable performance increase. 

ollowing common practice [9,10,17] , test time augmentation (TTA) 

ith multi-scale inference gives a further improvement of 2.5%-3%. 

ompared to ordinary CAM methods, our multi-contrast learning 

ncoder improves CAM quality by a large margin (+6.8%). 

Table 2 compares the pseudo label quality of our method with 

ther state-of-the-art (SOTA) approaches. As is evident, our MCL 

learly outperforms the other methods, improving the CAM of 

ffinityNet [9] by 10.4% and the result of SEAM [10] by 3.0%. Al- 

hough the improvements with affinity/IRN refinement are less 
Table 1 

Ablation study for MCL encoder. mIoU (%) reflects pseudo CAM 

quality on train set. HCL = hybrid classification loss; IMC = image 

level contrast; PIXC = pixel level contrast; PRC = pairwise regional 

contrast. 

HCL IMC PIXC PRC 

single scale multi-scale 

mIoU mIoU 

48.5 51.6 

� 53.3 55.7 

� � 54.3 57.2 

� � � 54.8 57.6 

� � � � 55.3 58.4 
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6 
ronounced compared to those for raw CAMs, we obtain the high- 

st mIoU of 64.9% and 66.8% (with Wide-ResNet38 and Efficient- 

et backbones, respectively). We conjecture that because our CAM 

rained by MCL is denser and more continuous, the affinity trans- 

ormation barely enhances local feature representation with adja- 

ent context. Note that we opt for EfficientNet as our backbone 

ainly for its processing efficiency and light-weightedness. 

In addition, we generate visualisations of the learned represen- 

ations from SEAM and our MCL using t-SNE dimensionality reduc- 

ion. As can be seen from the results shown in Fig. 5 , the classes

re better separated in the MCL visualisation, while for SEAM we 

an observe significant overlap between classes and higher varia- 

ion within each class. 

.3. Semantic segmentation training 

To investigate the impact of the decoder architecture on seg- 

entation training using synthesised pseudo labels from the en- 

oder, we test MuSCLe with different backbones, different num- 

ers of BiFPN layers, and with and without BEACON. From Table 3 , 

e notice that BEACON leads to a consistent performance increase, 

hile densifying BiFPN layers also gives notable improvement. In 

ddition, scaling up the encoder backbone from b3 to b7 gives a 

.4%/0.9% boost with/without BEACON. 

We perform a thorough ablation study, with results reported 

n Table 4 , on our BEACON module to show the impact of dif- 

erent hyper-parameters and the effectiveness of BEACON. Since 

arger values of λ in Eq. (9) put more focus on near-boundary 

ixel enhancement and boundary map generation relies on accu- 

ate pixel-wise segmentation, as expected, too extreme λ values 

o not lead to an improvement. For the step size walking towards 

he gradient orientation, we observe an optimal value of 7 with 

ewer steps not supporting sufficiently distinctive in/out-ward fea- 

ure representation and more steps exceeding tiny object bound- 

ries when selecting inward points along the inverse gradient ori- 

ntation. Turning to the similarity threshold τ , a halfway division 

f the similarity scores ( i.e. , τ = 0 . 5 ) provides only a small im-

rovement compared to a dynamic threshold, μm 

, which is ob- 

ained as the mean of the similarity matrix derived from the soft 

ask. Selecting k = 128 candidates of in-/outward pairs results in a 
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Fig. 5. t-SNE visualisations of the learned representations of encoder for SEAM (left) and our MCL (right). 

Fig. 6. Visualisations of SAMs before and after affinity/IRN refinement. From top to bottom: original image; SAM output; affinity refined SAM output; IRN refined SAM 

output. 
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ood performance/efficiency trade-off. Overall, the best results are 

btained by combining μm 

with λ = 0 . 05 , 7 steps, and k = 128 . 

.4. Comparison with SOTA 

We compare MuSCLe with current SOTA methods in terms 

f performance and supervision in Table 5 . From there, we see 

hat on the val set, MuSCLe-b5 achieves performance on-par with 

IID [47] , surpassing most other methods. Further deepening our 

odel to MuSCLe-b7, our model outperforms all compared meth- 

ds on the test set using only image level labels (in contrast to 

ome other methods such as [43–45] which rely on stronger super- 

ision based on image labels in combination with saliency maps), 

hile only inferior to the previous best AdvCAM [25] on the val 

et. 

Looking at the class-wise performance on the val set in Table 6 , 

uSCLe gives the best result for 9 classes, more than any other 

ethod (AdvCAM is best for 7 categories). In particular, for the 
7 
ow, dog, horse , and sheep classes, the performance is vastly supe- 

ior to other approaches. On the other hand, worse performance is 

btained on the tv category. This is because we enforce contextual 

eature enhancement in our proposed method while TV monitors 

n the VOC dataset often appear together with other uncategorised 

bjects such as benches and keyboards. 

.5. Qualitative results 

We qualitatively show the performance of affinity and IRN re- 

nement [9,15] and compare with the global spatial attention 

rom Cao et al. [35] . From Fig. 6 , we can see that object boundaries

fter affinity refinement enhance the SAM maps. Furthermore, IRN 

efinement generates sharper edges which is more beneficial than 

ffinity refinement when used as prior in the BEACON decoder. In 

ur experiments, we perform affinity/IRN refinement on SAM out- 

ut with 4/8 iterations to yield the pseudo semantic segmentation 

abel. 
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Fig. 7. Example segmentation results on PASCAL VOC2012 val set. From top to bottom: original image; ground truth; segmentation result; original image; ground truth; 

segmentation result; original image; ground truth; segmentation result. 

8 
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Table 4 

BEACON ablation study of segmentation performance on 

val set. ∗= segmentation with affinity refined pseudo labels; 

† = segmentation with IRN refined pseudo labels. μm denotes 

the mean of similarity matrix derived from the soft mask. For 

each result, the left and right values denote MuSCLe-b5 and 

MuSCLe-b7 performance, respectively. 

λ steps k τ mIoU ∗ mIoU † 

0 n/a n/a n/a 63.8 64.1 65.5 65.8 

0.05 7 128 0.5 64.1 63.8 65.5 66.2 

0.05 7 64 μm 63.8 63.9 65.6 66.1 

0.05 7 128 μm 65.2 66.1 65.8 66.6 

0.05 7 256 μm 64.4 64.6 65.5 65.9 

0.05 5 128 μm 64.5 65.1 65.6 66.1 

0.05 9 128 μm 63.9 64.2 65.5 66.3 

0.1 7 128 μm 64.7 64.3 65.5 66.0 

Table 5 

Comparison with SOTA WSSS methods on VOC2012 val and test 

sets. I = image level label; I+S = image level label + saliency map. 

For RRM, the one-stage result in the paper is given to allow for 

a fair comparison. 

method label val mIoU test mIoU 

FickleNet_CVPR19 [43] I + S 64.9 65.3 

OAA_CVPR19 [44] I + S 65.2 66.4 

OAA++ + 
TPAMI21 

[45] I + S 66.1 67.2 

AffinityNet_CVPR18 [9] I 61.7 63.7 

SEAM_CVPR20 [10] I 64.5 65.7 

SC-CAM_CVPR20 [17] I 66.1 65.9 

BES_ECCV20 [16] I 65.7 66.6 

LSISU_PR21 [12] I 61.2 62.5 

LayerCAM_TIP21 [46] I 63.0 64.5 

AdvCAM_CVPR21 [25] I 68.1 68.0 

RRM_PR22 [26] I 65.4 65.3 

LIID_TPAMI22 [47] I 66.5 67.5 

MuSCLe-b5 I 65.9 67.4 

MuSCLe-b7 I 66.6 68.8 
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Fig. 8. Example boundary results on SBD trainval set. From left to right: original im- 

age; class-agnostic semantic boundary label; semantic boundary without BEACON; 

semantic boundary with BEACON. 

Fig. 9. Example segmentation results of TVs. From left to right: original image; 

ground truth; segmentation result. 
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We show some representative qualitative segmentation results 

btained from MuSCLe-b7 in Fig. 7 , from which we can observe 

hat detailed object boundaries are properly recovered. For multi- 

abel scenarios, our model correctly distinguishes the instances of 

ach category, while multiple object instances at different scales 

nd locations are also correctly recognised, demonstrating the effi- 

acy of the dynamic cropping and matching strategy. 

Figure 8 shows some typical examples from the SBD 

ataset [40] , illustrating the impact BEACON has on the obtained 

emantic boundaries. It is apparent that the semantic boundaries 

etected with BEACON are more complete and noise-robust com- 

ared to those without BEACON. 

In Fig. 9 , we show some failure cases of TVs, which, as noted 

bove, is where MuSCLe performs relatively inferior compared to 

ther methods. We find that the segmented masks also cover some 

ther objects, such as keyboards and TV stands, which have a 

igh co-occurrence rate with TVs in the dataset. This could be ad- 

ressed by either adding extra supervision cues or by having more 

raining data that only contains single objects ( i.e. without com- 

only co-occurred objects). 
Table 6 

Category performance comparison on PASCAL VOC2012 val set. 

method bkg aero bike bird boat bottle bus car cat chair c

AffinityNet 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 6

FickleNet 89.5 76.6 32.6 74.6 51.5 71.7 83.4 74.4 83.6 24.1 7

SEAM 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 7

SC-CAM 88.8 51.6 30.3 82.9 53.0 75.8 88.6 74.8 86.6 32.4 7

BES 88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 7

AdvCAM 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 8

MuSCLe-b7 87.7 71.3 31.1 86.7 51.8 68.5 84.6 79.5 88.1 22.3 8

9 
. Conclusions 

In this paper, we exploit only image-level annotation to accom- 

lish weakly supervised semantic segmentation. For this, we have 

roposed a novel MuSCLe framework which comprises an MCL en- 

oder and a BEACON decoder. The former is designed to improve 

he initial CAM response via contrastive learning at different lev- 

ls, while the latter aims to explicitly enhance feature represen- 

ations around object boundaries through a contrastive scheme. 

xtensive experiments have demonstrated that, MuSCLe achieves 

OTA performance on the PASCAL VOC2012 dataset, while ablation 

tudies and visualisations further illustrate the efficacy of our pro- 

osed approach. Notably, this is achieved on a single GPU, unlike 

ost existing work in the area, demonstrating the efficiency of our 

ethod. In future work, we will investigate online pseudo-labelling 

nd refinement for WSSS to further boost the training efficiency. 
ow table dog horse mbk person plant sheep sofa train tv 

6.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 

3.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 

5.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 

9.9 53.8 82.3 78.5 70.4 71.2 40.2 78.3 42.9 66.8 58.8 

6.9 46.6 78.8 75.9 72.2 70.4 50.8 79.4 39.9 65.3 44.8 

1.3 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 

3.6 51.8 86.1 83.0 74.0 64.6 51.1 84.8 44.8 63.3 40.6 
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Fig. A.10. CAM performance of L sup and L imc under different batchsizes. 
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ppendix A. Gradient analysis of image level contrast 

We provide both a formal proof and empirical evaluation to 

how how our proposed image level contrastive loss term L imc 

utperforms the classical supervised contrastive loss term L sup 

rom Khosla et al. [28] in limited batchsize settings. 

We compare our proposed image level contrastive loss 

 imc = − log 

∑ 

Z + exp (z i · ˜ z i ) ∑ 

Z + exp (z i · ˜ z i ) + 

∑ 

Z − exp (z i · z j ) 
, (A.1) 

here ˜ z i ∈ Z + , z j ∈ Z −, to the original supervised contrastive learn-

ng 

 sup = −
∑ 

Z + 
log 

exp (z i · ˜ z i ) 

exp (z i · ˜ z i ) + 

∑ 

Z − exp (z i · z j ) 
, (A.2) 

sed in [28] . 

The gradient of our proposed term w.r.t. z i is 

∂L imc 

∂z i 
= 

∂ 

∂z i 
{ log [ 

∑ 

Z + 
exp (z i · ˜ z i ) + 

∑ 

Z −
exp (z i · z j )] } 

− ∂ 

∂z i 
[ log 

∑ 

Z + 
exp (z i · ˜ z i )] 

= 

∑ 

Z + ˜ z i exp (z i · ˜ z i ) + 

∑ 

Z − z j exp (z i · z j ) ∑ 

Z + exp (z i · ˜ z i ) + 

∑ 

Z − exp (z i · z j ) 
−

∑ 

Z + ˜ z i exp (z i · ˜ z i ) ∑ 

Z + exp (z i · ˜ z i ) 
, 

(A.3) 

here Z + = { ̃  z i } N 1 and Z − = { z j } M 

1 
denote the positive and negative 

ets, respectively. The normalised dot product requires ‖ z i ‖ 2 , ‖ ̃  z i ‖ 2 , 
z j 

∥∥
2 
, ‖ z i · ˜ z i ‖ 2 and 

∥∥z i · z j 
∥∥

2 
∈ [0 , 1] so that ∠ z i ̃  z i , ∠ z i z j ∈ [ −π

2 , 
π
2 ] . 

When Z + = ∅ , i.e. N = 0 , then 

 ≤
∥∥∥∥∂L imc 

∂z i 

∥∥∥∥
2 

= 

∥∥∥∥∥∥
∑ 

Z −
z j exp (z i · z j ) 

∑ 

Z −
exp (z i · z j ) 

∥∥∥∥∥∥
2 

≤ 1 , (A.4) 

nd when Z + 
 = ∅ , i.e. N 
 = 0 , then 

∂L imc 

∂z i 

∥∥∥∥
2 

≤

∥∥z j − ˜ z i 
∥∥

2 

∑ 

Z −
exp (z i · z j ) 

∑ 

Z + 
exp (z i · ˜ z i ) + 

∑ 

Z −
exp (z i · z j ) 

. (A.5) 

When ‖ ̃  z i ‖ 2 = 

∥∥z j 
∥∥

2 
= 1 , ̃  z i ⊥ z i and z j ‖ z i , Eq. (A.5) becomes

n equality and the gradient magnitude reaches its maximum such 

hat 

 ≤
∥∥∥∥∂L imc 

∂z i 

∥∥∥∥
2 

≤
{

1 , if N = 0 , √ 

2 Me 
N+ Me 

, if N 
 = 0 . 
(A.6) 

We follow the same procedure to calculate the derivative of the 

riginal supervised contrastive loss as 

∂L sup 

∂z i 
= 

∂ 

∂z i 

∑ 

Z + 
log [ exp (z i · ˜ z i ) + 

∑ 

Z −
exp (z i · z j )] 

− ∂ 

∂z i 

∑ 

Z + 
log [ exp (z i · ˜ z i )] 

= 

∑ 

Z + 

˜ z i exp (z i · ˜ z i ) + 

∑ 

Z −
z j exp (z i · z j ) 

exp (z i · ˜ z i ) + 

∑ 

Z −
exp (z i · z j ) 

−
∑ 

Z + 
˜ z i . 

(A.7) 
10 
When Z + = ∅ , i.e. N = 0 , then 

∂L sup 

∂z i 
= 0 , (A.8) 

nd when Z + 
 = ∅ , i.e. N 
 = 0 , then 

∂L sup 

∂z i 

∥∥∥∥
2 

≤
∑ 

Z + 

∥∥z j − ˜ z i 
∥∥

2 

∑ 

Z −
exp (z i · z j ) 

exp (z i · ˜ z i ) + 

∑ 

Z −
exp (z i · z j ) 

. (A.9) 

When ‖ ̃  z i ‖ 2 = 

∥∥z j 
∥∥

2 
= 1 , ̃  z i ⊥ z i and z j ‖ z i , Eq. (A.9) becomes

n equality and the gradient magnitude reaches its maximum such 

hat 

 ≤
∥∥∥∥∂L sup 

∂z i 

∥∥∥∥
2 

≤
{

0 , if N = 0 , √ 

2 NMe 
1+ Me 

, if N 
 = 0 . 
(A.10) 

It is proved that the gradient vanishing point of Eq. (A.7) is that 

here are no positive samples within a batch ( i.e. N = 0 ), and thus

he maximum value of their gradient magnitude equals the mini- 

um of 0 in Eq. (A.10) . In contrast, our loss L imc is capable of min-

mising the negative sample pair similarity regardless of whether 

here exist positive samples. Simply put, the gradient is still valid 

nd within the range of 0 to 1. 

As one of the advantages of our proposed method is remov- 

ng the Siamese architecture for a more efficient contrastive learn- 

ng process with no augmented samples added in our training 

atches, the design of our image level contrastive loss term thus 

rovides better robustness during training with relatively smaller 

atch sizes compared to those SOTA contrastive learning meth- 

ds. This is further witnessed when running experiments with four 

ested batchsizes as illustrated in Fig. A.10 . 
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