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In this work, we investigate image registration in a variational framework and focus on regularization 

generality and solver efficiency. We first propose a variational model combining the state-of-the-art sum 

of absolute differences (SAD) and a new arbitrary order total variation regularization term. The main 

advantage is that this variational model preserves discontinuities in the resultant deformation while be- 

ing robust to outlier noise. It is however non-trivial to optimize the model due to its non-convexity, 

non-differentiabilities, and generality in the derivative order. To tackle these, we propose to first apply 

linearization to the model to formulate a convex objective function and then break down the resultant 

convex optimization into several point-wise, closed-form subproblems using a fast, over-relaxed alternat- 

ing direction method of multipliers (ADMM). With this proposed algorithm, we show that solving higher- 

order variational formulations is similar to solving their lower-order counterparts. Extensive experiments 

show that our ADMM is significantly more efficient than both the subgradient and primal-dual algorithms 

particularly when higher-order derivatives are used, and that our new models outperform state-of-the-art 

methods based on deep learning and free-form deformation. Our code implemented in both Matlab and 

Pytorch is publicly available at https://github.com/j-duan/AOTV. 

© 2023 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Image registration is a process of matching two or more images 

f the same or similar object from different times, viewpoints, or 

maging modalities. It has been widely used in many areas, such 

s art, astronomy, biology, chemistry, criminology, physics, remote 

ensing, etc. In medical imaging, registration enables direct com- 

arison of images taken at different stages of progression of a dis- 

ase, which is essential for disease diagnosis, treatment, and mon- 

toring. 

In the case of mono-modal registration, this task can be ap- 

roached using a variational framework. A common method of es- 

imating geometric transformations (deformations) is to minimise 

he sum of squared differences (SSD) between the warped source 

mage (aka. moving or template image) and the target image (aka. 

xed or reference image). SSD assumes that the underlying noise 
∗ Corresponding authors. 
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ollows a Gaussian distribution, and is not robust to outlier noise. 

o overcome this, the L 1 similarity measure may be used. The reg- 

stration problem is often ill-posed as there is no guarantee of 

n unique solution, making regularization vital. Many works tackle 

he question of how to select optimal regularization terms which 

llow plausible and reliable deformations to be computed. In the 

iterature, regularizations range from using first-order derivatives, 

uch as the diffusion regularization [1,2] , the total variation reg- 

larization [3–6] , the fluid regularization [7,8] , and the bounded 

eformation regularization [9] , to using higher-order counterparts, 

uch as the bending energy [10] , the biharmonic (aka. linear curva- 

ure) regularization [11,12] , the linear/non-linear elasticity regular- 

zation [12–14] , the mean curvature regularization [15,16] , and the 

aussian curvature regularization [17] . There are also regulariza- 

ions that combine hybrid derivatives [18,19] , explore effectiveness 

f non-local (graph) [20–23] or fractional-order derivatives [24,25] , 

r are learned directly from data [ 71 ]. 

However, there remain limitations in current regularizations: 

1) Most regularizations were developed in a quadratic form 

7,8,10–12,15–18] . They may be able to generate a globally smooth 
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nd satisfactory local deformation field, but cannot preserve dis- 

ontinuities in the deformation. Such discontinuities often appear 

n medical imaging at organ boundaries primarily due to respi- 

atory motion but also intensity inhomogeneity, pathological tis- 

ues or heavy noise [9] . Although some regularizations [3–6,9] al- 

ow discontinuities, they are based on first-order derivatives, and 

he smoothness induced may not be strong enough to regularize 

he resulting deformation. Furthermore, according to [11,12] first- 

rder methods are more dependant on initial alignments between 

mages and they are more suitable when an affine linear pre- 

egistration is available, which is not the case for higher-order 

odels because they do not penalize linear transformations 1 . As 

uch, it is challenging to design a variational model that is able to 

nduce both smoothness and discontinuity whilst being less sen- 

itive to initializations. (2) Some higher-order regularizations are 

on-convex [13–17] . Together with an almost unavoidably non- 

onvex data term, it becomes drastically difficult to devise effec- 

ive and efficient numerical algorithms to optimize such an energy 

unctional involving dual non-convexities. (3) Almost all higher- 

rder models are second order [10–12,15–18] . As such, it is un- 

lear how the numerical behaviour changes when a derivative or- 

er higher than two is used. (4) Non-local and fractional methods 

20,21,24] define derivatives using many more pixel points, making 

heir implementation non-trivial and expensive. 

The minimization process of a variational registration model 

ntails the calculus of variations , by which one obtains an Euler- 

agrange equation with respect to the deformation, which is nor- 

ally a coupled, higher-order, and non-linear partial differential 

quation (PDE). Various numerical algorithms have been proposed 

o solve such equations. Among them, most use time-dependent 

radient descent by introducing an artificial time variable and then 

etermining the steady state solution of such PDEs [1,11–14,26] . 

hese algorithms are explicit methods based on the time march- 

ng schemes and unfortunately are quite slow. Others handled the 

DEs directly, with common choices being the semi-implicit fixed- 

oint iteration [27,28] , Newton-type methods [29,30] , multigrid 

ethods [5,18] , etc. These algorithms however require advanced 

nowledge about discretization and can be difficult to implement 

or higher-order PDEs (e.g. over fourth order). Furthermore, the fast 

rimal-dual algorithm was proposed in [3,4,31] to handle the total 

ariation regularization of displacements. However, due to the it- 

rative nature of these methods, they require a sufficiently large 

umber of iterations to achieve high accuracy (e.g. machine pre- 

ision), thus leading to slow convergence speed. To overcome the 

imitations of existing image registration methods, in this paper we 

ake four novel contributions by proposing new models and algo- 

ithms: 

• We propose a new variational model for image registration that 

uses an arbitrary order total variation regularization. Such a 

regularization is convex and integrates over the magnitude of 

an arbitrary order spatial derivative derived from the binomial 

theorem (see Table 1 ). Moreover, the data term is a sum of 

absolute differences (SAD). By combining the SAD data consis- 

tency term with the arbitrary order total variation regulariza- 

tion, the proposed model is capable of capturing discontinu- 

ities in the resultant deformation, while being robust to out- 

lier noise. However, it is non-trivial to minimize such a model 

due to the non-convexity of data term, the generality of regu- 

larization order, and the non-differentiabilities of both data and 

regularization terms. 
• We propose an effective and efficient algorithm to optimize the 

proposed variational model. We first tackle its non-convexity 
1 Consider an affine as a degree one polynomial and it will disappear if we dif- 

erentiate it more than once. 

b

G

I

u

2 
by linearizing the data term with the first-order Taylor theo- 

rem. As a result, the original problem is converted into a con- 

vex optimization, for which we propose a fast ADMM solver 

based on variable splitting. We then break down this convex 

problem into three linear subproblems, among which two can 

be solved by simple thresholding equations (which overcome 

the non-differentiabilities) and another one solved by the fast 

discrete cosine transform (DCT) (which handles the generality). 

All resultant solutions are point-wise and closed-form without 

any iterations, and are therefore accurate and efficient. Finally, 

an extra over-relaxation step is introduced to further accelerate 

the convergence of ADMM without increasing its overall com- 

putational complexity. 
• We provide rigorous derivations and proofs in Appendix A re- 

garding how DCT can be used to analytically solve a linear PDE 

of arbitrary order. To the best of our knowledge, this is the 

first time that DCT is used in image registration to solve ar- 

bitrary order PDEs. We also implement a subgradient method 

in Appendix D as well as a primal-dual method in Appendix B 

which serve as two baselines to compare with our proposed 

ADMM. Our finding is that ADMM becomes increasingly more 

efficient than these competing algorithms for the cases when 

higher-order derivatives are used. Furthermore, in Appendix C 

we propose a novel method, based on primal dual, to derive 

the closed-form solution (8) associated with the SAD data term 

in our model. The method also applies to deriving soft thresh- 

olding (12) associated with the regularization term. 
• We perform extensive experiments on three challenging MRI 

datasets to explain and understand different models and al- 

gorithms. Specifically, we design proper numerical experiments 

to: show the impact of using different higher-order regulariza- 

tions, compare the robustness of SAD ( L 1 ) and SSD ( L 2 ) data

terms, demonstrate the convergence rate and computational ef- 

ficiency of different algorithms, select reasonable built-in model 

parameters for speed and accuracy, and compare our method 

with state-of-the-art (SOTA) methods including a second-order 

free-form deformation (FFD) [10] and four unsupervised deep 

learning methods [ 2,32,57–59 ]. 

. Arbitrary order total variation for image registration 

We first propose a non-linear variational registration model us- 

ng a general, isotropic nth -order regularization, given by 

in 

u 1 ,u 2 

∫ 
�

| I 1 (x + u (x )) − I 0 (x ) | dx + λ

∫ 
�

√ ∑ 

p 
| ∇ 

n u p (x ) | 2 dx , (1)

here u (x ) = (u 1 (x ) , u 2 (x )) T : (� ⊆ R 

2 ) → R 

2 is the two-

imensional displacement field, and I 0 (x ) and I 1 ( x + u ) : � → R 

re a pair of input images. Here, we use the intensity consistency 

onstraint , which assumes the intensity at point x in the target 

mage is the same as that at point x + u in the source image, i.e.

 0 (x ) = I 1 ( x + u ) . In addition, ∇ 

n u p (x ) : � → R 

2 n is a n th-order

istributional derivative of u p (x ) and its definition can be found 

n Table 1 . Theoretically, n can be chosen as an arbitrary integer. 

owever, for larger n the subsequent computations become in- 

reasingly challenging. We will investigate and analyze the impact 

f n in Section 4.1 . 

The objective here is to find u 

∗ that minimizes (1) . In the 

ata term of (1) , we notice that the non-linearity in the function 

 1 ( x + u ) with respect to u poses a challenge for optimization. To 

enefit from closed-form solutions, we borrow the idea from the 

auss-Newton algorithm to handle (1) . Specifically, if we expand 

 1 ( x + u ) at u 

ω (here ω is an integer denoting iteration number) 

sing the first-order Taylor theorem (i.e. 2a ), then we can approxi- 
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Table 1 

Detailed forms of ∇ 

n u and |∇ 

n u | in the case when n varies from 1 to s . When n = s , the representation of ( 
s 

p 
) denotes 

‘ s choose p’ which is a binomial coefficient. Note that if one computes the variational derivative of a respective |∇ 

n u | , 
it will result in a PDE of order 2 n . | · | represents the Euclidean norm. t� means we repeat the respective differential 

operator t times 

Order ∇ 

n u (x, y ) Detailed form of ∇ 

n u Magnitude |∇ 

n u | PDE order 

n = 1 ∇u 
(

∂u 
∂x 

∂u 
∂y 

)T ∈ R 2 √ 

( ∂u 
∂x 

) 2 + ( ∂u 
∂y 

) 2 2 

n = 2 ∇ 

2 u 
(

∂ 2 u 
∂x 2 

2�
∂ 2 u 
∂ x∂ y 

∂ 2 u 
∂y 2 

)T ∈ R 4 √ 

( ∂ 
2 u 

∂x 2 
) 2 + 2( ∂ 

2 u 
∂ x∂ y 

) 2 + ( ∂ 
2 u 

∂y 2 
) 2 4 

n = 3 ∇ 

3 u 
(

∂ 3 u 
∂x 3 

3 � ∂ 3 u 
∂ x 2 ∂ y 

3 � ∂ 3 u 
∂ x∂ y 2 

∂ 3 u 
∂y 3 

)T ∈ R 8 √ 

( ∂ 
3 u 

∂x 3 
) 2 + 3( ∂ 3 u 

∂ x 2 ∂ y 
) 2 + 3( ∂ 3 u 

∂ x∂ y 2 
) 2 + ( ∂ 

3 u 
∂y 3 

) 2 6 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

n = s ∇ 

s u 

(
( 
s 

p 
)� ∂ s u 

∂ x s −p ∂ y p 

)T 

∈ R 2 n , p = 1 , ..., s 

√ ∑ s 
p=0 (( 

s 

p 
) ∂ s u 

∂ x s −p ∂ y p 
) 2 2 s 

m
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3

ate (1) around the displacement field u ω using (2b) 

 1 ( x + u ) = I 1 ( x + u 

ω ) + 〈∇I 1 ( x + u 

ω ) , u − u 

ω 〉 , (2a) 

 

ω+1 = arg min 

u 

∫ 
�

| ρu ω (u ) | dx + λ

∫ 
�

√ ∑ 

p 
| ∇ 

n u p | 2 dx , (2b) 

here in (2b) , ρu ω (u ) is the data term linearized with respect to

 around u 

ω : 

u ω (u ) = I 1 ( x + u 

ω ) + 〈∇I 1 ( x + u 

ω ) , u − u 

ω 〉 − I 0 (x ) . (3)

n (2a) and (3) , I 1 ( x + u 

ω ) (or I ω 
1 

for short) is the geometri-

ally transformed/warped image from I 1 (x ) using the current it- 

ration of the deformation field u 

ω , ∇ is the gradient operator and 

I 1 ( x + u 

ω ) represents the spatial derivatives of I ω 
1 

along the ver- 

ical and horizontal directions in the image. 〈·, ·〉 denotes the inner 

roduct. To solve (1) we need to iterate between (2a) and (2b) . 

urthermore (2b) alone, which is the linearized version of (1) also 

eeds to be solved iteratively, therefore, the resulting numerical 

mplementation consists of 2 nested loops. 2 . 

There are three significant properties of the variational model 

1) : First, the data term uses SAD, which is based on robust estima-

ion [33] . With this term, the resultant displacement field will be 

ess sensitive to outlier noise in the images to be aligned, see our 

xperiments in Section 4.2 for evidence of this claim. Second, the 

egularization term uses an arbitrary order total variation (i.e. in- 

egration over the magnitude of a n th-order distributional deriva- 

ive), which is capable of recovering discontinuities (e.g. edges) in 

he final displacement field. Third, the regularization allows recon- 

truction of a piecewise polynomial function of arbitrary degree 

or the estimated displacement field. For example, setting n = 1 , 

 = 2 , and n = 3 will cause the displacement field exhibit piece-

ise constant, piecewise linear, and piecewise quadratic behaviour, 

espectively. However, it is non-trivial to find an optimal solution 

o (2b) due to its non-differentiabilities in both data and regular- 

zation terms, as well as the generality in the derivative order. To 

enefit from the advances of the model, in the next section we 

evelop an effective and efficient algorithm to minimize (1) . Using 

he proposed algorithm, we show that solving higher-order vari- 

tional formulations can be as easy as solving their lower-order 

ounterparts. 

The proposed arbitrary order total variation regularization in 

1) and (2b) has a close relationship to 1D L trend filtering for 
1 

2 For now we do not consider multi-scale implementation, otherwise we have 

hree loops in the implementation. 

d

(  

3 
ignal processing. More technically, when we discretize our regu- 

arization using the forward finite difference (which is the case in 

his paper) and discard the second dimension (e.g. y axis), our reg- 

larization is exactly 1D L 1 trend filtering (for an evenly-spaced 

rid). Trend filtering was independently proposed by Steidl et al. 

34] , Poschl et al. [35] , and Kim et al. [36] and has been recently

tudied systematically by Tibshirani [37] . Trend filtering has a rich 

istory dating back to 100 years ago and was studied much earlier 

han total variation denoising [38] . However, apart from these two 

asks (signal processing versus image processing) being fundamen- 

ally different, there are other distinctive technical differences. For 

xample, in 1D gradient is a scalar but in 2D it is a vector whose

imension increases exponentially with the order of the derivative. 

e also find a general 2D gradient follows a binomial distribution 

see our Table 1 ) which is not the case in 1D. Further, in 1D dis-

retization is straightforward but in 2D we need to consider spa- 

ial relations between pixels and pay special attention to bound- 

ry conditions. For these, we need to use the Kronecker products 

etailed in our Appendix A, which is not the case in 1D. To the 

est of our knowledge, the proposed general regularization has not 

een studied in image registration. For these reasons, we consider 

ur regularization a novel contribution. 

Our regularization contains only single term and hence is sim- 

ler than other higher-order regularizations that hybridize first- 

nd second-order derivatives, such as the total generalized varia- 

ion (TGV) [39,40] and those proposed in [41–43] . This simplicity 

llows us to study numerical behaviours of very high-order regu- 

arizations (e.g. fourth order). On the other hand, with these hy- 

rid regularizations we will end up with additional regularization 

arameters as well as more penalty weights (if one decides to use 

ur ADMMs), which may be challenging to find an optimal com- 

ination. The overall implementation will be also more compli- 

ated than our Algorithm 1 especially for very high-order deriva- 

ives. Moreover, first-order methods are often dependant on initial 

lignments and are more suitable when an affine pre-registration 

s available (see [11,12] or our Fig. 4 ). As such, in image registra-

ion where large deformations persist it may not be beneficial to 

ix first- with higher-order derivatives. 

. Faster ADMM with Over-relaxation 

We first focus on the minimization problem (2b) with ρu ω (u ) 

efined in (3) . To solve this convex problem, we need to discretize 

2b) and (3) to be a function of the pixels in the image domain as
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D

z

pposed to the continuous domain �: 3 

in 

u 
‖ 

ρu ω (u ) ‖ 1 + λ
∑ 

i, j 

√ | ( ∇ 

n u 1 ) i, j | 2 + | ( ∇ 

n u 2 ) i, j | 2 , (4a) 

ρu ω (u )) i, j = ( I ω 1 − I 0 ) i, j + (∇I ω 1 ) 
T 
i, j (u i, j − u 

ω 
i, j ) , (4b) 

here u = (u 1 , u 2 ) ∈ (R 

M×N ) 2 , ∇ 

n u 1 ∈ (R 

M×N ) 2 
n 
, ∇ 

n u 2 ∈
R 

M×N ) 2 
n 
, I ω 

1 
∈ R 

M×N , I 0 ∈ R 

M×N , and ∇I ω 
1 

∈ (R 

M×N ) 2 . Here n

enotes the derivative order, M × N represents the image size, 

nd 2 n denotes the number of components in ∇ 

n u 1 or ∇ 

n u 2 
see the 3rd column of Table 1 ). Depending on the value of n ,

he definition of | ( ∇ 

n u p ) i, j | , ∀ p ∈ { 1 , 2 } can be found in the 4th

olumn of Table 1 . 

Following the philosophy of ADMM for convex problems [44] , 

e introduce the auxiliary splitting variables w 1 ∈ (R 

M×N ) 2 
n 
, w 2 ∈ 

R 

M×N ) 2 
n 
, v 1 ∈ R 

M×N and v 2 ∈ R 

M×N , converting (4a) into an equiv-

lent constrained minimization problem 

in 

 , v , w 

‖ 

ρu ω (u ) ‖ 1 + λ
∑ 

i, j 

√ | (w 1 ) i, j | 2 + | (w 2 ) i, j | 2 

.t. u 1 = v 1 , u 2 = v 2 , w 1 = ∇ 

n v 1 , w 2 = ∇ 

n v 2 . 
(5) 

he introduction of the first two constraints decouples u in the 

egularization from that in the data term so that a multi-channel 

th -order total variation denoising problem can be explicitly for- 

ulated. The last two constraints effectively handle the non- 

ifferentiability, non-linearity and generality in the regularization. 

o guarantee an optimal solution, the above constrained problem 

5) can be converted to a saddle problem solved by ADMM. Let 

 A (u , v , w ; b , d ) be the augmented Lagrange functional of (5) , de-

ned as 

 A (u , v , w ; b , d ) = 

‖ 

ρu ω (u ) ‖ 1 + λ
∑ 

i, j 

√ | (w 1 ) i, j | 2 + | (w 2 ) i, j | 2 

+ 

θ1 

2 

∑ 

i, j 

| (w 1 − ∇ 

n v 1 − b 1 ) i, j | 2 

+ 

θ1 

2 

∑ 

i, j 

| (w 2 − ∇ 

n v 2 − b 2 ) i, j | 2 

+ 

θ2 

2 

‖ v 1 − u 1 − d 1 ‖ 

2 
2 + 

θ2 

2 

‖ v 2 − u 2 − d 2 ‖ 

2 
2 , (6) 

here b 1 ∈ (R 

M×N ) 2 
n 
, b 2 ∈ (R 

M×N ) 2 
n 
, d 1 ∈ R 

M×N and d 2 ∈ R 

M×N 

re Lagrangian multipliers or dual variables, and θ1 and θ2 are 

enalty weights which have an impact on how fast the mini- 

ization process converges and will be studied numerically in 

ection 4.4 . In (6) , we have three sets of primal variables ( u , v , w )

nd two sets of dual variables ( b , d ). Saddle points can be com-

uted when (6) is minimized with respect to primal variables 

hile maximized with respect to dual variables. As per convex op- 

imization [45] , one of saddle points for the augmented Lagrange 

unctional (6) will give a minimizer for the constrained minimiza- 

ion problem (5) . 

.1. Solving subproblems w.r.t. model variables 

To optimize (6) , we need to decompose it into three subprob- 

ems with respect to u = (u 1 , u 2 ) , w = (w 1 , w 2 ) and v = (v 1 , v 2 ) ,
nd then update the Lagrangian multipliers b = (b 1 , b 2 ) and d =
d 1 , d 2 ) until the process converges. 

1) u −subproblem : This subproblem u 

k +1 ← 

in u L (u , v k , w 

k ; b 

k , d 

k ) is an affine linear L problem which
A 1 

3 We use | · | and | · | 2 to denote Euclidean norm and squared Euclidean norm for 

ectors defined at each pixel, and ‖ · ‖ 1 and ‖ · ‖ 2 2 to denote L 1 norm and squared 

 2 norm for vectors defined in the image space. 

f

f

4 
an be solved by considering the following minimization problem 

 

k +1 = argmin 

u 
‖ 

ρu ω (u ) ‖ 1 + 

θ2 

2 

2 ∑ 

p 

‖ v k p − u p − d k p ‖ 

2 
2 , (7) 

hich has a closed-form, point-wise solution, given by the follow- 

ng thresholding equation 

 

k +1 = v k − d 

k − ˆ z 

max 
(
abs ( ̂ z ) , 1 

) ∇I ω 1 

θ2 

, (8) 

here ˆ z = θ2 ρu ω (v k − d 

k ) / (|∇I ω 
1 
| 2 + ε) and abs (·) denotes abso- 

ute value of a scalar input. Note that for simplicity we omit sub- 

cripts i, j on each variable in the point-wise solution (8) and 

hat ε is a small positive value to avoid division by zeros. In Ap- 

endix C, we propose a novel primal-dual method to derive (8) in 

etail. 

2) Over-relaxation : One approach to accelerate the convergence 

f ADMM is to account for past values when computing subse- 

uent iterates. This technique is called relaxation and amounts to 

eplacing the closed-form solution of u with ̂

 u = ( ̂  u 1 , ̂  u 2 ) which is 

 convex combination of u 

k +1 and v k 

 

 

k +1 = αu 

k +1 + (1 − α) v k . (9) 

he parameter α ∈ (0 , 2) is called the relaxation parameter . Note 

hat letting α = 1 recovers the plain ADMM iterations without ac- 

eleration. Empirical studies show that over-relaxation, i.e., letting 

> 1 , is often advantageous and the guideline α ∈ [1 . 5 , 1 . 8] has

een proposed [46] . In [47] , the authors have also shown it is ben-

ficial to use over-relaxation . In experiments, we will examine the 

mpact of using different α′ s and select the one which accelerates 

onvergence speed most. 

3) v −subproblem : This subproblem has the form of v k +1 ← 

in v L A ( ̂  u 

k +1 , v , w 

k ; b 

k , d 

k ) , which is a linear L 2 problem that can

e solved by optimizing the following problem 

 

k +1 
p = argmin 

v p 

θ1 

2 

∑ 

i, j 

| (w 

k 
1 − ∇ 

n v 1 − b 

k 
1 ) i, j | 2 

+ 

θ1 

2 

∑ 

i, j 

| (w 

k 
2 − ∇ 

n v 2 − b 

k 
2 ) i, j | 2 

+ 

θ2 

2 

‖ v 1 − ̂ u 

k +1 
1 − d k 1 ‖ 

2 
2 + 

θ2 

2 

‖ v 2 − ̂ u 

k +1 
2 − d k 2 ‖ 

2 
2 , 

here p ∈ { 1 , 2 } . The minimization process of this subproblem en-

ails the following equation with respect to v p 

 p + 

θ1 

θ2 
(−1) n div 

n 
(∇ 

n v p ) = 

θ1 

θ2 
(−1) n div 

n 
(w 

k 
p − b 

k 
p ) + ̂

 u 

k +1 
p + d k p , 

hich is a 2 nth -order PDE and has a closed-form solution that can 

e obtained using the discrete cosine transform (DCT) under the as- 

umption of the Neuman boundary conditions (normal derivative 

qual to zero on the boundaries). We note that in many recent 

mage restoration works [45,48–51] the discrete Fourier transform 

DFT) was frequently used to solve similar PDEs under the peri- 

dic boundary conditions . Imposing periodicity however introduces 

iscontinuities (therefore artefacts) to the boundaries 4 . Therefore, 

e propose to use DCT instead of DFT. We note that DCT has 

een used in various imaging problems. For example, NG et al. 

52] used DCT to diagonalize block Toeplitz-plus-Hankel matrices 

erived from a quadratic image deblurring problem. Strang et al. 

53] studied up to eight variants of DCTs (ranging from DCT-1 to 

CT-8) and applied DCT-2 to an image compression problem. Set- 

er et al. [42] used DCT to tackle a mixed first- and second-order 
4 When DFT is used, the higher order the PDE is, the more severe boundary arte- 

acts one will see. In fact, by calculus of variations , the minimization of an energy 

unctional often induces a Euler-Lagrange with the Neumann boundary conditions. 
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Algorithm 1: Closed-Form, Over-Relaxed ADMM for Arbitrary Order Total Variation Registration (1) 

Input paired images : f 0 and f 1 
Input parameters : (n, α, θ1 , θ2 , λ, ε1 , ε2 , N warp , N iter , scale ) � choose parameters 
for all s ∈ scale do � scale = { ..., 8 , 4 , 2 , 1 } , from coarse to fine 

I 0 ← resize −( f 0 , s ) � downsample with factor s 

I 1 ← resize −( f 1 , s ) if s = scale { 0 } then � at first (coarsest) scale 
u 

s = 0 � initialize displacement field 
else 

u 

s ← 2 × resize + (u 

s , 2) � upsampling with factor 2 
end 

while ω < N warp or (13) does not hold do � # Taylor expansions 
if ω = 0 then 

u 

w ← u 

s � initialize u 

w with displacement field at scale s 

end 

I ω 
1 

← warping (I 1 , u 

ω ) � I ω 
1 

denotes I 1 (x + u 

ω ) 

set w 

0 = b 

0 = 0 , v 0 = d 

0 = 0 � initialize variables and Lagrangian multipliers 
while k < N iter or (14) does not hold do � # iterations 

update u 

k +1 using (8) with I ω 
1 

and ρu ω � closed-form, point-wise solution 
update ̂  u 

k +1 using (9) � accelerated over-relaxation step 
update v k +1 using (10) � closed-form, point-wise solution 
update w 

k +1 using (12) � closed-form, point-wise solution 
update b 

k +1 = b 

k + ∇ 

n v k +1 − w 

k +1 � Lagrangian multipliers 
update d 

k +1 = d 

k + ̂

 u 

k +1 − v k +1 � Lagrangian multipliers 
end 

u 

w ← u 

k +1 � return solution of (2b) 
end 

u 

s ← u 

w � update displacement field at scale s 
end 

return u 

∗ ← u 

s � return solution of (1) 
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mage denoising problem, which is similar to TGV [39] and infimal- 

onvolution [41] . However, it has not been used to solve our arbi- 

rary order PDEs. 

With DCT, we have the closed-form solution to the linear PDE 

bove 

 

k +1 
p = D 

−1 

( 

D 

(̂ u 

k +1 
p + d k p + 

θ1 

θ2 
(−1) n div 

n 
( w 

k 
p − b 

k 
p ) 
)

1 + 

θ1 

θ2 
(−1) n D( div 

n ∇ 

n ) 

) 

, (10) 

here D and D 

−1 respectively denote the DCT and inverse DCT; 

 

n is the nth -order differential operators which are discretized via 

he forward finite difference; (−1) n div 
n 

is the nth -order adjoint 

perators which are discretized via the backward finite difference; 

iv 
n (∇ 

n ) is the 2 nth -order differential operator; “—” stands for the 

oint-wise division of matrices. The entries of the general coeffi- 

ient matrix are 

( div 
n ∇ 

n ) = 

(
2 cos 

(
πq 

W 

)
+ 2 cos 

(
π r 

H 

)
− 4 

)n 
, (11) 

here H and W stand for image height and width, and r ∈ [0 , H)

nd q ∈ [0 , W ) are frequency indices. Such a coefficient matrix es-

entially consists of the eigenvalues of div 
n (∇ 

n ) whose eigenvec- 

ors are DCT basis functions. In Appendix 1, we prove how to de- 

ive a solution like (10) and (11) from a general, linear PDE. 

4) w −subproblem : This subproblem has the form of w 

k +1 ← 

in w 

L A (u 

k +1 , v k +1 , w ; b 

k , d 

k ) , which is a linear L 1 problem that

an be solved by optimizing the following problem 

 

k +1 
p = argmin 

w p 

λ
∑ 

i, j 

√ | (w 1 ) i, j | 2 + | (w 2 ) i, j | 2 

+ 

θ1 

2 

∑ 

i, j 

| (w 1 − ∇ 

n v k +1 
1 − b 

k 
1 ) i, j | 2 

+ 

θ1 

2 

∑ 

i, j 

| (w 2 − ∇ 

n v k +1 
2 − b 

k 
2 ) i, j | 2 , 
5 
here p ∈ { 1 , 2 } . The solution of the problem is the following ana-

ytical, point-wise generalized soft thresholding equation 

 

k +1 
p = max 

(√ 

| y 1 | 2 + | y 2 | 2 − λ

θ1 

, 0 

)
y p √ | y 1 | 2 + | y 2 | 2 

, (12) 

ith the convention that 0 = 0 / 0 and y p = ∇ 

n v k +1 
p + b 

k 
p . Here, for

implicity we omit subscripts i, j on each variable in the point- 

ise solution (12) . Note that (12) can be also derived using the 

rimal-dual method developed in Appendix C. 

5) b and d updates : At each iteration, one also needs to up- 

ate the augmented Lagrangian multipliers b 

k +1 and d 

k +1 , which 

re shown in Algorithm 1 . 

.2. Stopping criteria 

In Algorithm 1 , there are two stop criteria that are defined to 

utomatically break the loops. The first one is given as 

|| I 1 (x + u 

k +1 ) − I 0 (x ) || 1 − || I 1 
(
x + u 

k 
)

− I 0 (x ) || 1 
|| I 1 

(
x + u 

k 
)

− I 0 (x ) || 1 
< ε1 , (13) 

hich says that the relative change between the data term (with- 

ut linearization) at two consecutive iterations should be smaller 

han a positive threshold ε1 . 

The second stopping criterion, which is the relative residual as- 

ociated with the displacement field u = (u 1 , u 2 ) , is defined as 

ax 

( || u 

k +1 
1 

− u 

k 
1 || 1 

|| u 

k +1 
1 

|| 1 , 
|| u 

k +1 
2 

− u 

k 
2 || 1 

|| u 

k +1 
2 

|| 1 

)
< ε2 . (14) 
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Fig. 2. A piecewise quadratic displacement field (2nd image) is simulated to warp 

source (1st image) to target (3rd image). 4th image is the displacement field in the 

x direction, and 5th image the middle cross section profile of the 4th image. Source 

and target are used to compute results in Fig. 3 . 
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In summary, to handle the original non-linear, non- 

ifferentiable and non-convex minimization problem (1) , we 

reak it down into a warping problem (2a) and a linearized, 

onvex minimization problem (2b) . We then develop an acceler- 

ted, ADMM-based iterative algorithm to decompose (2b) into an 

ver-relaxation step and three simple subproblems. Each subprob- 

em has a closed-form, point-wise solution and can be efficiently 

andled using existing numerical methods (i.e. DCT and soft 

hresholding). As such, the algorithm is very accurate and efficient, 

hich can be confirmed in Section 4.3 . 

Since the Taylor expansion is used to linearize the intensity dif- 

erence, we are only able to recover small displacements through 

inimizing (2b) . As such, Algorithm 1 needs an extra warping op- 

ration (via u 

ω ). With warping, we can convert a relatively large 

isplacement into N warp small ones, each of which can be solved 

teratively and optimally. In the algorithm, resize − indicates we 

ownsample the image at integer locations, while resize + denotes 

he image is upsampled via the bilinear interpolation, which is 

lso used in the warping operation. Since minimizing a large dis- 

lacement field is a non-convex problem, in our implementation 

e also embed Algorithm 1 into a multi-scale (pyramid) scheme 

o avoid convergence to local minima. When a N scale pyramid is 

sed, the total number of iterations in the algorithm becomes 

 scale × N warp × N iter . 

. Experimental results 

To evaluate the performance of different models and algo- 

ithms, we introduce five subsections: impact of derivative orders, 

obustness against outliers, algorithm efficiency, parameter selec- 

ion, and comparison with the SOTA. First, we investigate and ana- 

yze how increased derivative order n will affect numerical results 

nd model performance. Second, we compare their robustness and 

erformance between L 1 (SAD) and L 2 (SSD) data terms. Third, we 

how the impact of the over-relaxation parameter α and compare 

ur accelerated ADMM with a subgradient method and a popular 

rimal-dual algorithm for non-smooth optimization. Next, we ex- 

lain what the role each built-in parameter in the algorithm plays 

nd then show how to tune reasonable values for these parameters 

n order to maximize both accuracy and speed. Finally, we intro- 

uce the datasets and quantitative matrices used for experimental 

omparison. Implementation details of other competing methods 
ig. 1. Impact of the derivative order n and of the smooth parameter λ. Left panel: soft m

op to bottom n is respectively 1, 3, and 5 and from left to right λ respectively 1, 10 2 , and

n the left. It is clear that these deformations become increasingly smooth as the soft m

pace, the corner locations contain mostly low frequency information. Applying a soft ma

6 
re then given. We quantitatively and qualitatively study all meth- 

ds in the end. 

.1. Impact of derivative orders 

To understand the numerical behaviour of using varying deriva- 

ive orders in our proposed model, we analyze a L 2 smooth- 

ng problem: min u 

∫ 
� | u (x ) − f (x ) | 2 dx + λ

∫ 
� | ∇ 

n u (x ) | 2 dx , which

s a simplified version of v −subproblem in Section 3.1 . As such, 

ur numerical analysis established below may help understand 

he L 1 formulation (2b) as v −subproblem is one of its subprob- 

ems. Here, f (x ) and u (x ) : � → R 

2 and λ is a smooth param-

ter. Note that this problem can be explicitly tackled by DCT, 

nd the optimal solution is u ∗ = D 

−1 ( M · D( f ) ) , where M = [1 + 

(−1) n D( div 
n ∇ 

n )] −1 and · denotes the point-wise multiplication. 

n u ∗, M is a soft mask whose values are determined by λ and n . 

In Fig. 1 left, we plot different M 

′ s by varying λ and n . In

ig. 1 right, we obtain the same number of smoothed results by 

sing these M 

′ s . From Fig. 1 , we can see when n goes higher, λ
ust increase exponentially to reduce the soft mask size such that 

he corresponding deformation can be smoothed. In other words, 

arge n makes the problem less sensitive to λ. Numerically speak- 

ng, the use of big λ results in systems for inversion that are 

ll-conditioned, thus making the overall computation difficult. To 

rove this claim, in Table 2 we show the condition numbers of 

 

′ s computed using different λ′ s . One can see larger λ′ s and n ′ s
roduce bigger condition numbers. For numerical easability, we 

tudy only n = { 1 , 2 , 3 , 4 } , resulting in the total variations of first

rder (1stO-TV), second order (2ndO-TV), third order (3rdO-TV), 

nd fourth order (4thO-TV) for comparison. 

Next we perform the experiments on two toy examples to il- 

ustrate the effectiveness of using higher-order derivatives. As can 
asks produced by M 

′ s using different combinations of λ and n . In this panel, from 

 10 4 . Right panel: corresponding smoothed deformations produced by u ∗ with M 

′ s 
asks get smaller. This is because after an deformation is transformed into the DCT 

sk is equivalent to performing a low frequency filter on the deformation. 
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Table 2 

Condition numbers of M (after diagonalization) with different combinations of n 

and λ. Numerically, inverting a matrix with a large condition number gives a less 

accurate and stable result. 

λ = 1 λ = 10 2 λ = 10 4 λ = 10 5 

n = 1 8.997 8 . 007 × 10 2 7 . 998 × 10 4 7 . 997 × 10 6 

n = 3 5 . 126 × 10 2 5 . 116 × 10 4 5 . 115 × 10 6 5 . 115 × 10 8 

n = 5 3 . 273 × 10 4 3 . 272 × 10 6 3 . 272 × 10 8 3 . 272 × 10 10 

n = 7 2 . 093 × 10 6 2 . 093 × 10 8 2 . 093 × 10 10 2 . 093 × 10 12 

Fig. 3. 1st-4th rows: 1st-order TV, 2nd-order TV, 3rd-order TV, and 4th-order TV, 

respectively. Clearly the best results are acquired by using 3rd and 4th-order TVs, 

since they are capable of modeling piecewise quadratic signals. 
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Fig. 4. Top row: 1st image (target) is first locally deformed to 2nd image (source 1), 

which is then further affine-tranformed to 3rd image (source 2). Bottom row shows 

results using 1st-order TV between source 1 and target, results using 1st-order TV 

between source 2 and target, and results using 3rd-order TV between source 2 and 

target, respectively. 1st-order methods are more dependant on initial alignments 

between images so are more suitable when an affine linear pre-registration is avail- 

able, which is not the case for higher-order methods. 

Fig. 5. Performance comparison between L 2 and L 1 data terms. 1st row: source im- 

age and ground truth displacement field between source and target images. 2nd 

row: target image and its corrupted version by 50% salt and pepper noise. 3rd row: 

L 2 results (left: displacement field between source and target images; right: dis- 

placement field between source and corrupted target images). 4th row: L 1 results 

(left: displacement field between source and target; right: displacement field be- 

tween source and corrupted target). 
e seen from Fig. 3 , setting n = 1 , n = 2 , and n = 3 make the dis-

lacement field respectively exhibit piecewise constant, piecewise 

inear, and piecewise quadratic behaviour. It is also obvious from 

ig. 3 and 4 that higher-order models can induce stronger smooth- 

ess and are more robust to larger deformation. Two simple ex- 

mples here ( Fig. 3 and 4 ) suggest higher-order TVs can be more

ffective than their lower order counterparts when the underly- 

ng displacement field possesses the behavior of high-order deriva- 

ives. 

.2. Robustness against outliers 

We now examine whether the application of L 1 data term (SAD) 

n (1) leads to more robust performance against outlier noise in 

mages. For this, we compare L 1 data term with its L 2 counterpart 

SSD), both of which are implemented with the 1st-order TV reg- 

larization for noisy images. The results are given in Fig. 5 , from 

hich it is evident that L 1 is more robust than L 2 against noise. 

Technically, the use of L 2 norm between prediction and obser- 

ation is known as least squares regression, whilst the use of L 1 
orm as least absolute deviations regression. The latter is a ro- 

ust fit method, meaning that the least absolute deviations re- 

ression is insensitive to outlier data points [33] . More specifically, 

 2 , which squares the error/residual, increases the importance of 

arger errors. This results in a fit that is especially focused on try- 

ng to minimize these large errors - often due to outliers in data. 

n other words, L 2 tends to overfit to outliers in a dataset. In con-

rast, by using the absolute error ( L 1 ) we treat negative and posi-

ive errors equally, but do not exaggerate the importance of large 
7 
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Fig. 6. Comparison of convergence rate (top) and computational time (bottom). Top row: impact of using different over-relaxation parameter α in (9) . Bottom row: comparing 

computational efficiency between our ADMMs ( α = 1 . 8 and α = 1 ), a state-of-the-art primal dual implemented in Appendix B, and the subgradient method in Appendix D. 

From left to right show 1stO-TV, 2ndO-TV, 3rdO-TV, and 4thO-TV results, respectively. 

Fig. 7. Segmentation masks versus multi-scale images. 1st column: segmentation 

masks of the images in the 2nd column. 2nd-5th columns: images at different 

scales. From left to right the image is downsampled 1, 2, 4, and 8 times, respec- 

tively. In the masks, the while region represents the right ventricle cavity (RV); the 

light gray region denotes the left ventricle cavity (LV); and the dark gray region in- 

dicates the LV myocardium (LVM). 1st-2nd rows: short-axis images; 3rd-4th rows: 

image-axis images. 
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rrors/residuals, which leads to a robust fit insensitive to outlier 

oise, as proven in Fig. 5 . 

.3. Algorithm efficiency 

In Fig. 6 , we compare the computational speed between the ac- 

elerated ADMM ( α = 1 . 8 ), the standard ADMM ( α = 1 ), the pri-

al dual, and the subgradient method on an image pair called 

Yosemite’ from the Middlebury dataset. For all algorithms, we 

et their common parameters (λ = 0 . 1 , ε1 = ×, ε2 = 2 −23 , N warp =
 , N iter = ×, scale = { 1 } ) , where ‘ = ×’ means we do not use that

topping criterion to break the loop. For both ADMMs, we set 

θ = 1 , θ = 0 . 1) . We also use the optimal parameters for both
1 2 

8 
rimal dual and subgradient methods (see Appendix B and Ap- 

endix D). Among all algorithms, the subgradient method is the 

lowest, which is not surprising because subgradient methods have 

 convergence rate of O (1 / 
√ 

k ) [54] . In contrast, the primal dual

as a rate of O (1 /k ) [31] . It is also clear that the accelerated ADMM

s faster than the standard ADMM. Our accelerated ADMM is the 

astest algorithm especially for higher-order cases. 

In Table 3 , we further compare the runtime of accelerated 

DMM and primal dual on three other image pairs from the 

ataset using different λ′ s . For this comparison, we used θ1 = 1 

nd θ2 = 0 . 1 for ADMM, σ = τ = 

1 

λ
√ 

8 n 
for primal dual, and (ε1 =

, ε2 = 10 −3 , N warp = 5 , N iter = ×, scale = { 4 , 2 , 1 } ) for both algo-

ithms. From the table, we observe that for n = 1 ADMM has a

omparable speed as primal dual but for n = 2 ADMM gets much 

aster. In essence, primal dual is a proximal gradient method and 

ts convergence speed is determined by the step sizes σ and τ . For 

igher-order models, the step sizes should be decreased exponen- 

ially to guarantee convergence, drastically slowing down its speed. 

his comparative experiment is done in Matlab 2020 using a Dell 

aptop with a 2.60GHz Intel i7-9850H CPU (16GB RAM). In addi- 

ion, we have also implemented our ADMM using a V100 GPU in 

ytorch with the same model parameters, which boosts the speed 

y a factor of 10.57 on average as compared to that in Table 3 . 

.4. Parameter selection 

Now we explain how to select the built-in parameters 

n, α, θ1 , θ2 , λ, ε1 , ε2 , N warp , N iter , scale ) in Algorithm 1 for our fol-

owing final comparative experiments: 

• n = { 1 , 2 , 3 , 4 } will be studied separately and α as per last sec-

tion is set to 1.8 to give a faster speed. 
• θ1 and θ2 are convergence parameters, different combinations 

of which affect the convergence rate but may not change 

the minimiser of (2b) due to its convexity. In Table 4 , we 

prove this claim using the short-axis image pair in Fig. 7 from 

the UK Biobank (UKBB) [55] . We set (α = 1 . 8 , ε1 = ×, ε2 =
2 −23 , N warp = 5 , N iter = ×, scale = { 4 , 2 , 1 } ) with an optimal λ
for each model. As is evident, within each model the mean 

Dice and the mean square error are almost identical for differ- 
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Fig. 8. Selection of the optimal λ for different registration models. 1st and 3rd rows: Dice values versus λ values for LV, LVM and RVM. 2nd and 4th rows: average Dice 

values of LV, LVM and RVM versus λ values. From left to right show the results of 1stO-TV, 2ndO-T V, 3rdO-T V and 4thO-T V, respectively. λ is selected when the average 

Dice value is maximized. 

Table 3 

Time trial results. Iteration counts are reported for fast ADMM and primal dual with total runtime 

(secs) in parentheses. 

1stO-TV 2ndO-TV 

Image Size λ Accel. ADMM Primal Dual Accel. ADMM Primal Dual 

Army 584 ×388 0.05 84 (32s) 385 (45s) 104 (55s) 1010 (196s) 

Army 584 ×388 0.1 94 (36s) 513 (58s) 172 (82s) 1371 (246s) 

Army 584 ×388 0.15 118 (45s) 613 (70s) 246 (103s) 1611 (268s) 

Teddy 420 ×360 0.1 117 (50s) 411 (51s) 138 (76s) 1055 (166s) 

Teddy 420 ×360 0.15 136 (47s) 547 (59s) 164 (82s) 1260 (209s) 

Teddy 420 ×360 0.2 120 (47s) 617 (68s) 188 (89s) 1402 (226s) 

Minicooper 640 ×480 0.1 81 (54s) 287 (47s) 128 (101s) 651 (194s) 

Minicooper 640 ×480 0.15 89 (53s) 306 (54s) 163 (120s) 715 (212s) 

Minicooper 640 ×480 0.2 98 (58s) 322 (57s) 181 (130s) 755 (208s) 

 

ent combinations of θ1 and θ2 . However, the number of itera- 

tions varies drastically. By selecting suitable θ1 and θ2 , we may 

achieve fast convergence speed while still benefiting from same 

numerical accuracy. 
• λ is a smooth parameter, controlling the smoothness and 

accuracy of final deformations. To find the optimal λ for each 
9 
model, we perform parameter sweeps on a set of λ′ s . Here 

we use both image pairs in Fig. 7 as an example. Specifically, 

first: we define a set of λ′ s and for each λ together with 

(α= 1 . 8 , ε1 = ×, ε2 = 2 −23 , N warp = 5 , N iter = ×, scale = { 4 , 2 , 1 } ) 
and the optimal θ ′ s identified in Table 4 , we use Algorithm 1 to

compute the deformation between the source and target im- 



J. Duan, X. Jia, J. Bartlett et al. Pattern Recognition 137 (2023) 109318 

T
a

b
le
 
4
 

N
u

m
e

ri
ca

l 
im

p
a

ct
 
o

f 
u

si
n

g
 
d

if
fe

re
n

t 
co

m
b

in
a

ti
o

n
s 

o
f 
θ 1
 

a
n

d
 
θ 2
 

. 
T

h
e
 
th

re
e
 
n

u
m

b
e

rs
 
(i

.e
. 
·/ 

·/
 ·) 

re
p

re
se

n
t 

th
e
 
av

e
ra

g
e
 
D

ic
e
 
v

a
lu

e
 
o

f 
LV

, 
LV

M
 
a

n
d
 
R

V
, 

th
e
 
m

e
a

n
 
sq

u
a

re
 
e

rr
o

r 
(M

S
E

) 
b

e
tw

e
e

n
 
I 1
 

(x
 
+ 

u
 ∗ )
 
a

n
d
 
I 0
 

(x
 
) ,
 
a

s 
w

e
ll
 
a

s 
th

e
 
to

ta
l 

n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s 
u

si
n

g
 
th

e
 
p

a
ra

m
e

te
rs
 

(α
= 

1
 . 8
 , 
ε 1
 

= 
×,

 

ε 2
 

= 
2
 −2

3
 

, 
N
 w

a
r

p
 

= 
5
 , 

N
 it

er
 

= 
×,

 
sc

a
le
 
= 

{ 4 ,
 
2
 , 

1
 } ) .

 

1
st

O
-T

V
 
w

it
h
 
λ

∗
= 

0
 . 0

7
 

2
n

d
O

-T
V
 
w

it
h
 
λ

∗
= 

0
 . 1
 

θ 1
 

= 
0
 . 1
 

θ 1
 

= 
1
 

θ 1
 

= 
1

0
 

θ 1
 

= 
1

0
0
 

θ 1
 

= 
0
 . 1
 

θ 1
 

= 
1
 

θ 1
 

= 
1

0
 

θ 1
 

= 
1

0
0
 

θ 2
 

= 
1

0
 −2
 

0
.8

4
1

/2
.1

2
e

-3
/6

3
k
 

0
.8

4
2

/2
.1

2
e

-3
/5

6
k
 

0
.8

4
2

/2
.1

1
e

-3
/1

1
0

k
 

0
.8

4
1

/2
.1

7
e

-3
/5

7
9

k
 

0
.9

0
2

/2
.7

5
e

-3
/1

0
7

k
 

0
.9

0
2

/2
.7

5
e

-3
/1

0
1

k
 

0
.9

0
2

/2
.7

5
e

-3
/1

0
0

k
 

0
.9

0
3

/2
.7

4
e

-3
/1

6
7

k
 

θ 2
 

= 
1

0
 −1
 

0
.8

4
1

/2
.0

9
e

-3
/3

6
k
 

0
.8

4
2

/2
.1

1
e

-3
/ 2

0
k
 

0
.8

4
1

/2
.1

2
e

-3
/1

0
0

k
 

0
.8

4
2

/2
.1

0
e

-3
/5

6
2

k
 

0
.9

0
2

/2
.7

5
e

-3
/4

4
k
 

0
.9

0
2

/2
.7

5
e

-3
/ 2

4
k
 

0
.9

0
2

/2
.7

5
e

-3
/2

9
k
 

0
.9

0
3

/2
.7

4
e

-3
/1

5
8

k
 

θ 2
 

= 
1

0
 0
 

0
.8

4
1

/2
.1

0
e

-3
/3

7
k
 

0
.8

4
1

/2
.0

8
e

-3
/2

3
k
 

0
.8

4
1

/2
.1

3
e

-3
/1

0
3

k
 

0
.8

4
2

/2
.1

2
e

-3
/5

6
0

k
 

0
.9

0
3

/2
.7

5
e

-3
/4

8
k
 

0
.9

0
2

/2
.7

5
e

-3
/3

0
k
 

0
.9

0
2

/2
.7

5
e

-3
/4

1
k
 

0
.9

0
3

/2
.7

4
e

-3
/1

6
0

k
 

θ 2
 

= 
1

0
 1
 

0
.8

4
2

/2
.0

8
e

-3
/1

1
8

k
 

0
.8

4
2

/2
.0

6
e

-3
/1

1
8

k
 

0
.8

4
1

/2
.1

0
e

-3
/1

5
7

k
 

0
.8

4
3

/2
.1

1
e

-3
/5

7
9

k
 

0
.9

0
3

/2
.7

5
e

-3
/2

0
5

k
 

0
.9

0
3

/2
.7

5
e

-3
/2

0
6

k
 

0
.9

0
3

/2
.7

5
e

-3
/2

1
2

k
 

0
.9

0
4

/2
.7

5
e

-3
/2

8
4

k
 

θ 2
 

= 
1

0
 2
 

0
.8

4
2

/2
.1

5
e

-3
/7

7
0

k
 

0
.8

4
2

/2
.1

3
e

-3
/7

7
3

k
 

0
.8

3
9

/2
.1

8
e

-3
/7

9
2

k
 

0
.8

4
2

/2
.1

0
e

-3
/1

.0
m
 

0
.9

0
2

/2
.7

3
e

-3
/1

.2
m
 

0
.9

0
2

/2
.7

4
e

-3
/1

.2
m
 

0
.9

0
2

/2
.7

4
e

-3
/1

.2
m
 

0
.9

0
2

/2
.7

4
e

-3
/1

.2
m
 

3
rd

O
-T

V
 
w

it
h
 
λ

∗
= 

0
 . 3

5
 

4
th

O
-T

V
 
w

it
h
 
λ

∗
= 

1
 . 2
 

θ 1
 

= 
0
 . 1
 

θ 1
 

= 
1
 

θ 1
 

= 
1

0
 

θ 1
 

= 
1

0
0
 

θ 1
 

= 
0
 . 1
 

θ 1
 

= 
1
 

θ 1
 

= 
1

0
 

θ 1
 

= 
1

0
0
 

θ 2
 

= 
1

0
 −2
 

0
.8

9
7

/3
.8

2
e

-3
/3

5
3

k
 

0
.8

9
6

/3
.8

1
e

-3
/2

0
3

k
 

0
.8

9
6

/3
.8

1
e

-3
/2

1
0

k
 

0
.8

9
6

/3
.8

1
e

-3
/2

1
0

k
 

0
.8

9
4

/4
.0

4
e

-3
/1

.7
m
 

0
.8

9
2

/4
.0

6
e

-3
/4

0
4

k
 

0
.8

9
3

/4
.1

2
e

-3
/3

0
3

k
 

0
.8

9
3

/4
.1

1
e

-3
/2

9
1

k
 

θ 2
 

= 
1

0
 −1
 

0
.8

9
6

/3
.8

1
e

-3
/2

2
9

k
 

0
.8

9
6

/3
.8

1
e

-3
/7

2
k
 

0
.8

9
6

/3
.8

1
e

-3
/5

5
k
 

0
.8

9
6

/3
.8

1
e

-3
/5

4
k
 

0
.8

9
4

/4
.0

3
e

-3
/1

.6
m
 

0
.8

9
2

/4
.0

4
e

-3
/2

3
2

k
 

0
.8

9
2

/4
.0

4
e

-3
/9

4
k
 

0
.8

9
0

/4
.0

4
e

-3
/7

5
k
 

θ 2
 

= 
1

0
 0
 

0
.8

9
6

/3
.8

2
e

-3
/2

2
6

k
 

0
.8

9
6

/3
.8

1
e

-3
/4

5
k
 

0
.8

9
7

/3
.8

1
e

-3
/ 3

3
k
 

0
.8

9
6

/3
.8

1
e

-3
/3

4
k
 

0
.8

9
1

/4
.0

3
e

-3
/1

.5
m
 

0
.8

9
0

/4
.0

5
e

-3
/2

2
8

k
 

0
.8

9
1

/4
.0

5
e

-3
/5

2
k
 

0
.8

9
1

/4
.0

5
e

-3
/ 4

2
k
 

θ 2
 

= 
1

0
 1
 

0
.8

9
5

/3
.8

2
e

-3
/2

6
9

k
 

0
.8

9
7

/3
.8

2
e

-3
/1

9
6

k
 

0
.8

9
7

/3
.8

2
e

-3
/2

0
0

k
 

0
.8

9
7

/3
.8

2
e

-3
/2

0
2

k
 

0
.8

9
2

/4
.0

2
e

-3
/1

.4
m
 

0
.8

9
4

/4
.0

4
e

-3
/3

1
0

k
 

0
.8

9
2

/4
.0

5
e

-3
/2

2
7

k
 

0
.8

9
2

/4
.0

5
e

-3
/2

3
3

k
 

θ 2
 

= 
1

0
 2
 

0
.8

9
6

/3
.8

3
e

-3
/1

.2
m
 

0
.8

9
6

/3
.8

3
e

-3
/1

.2
m
 

0
.8

9
6

/3
.8

3
e

-3
/1

.2
m
 

0
.8

9
6

/3
.8

3
e

-3
/1

.2
m
 

0
.8

9
3

/4
.0

7
e

-3
/1

.7
m
 

0
.8

9
5

/4
.0

5
e

-3
/1

.3
m
 

0
.8

9
4

/4
.0

5
e

-3
/1

.3
m
 

0
.8

9
4

/4
.0

5
e

-3
/1

.3
m
 

 

 

4

p

d

u

j

u

v

p

g

i

p

t  

t

p  

p

s

U

a  

a

d

1

t

(

a

t

(

v

H

p

a

i

m

d

p

i

f

t

d

10 
ages in Fig. 7 for each model. Second: we warp the source 

segmentation mask using the deformation. Third: for each 

region (i.e. LV, LVM and RV), we compute a Dice value between 

the warped source mask and the target mask. The optimal λ
for each model on both image pairs is identified by the peak 

point, as shown in the 2nd and 4th rows of Fig. 8 . It is clear

that as the regularization order goes higher, we need a larger 

λ to reach comparable accuracy, which is largely in line with 

the observation in Fig. 1 . 
• ε1 and ε2 are two relative residuals, given in (13) and (14) , 

which determine the actual number of warpings and iterations 

in Algorithm 1 , respectively. In the final comparative experi- 

ments next, we assign 2% to ε1 and 10 −5 to ε2 . We also set 

N warp = 5 and N iter = 500 to guarantee the algorithm will stop 

at some point. 
• scale is a multi-scale parameter and introduced to ease the 

minimization difficulty of original non-convex problem (1) , and 

it relates to the size of object of interest in the image. For 

our datasets, downsampling the images to 1/4 of original size 

is favourable as otherwise the heart regions vanish, as shown 

in the last column of Fig. 7 . For this reason, we select scale =
{ 4 , 2 , 1 } for the comparative experiments next. 

.5. Comparison with the state-of-the-art 

Knowing the behavior of built-in parameters, we then com- 

are their performance with SOTA methods on three MR image 

atasets, both quantitatively and qualitatively. The first dataset 

sed is UKBB-1 [55] , where we randomly select 220 healthy sub- 

ects and for each subject we have a corresponding 4D (3D+ t) vol- 

me with t = 50 representing a complete cardiac cycle. For each 

olume, the in-plane resolution of each image slice is 1 . 8 × 1 . 8 mm 

2 

er pixel and the through-plane resolution is 10 mm . Due to large 

aps between slices, it is physiologically implausible to do 3D reg- 

stration. The second dataset comes from ACDC [56] which is com- 

osed of 100 patients with four types of pathology. In this dataset, 

he image slice thickness changes from 5 mm to 10 mm and the spa-

ial resolution varies from 1.34 mm to 1.68 mm per pixel. We resam- 

le in-plane resolutions of all images to 1 . 8 × 1 . 8 mm 

2 before ex-

eriments. In addition to the first two datasets which contain only 

hort-axis cardiac images, we use a third dataset which is from 

KBB-2. This dataset contains long-axis images from 220 subjects 

nd the resolution of each image is 1 . 8 × 1 . 8 mm 

2 per pixel. For

ll three datasets, we perform experiments on images at the end- 

iastolic (ED) and end-systolic (ES) frames and crop the image to 

28 × 128 pixels. For short-axis datasets, we only use middle ven- 

ricular slices. As an example, we show a pair of short-axis images 

top) and long-axis images (bottom) in Fig. 7 . 

To evaluate the accuracy of resulting deformations, we use Dice 

nd Hausdorff distance (HD) as the quantitative matrices. For Dice, 

he segmentation masks of LV, LVM and RV at ED (target) and ES 

source) frames are used, which are available in all datasets. Dice 

aries from 0-1, with high values corresponding to a better match. 

D is computed on an open-ended scale, with smaller values im- 

lying a better result. To compute these matrices for paired im- 

ges, we estimate the deformation by registering the ES image to 

ts respective ED image. With the deformation, we deform the seg- 

entation mask at ES to ED and measure its overlap and contour 

istance to the ED mask using Dice and HD, respectively. 

We compare our models with the following 5 SOTA ap- 

roaches. Note that for learning-based methods, we split UKBB-1 

nto 100/20/100, ACDC into 40/20/40, and UKBB-2 into 100/20/100 

or training. validation, and test. The regularization weights in the 

hree methods are selected to maximize the performance on vali- 

ation sets. All methods are compared on test sets only. 
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Table 5 

Comparison of image registration performance using different methods. ‘All’ means that Dice or HD is computed by averaging that of LV, LVM 

and RV of all subjects in the test set. Here mean values are reported for UKBB-1, ACDC, and UKBB-2, separately. Note that apart from FFD 

which is tested on a CPU, we use a A100 GPU (40G RAM) to run the other methods. 

Methods UKBB-1 

Dice HD Runtime 

LV LVM RV ALL LV LVM RV ALL Training (hour) Testing (ms) 

FFD [10] 0.947 0.755 0.875 0.859 4.104 5.078 8.625 5.936 – 16630 

VoxelMorph [2] 0.949 0.816 0.886 0.884 3.474 3.507 8.397 5.126 3.42 6.24 

Siamese [32,57] 0.955 0.685 0.852 0.831 3.635 8.450 10.41 7.498 3.42 7.03 

SYM-Net [58] 0.958 0.840 0.894 0.897 3.143 3.139 8.304 4.862 3.10 7.84 

Bspline-Net [59] 0.953 0.825 0.893 0.890 3.333 3.374 8.192 4.966 3.23 8.39 

1stO-TV 0.955 0.811 0.893 0.886 3.307 3.856 8.248 5.137 – 570.13 

2ndO-TV 0.958 0.833 0.895 0.895 3.040 3.174 7.680 4.631 – 746.07 

3rdO-TV 0.956 0.832 0.889 0.892 3.089 3.338 7.878 4.769 – 797.88 

4thO-TV 0.954 0.829 0.891 0.891 3.238 3.863 7.819 4.973 – 1029.96 

Methods ACDC 

Dice HD Runtime 

LV LVM RV ALL LV LVM RV ALL Training (hour) Testing (ms) 

FFD [10] 0.939 0.799 0.850 0.863 4.612 5.619 7.814 6.015 – 31230 

VoxelMorph [2] 0.933 0.801 0.854 0.863 4.878 5.269 8.992 6.380 1.32 5.65 

Siamese [32,57] 0.907 0.692 0.846 0.815 7.248 8.592 9.126 8.322 1.34 5.97 

SYM-Net [58] 0.916 0.797 0.848 0.854 5.105 5.110 8.155 6.124 1.32 6.67 

Bspline-Net [59] 0.906 0.786 0.827 0.839 5.432 4.899 8.508 6.279 1.28 6.36 

1stO-TV 0.922 0.796 0.868 0.862 5.495 6.247 8.263 6.668 – 497.62 

2ndO-TV 0.944 0.817 0.865 0.875 4.750 5.055 8.328 6.044 – 435.56 

3rdO-TV 0.939 0.817 0.857 0.871 5.236 5.384 8.031 6.217 – 828.02 

4thO-TV 0.933 0.821 0.855 0.870 5.060 4.718 8.165 5.981 – 937.83 

Methods UKBB-2 

Dice HD Runtime 

LV LVM RV ALL LV LVM RV ALL Training (hour) Testing (ms) 

FFD [10] 0.875 0.757 0.724 0.785 7.609 3.602 9.216 6.809 – 5150 

VoxelMorph [2] 0.884 0.717 0.760 0.787 7.999 9.106 12.322 9.809 1.30 3.83 

Siamese [32,57] 0.897 0.744 0.726 0.789 7.487 7.664 12.851 9.334 1.33 4.09 

SYM-Net [58] 0.900 0.769 0.745 0.808 7.119 8.120 12.908 9.307 1.22 3.67 

Bspline-Net [59] 0.898 0.738 0.762 0.803 6.323 7.372 12.644 8.687 1.22 3.94 

1stO-TV 0.883 0.763 0.743 0.796 7.018 3.872 9.128 6.672 – 435.20 

2ndO-TV 0.877 0.800 0.766 0.814 6.845 3.188 8.563 6.199 – 655.78 

3rdO-TV 0.869 0.782 0.760 0.804 7.709 4.223 8.865 6.932 – 823.81 

4thO-TV 0.866 0.774 0.764 0.801 8.471 4.935 8.612 7.340 – 1070.49 

 

m

r

• The first one is an optimization-based method using B-spline 

free form deformation (FFD) [10] which ranks top three among 

14 non-rigid registration methods [60] and therefore is a strong 

baseline. For this method, we use the official MIRTK implemen- 

tation 

5 . In terms of parameters, we use SSD as similarity and 

Bending energy as regularization. Moreover, a three-level multi- 

scale approach (similar to ours) is used where the spacing of 

B-spline control points on the highest scale is set to 8 mm . 
• The second method is a learning-based method called Voxel- 

Morph 

6 from [2] . For this method, we first pass a pair of ED

and ES images through a 2D deterministic U-Net [61] , the out- 

put prediction of which is a displacement field. The ES image 

is then warped using the displacement field in a bilinear spa- 

tial transformation layer [62] . The loss function is a combina- 

tion of similarity (MSE between the warped ES image and the 

ED image) and smoothness (first-order diffusion regularization). 

We note that a recent work [63] has proved that using U-Net 

as backbone is still very competitive and can be more effective 

than transformer-based methods [64] . 
5 https://github.com/BioMedIA/MIRTK . 
6 https://github.com/voxelmorph/voxelmorph . 

w

11 
• The third method 

7 we compare is from [32,57] . Its idea is dif- 

ferent from VoxelMorph in two aspects: (1) the U-Net is re- 

placed with a Siamese style multi-scale network; (2) the loss 

controlling smoothness is replaced with the Huber loss [65] . 
• The fourth method we compare is SYM-Net 8 from [58] . The 

backbone of this network is U-Net, which predicts a station- 

ary velocity field. Scaling and Squaring is then applied to this 

velocity field to produce the final deformation. We use the MSE 

and diffusion regularization loss for SYM-Net. 
• The fifth method we compare is Bspline-Net 9 from [59] . The 

backbone of this network is U-Net, which predicts stationary 

velocities of the control points. The deformation is obtained 

by first evaluating B-spline functions at the control points and 

then integrating via Scaling and Squaring. We use the MSE and 

diffusion regularization loss for Bspline-Net. 

In Table 5 , we show the quantitative results of using different 

ethods on UKBB-1, ACDC, and UKBB-2. We observe that the best 

esults on UKBB-1, highlighted in bold, come from either SYM-Net 
7 https://github.com/qiuhuaqi/cardiac-motion . 
8 https://github.com/cwmok/Fast- Symmetric- Diffeomorphic- Image- Registration- 

ith- Convolutional- Neural- Networks . 
9 https://github.com/qiuhuaqi/midir . 

https://github.com/BioMedIA/MIRTK
https://github.com/voxelmorph/voxelmorph
https://github.com/qiuhuaqi/cardiac-motion
https://github.com/cwmok/Fast-Symmetric-Diffeomorphic-Image-Registration-with-Convolutional-Neural-Networks
https://github.com/qiuhuaqi/midir
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Fig. 9. Comparing visual results obtained by different registration methods on one representative example from UKBB-1. 1st column shows original images (on 1st and 3rd 

slots), segmentation masks (on 2nd and 4th slots), and absolute differences (on 5th slot) between corresponding source and target; 2nd-10th columns show FFD, VoxelMorph, 

Siamese, SYM-Net, Bspline-Net, 1stO-TV, 2ndO-TV, 3rdO-TV, and 4thO-TV results, respectively; 1st-5th rows (excluding 1st column) show warped sources, warped source 

masks (with contours from target mask superimposed), deformation grids, displacement fields, and absolute differences between corresponding warped sources and target, 

respectively. 

o

b

a

a

T

t

o

n

W

b

n

b

t

t

o

m

o

t

p

a

t

p

a

t

t

t

b

n  

r

c

a

m  

p

t  

t

a

5

t

o

r

fi

h

f

t

c

b

a

c

p

b

a

a

i

h

h

p

r our proposed methods, among which 2ndO-TV performs the 

est and both 3rdO-TV and 4thO-TV are competitive. On ACDC, FFD 

nd 4thO-TV are better in term of HD, while 1stO-TV, 2ndO-TV 

nd 4thO-TV are better in terms of Dice. On UKBB-2, our 2ndO- 

V consistently outperforms other methods on most anatomies in 

erms of both Dice and HD. Overall, our methods are superior to 

ther compared methods in most cases, indicating the effective- 

ess of using model-based approaches for this unsupervised task. 

hen considering only inference time in Table 5 , deep-learning 

ased methods outperform our proposed methods, but this does 

ot account for the significant amount of training time required 

y deep learning-based methods. One advantage of our method is 

heir overall efficiency (up to a second runtime), owing to the fact 

hey are model-driven and free of training. 

In Fig. 9 and 10 , we compare visual results of different meth- 

ds. FFD, built on a L 2 regularization, over-smooths the displace- 

ent field, leading to a under-estimated mask warping. Our meth- 

ds (last 4 columns of each figure), which use a L 1 regulariza- 

ion, are able to preserve discontinuities. As such, the resultant dis- 

lacement fields are more dense and clustered (indicated by red 

rrows in Fig. 10 ), and their warped masks are therefore closer 

o their respective ground truths. For displacement fields, 1stO-TV 

roduces staircase artifacts and the smoothness induced does not 

ppear strong enough to regularize the deformation grid. In con- 

rast, higher-order models (last 3 columns of each figure) are able 

o reconstruct piecewise smooth deformations. We also observe 

hat learning-based methods perform less accurately than model- 

ased methods. The improved accuracy of our methods is promi- 

ent in the first row in Fig. 10 where the mitral valve (indicated in

ed circles) in the warped source images can be seen to be signifi- 

antly closer to its position in the target image when our methods 
o

12 
re applied. Additionally an improved correspondence to the target 

ask can be observed in the second row of Fig. 10 . Again, this is

articularly obvious in the region close to the mitral valve. Collec- 

ively, Fig. 9 and 10 , together with Table 5 , provide ample evidence

hat our methods have the capability of registering images robustly 

nd accurately. 

. Conclusion 

In this paper, we have proposed a new variational model, where 

he regularization is a term that involves a derivative of arbitrary 

rder. We have then proposed a point-wise, closed-form and over- 

elaxed ADMM solver, providing an easy way to accurately and ef- 

ciently solve this general model. We have also presented compre- 

ensive derivations, theorems, proofs and experiments for relevant 

ormulations and claims. Extensive experiments have shown that 

he proposed approaches outperform state-of-the-art methods, in- 

luding the subgradient method, primal dual, FFD, and learning- 

ased methods. The proposed regularization method and acceler- 

ted ADMM solver can be generalized to many other image pro- 

essing problems. 

These experimental results in Fig. 3 and Table 5 deliver two im- 

ortant messages: (1) The best performance is not always achieved 

y only one specific model (e.g. 2nd-order TV); (2) Depending on 

pplications, one should select suitable models carefully. For ex- 

mple, when the underlying distribution of a displacement field 

s piecewise constant, the 1st-order TV should be used, which is 

owever not suitbale for large displacements as compared to its 

igher-order counterparts. As the displacement field in Fig. 3 is 

iecewise quadratic, we are expecting the 3rd-order and 4th- 

rder TVs to outperform the 1st-order and 2nd-order TVs. This 
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Fig. 10. Same visual results as in Fig. 9 , but from a different example in UKBB-2. 
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n  
s because both the 3rd-order and 4th-order derivatives possess a 

uadratic behaviour. The reason why in Table 5 most of the best 

uantitative results come from the 2nd-order TV is that the un- 

erlying displacement field mostly likely follows a piecewise linear 

istribution. 

One drawback of our proposed methods is that they produce 

olding (singular, non-invertible points) in resultant deformation 

rids (see Fig. 9 and 10 ), which may lead to numerical instability 

r warping artifacts. This problem can be eased by using a large 

egularization parameter λ and a good example can be seen in 

ig. 1 , where the deformation grid gradually gets disentangled as 

e increase the value of λ. However, setting λ too big reduces the 

eformation magnitude and therefore loses the ability to model 

arge deformations. To tackle this dilemma, we will combine dif- 

eomorphisms [7,66,67] with our discontinuous regularizations in 

ur future research, which are capable to compute smooth, invert- 

ble spatial transformations between images. 
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ppendix A 

In this section, we show in detail how to derive the solution of 

 −subproblem in Section 3.1 . At its core, this requires to solve a 

oisson-like equation. In the following, we start from a 1D prob- 

em, followed by deriving the respective 2D problem. The general 

ases are given at the end of this section. Note that our deriva- 

ions on the 1D problem below are inspired by Section 4.5.1 in 

68] . However, for the Neumann boundary conditions their deriva- 

ions do not up directly with the DCT coefficients (eigenvalues) and 

asises (eigenvectors). 

1. One-dimensional problem 

The 1D Poisson equation is given as 

 (x ) − d 2 U (x ) 

dx 2 
= F (x ) , a ≤ x ≤ b. (A.1) 

nder the Neumann boundary conditions , we have U 

′ (a ) = 0 and

 

′ (b) = 0 . On a regular grid, the resulting discretization (using a 

nite difference method) of above differential equation leads to a 

inear system: 

I n − T n ) u = f . (A.2) 

ere, u and f are respectively the discrete vectors of U(x ) and F (x )

nd each vector has a length of n ; I n is an identity matrix of size

 × n ; and T n is a tridiagonal coefficient matrix of size n × n , which
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10 In DCT, the scaling weights are applied to make sure the norm of each eigen- 

vector is unit 
as the form of 

 n = 

⎛ ⎜ ⎜ ⎝ 

−1 1 

1 −2 1 

· · ·
1 −2 1 

1 −1 

⎞ ⎟ ⎟ ⎠ 

. (A.3) 

f note, T n has a highly structured eigensystem that is closely re- 

ated to some fast trigonometric transform. In other words, T n can 

e efficiently diagonalized by some eigenvectors. The goal here 

herefore is to establish these eigensystem/transform connections 

o show how they can be used to design a very fast and effective

ossion solver. Next, we examine the eigenstructure of such a ma- 

rix. 

Let θ be any real number and for any integer k , let c k = 

os 
((

k + 

1 
2 

)
θ
)

and s k = sin 

((
k + 

1 
2 

)
θ
)
. Considering the following 

wo trigonometric identities: 

 k −1 = cos (θ ) c k + sin (θ ) s k and c k +1 = cos (θ ) c k − sin (θ ) s k . 

y adding the first identity to the second we have 

 k −1 − 2 cos (θ ) c k + c k +1 = 0 , (A.4) 

hich will be used to compute the eigenvectors and eigenvalues 

f T n . 

emma 1. Suppose θ ∈ R , if c k = cos 
((

k + 

1 
2 

)
θ
)

for k = 0 , ..., n − 1 ,

e have 

 n 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 0 
c 1 
. . . 

c n −2 

c n −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 2 ( cos (θ ) − 1 ) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 0 
c 1 
. . . 

c n −2 

c n −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 0 − c −1 

0 

. . . 
0 

c n −1 − c n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(A.5) 

roof. From the definition of T n in (A.3) , we obtain 

 n 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 0 
. . . 

c k 
. . . 

c n −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c −1 − 2 c 0 + c 1 
. . . 

c k −1 − 2 c k + c k +1 

. . . 
c n −2 − 2 c n −1 + c n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 0 − c −1 

. . . 
0 

. . . 
c n −1 − c n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

ocusing on the first component in the right-hand side of the 

quation above, together with the identity (A.4) , we have the fol- 

owing simple derivation 

c k −1 − 2 c k + c k +1 = c k −1 − 2 cos (θ ) c k + c k +1 ︸ ︷︷ ︸ 
0 

+2 ( cos (θ ) − 1 ) c k , 

hich verifies that (A.5) holds. �

We will use this lemma to identify important properties (i.e. 

igenvectors and eigenvalues) of the matrix T n that arise in solving 

A.2) . We start with the following theorem. 

heorem 2. Let C k, j = cos 

((
k + 

1 
2 

)
jπ
n 

)
for k = 0 , ..., n − 1 and j =

 , ..., n − 1 . If V = C k, j and 

j = 2 

(
cos 

(
jπ

n 

)
− 1 

)
, (A.6) 

e have 

 

−1 T n V = diag (λ0 , ..., λn −1 ) , (A.7) 

here V consists of the eigenvectors of T n and the diagonal entries λ j 

re the corresponding eigenvalues of T n . 
14 
roof. Let’s pull our attention back to the equation (A.5) in 

emma 1 , and recall that c k = cos 
((

k + 

1 
2 

)
θ
)

and that the cosine 

unction is an even function. As such, the following equation auto- 

atically holds 

 0 − c −1 = cos 

(
1 

2 

θ
)

− cos 

(
−1 

2 

θ
)

= 0 . 

n addition, if we define nθ = jπ for j = 0 , ..., n − 1 , we end up

ith 

= 

jπ

n 

, 

nd the following equation also holds 

c n −1 − c n = cos 
((

n − 1 
2 

)
θ
)

− cos 
((

n + 

1 
2 

)
θ
)

= 2 sin ( nθ ) sin 

(
θ
2 

)
= 0 . 

ow if we plug c 0 − c −1 = 0 , c n −1 − c n = 0 and θ = jπ/n, j =
 , ..., n − 1 into (A.5) , we obtain 

T n 

⎡ ⎢ ⎣ 

cos 
((

0 + 

1 
2 

)
jπ
n 

)
. . . 

cos 
((

n − 1 + 

1 
2 

)
jπ
n 

)
⎤ ⎥ ⎦ 

= 2 

(
cos 

(
jπ
n 

)
− 1 

)
⎡ ⎢ ⎣ 

cos 
((

0 + 

1 
2 

)
jπ
n 

)
. . . 

cos 
((

n − 1 + 

1 
2 

)
jπ
n 

)
⎤ ⎥ ⎦ 

. 

he theorem has been proved because above the eigenvalues are 

qual to that defined in (A.6) and the eigenvectors are equal to V
r C k, j in (A.7) . �

Now, we are almost ready to seek a solution to the discrete dif- 

erential equation (A.2) . First, with the eigensystem (A.7) we can 

erive 

I n − T n ) −1 = V(I n − D n ) 
−1 V −1 , (A.8) 

here D n = diag (λ0 , ..., λn −1 ) . By using the fast eigensystem 

A.8) of T n , we are finally able to solve the linear system of 

I n − T n ) u = f as follows: 

u ← V −1 f, 

u ← (I n − D n ) −1 u, 

u ← Vu. 

y definition, one knows that the multiplication of a vector by V is 

quivalent to performing an inverse discrete cosine transform (DCT) 

ith some scaling weights 10 on a 1D grid. 

2. Two-dimensional problem 

We now extend the Poisson problem from 1D to 2D. For the 

atter case, we are given a function F (x, y ) defined on 

 = { (x, y ) , a ≤ x ≤ b, c ≤ y ≤ d } , 
nd want to determine U(x, y ) such that 

(x, y ) −
(

∂ 2 U(x, y ) 

∂x 2 
+ 

∂ 2 U(x, y ) 

∂y 2 

)
= F (x, y ) , (A.9) 

ubject to the Neumann boundary conditions . On a 2D Cartesian 

rid of size m × n , the resulting discretization (using a 2D finite 

ifference method) of the above second-order PDE leads to a lin- 

ar system: 

 u = f with M = I m 

� I n − (T m 

� I n + I m 

� T n ) . (A.10)
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A

n the linear system, � denotes Kronecker product . u and f are two 

ectors resulting from the discretization of U(x, y ) and F (x, y ) re-

pectively and the length of each vector is of mn . In practical, one

eeds to concatenate all the columns (or rows) in a discrete rect- 

ngle matrix (i.e. an image) to form a long vector, like u or f .

 ∈ R 

mn ×mn above is a sparse matrix. The following theorem tells 

s that M can be diagonalized efficiently. 

heorem 3. Suppose M = I m 

� I n − (T m 

� I n + I m 

� T n ) is

on-singular with T m 

∈ R 

m ×m and T n ∈ R 

n ×n . If V −1 
m 

T m 

V m 

= D m 

,

 

−1 
n T n V n = D n , and f ∈ R 

mn , then the solution to M u = f is given by

 = ( V m 

� V n ) A 

(
V −1 

m 

� V −1 
n 

)
f, 

here A = [ I m 

� I n − (D m 

� I n + I m 

� D n ) ] 
−1 

. 

roof. According to the Kronecker mixed-product property, the 

ollowing identities hold 

( V −1 
m 

� V −1 
n ) (I m 

� I n )( V m 

� V n ) 
= (V −1 

m 

I m 

V m 

) � (V −1 
n I n V n ) = I m 

� I n , 
( V −1 

m 

� V −1 
n ) (T m 

� I n )( V m 

� V n ) 
= (V −1 

m 

T m 

V m 

) � (V −1 
n I n V n ) = D m 

� I n , 
( V −1 

m 

� V −1 
n ) (I m 

� T n )( V m 

� V n ) 
= (V −1 

m 

I m 

V m 

) � (V −1 
n T n V n ) = I m 

� D n . 

ombing these three identities, we have 

 V −1 
m 

� V −1 
n ) M ( V m 

� V n ) = I m 

� I n − (D m 

� I n + I m 

� D n ) , 

hich implies that the theorem follows. �

Putting this in an array format, we have the following frame- 

ork that solves the linear system (A.10) formally: 

u ← ( V −1 
m 

� V −1 
n ) f, 

u ← [ I m 

� I n − (D m 

� I n + I m 

� D n )] −1 u, 

u ← ( V m 

� V n ) u. 

(A.11) 

ote that here the multiplication of a vector by V −1 
m 

� V −1 
n is equiv- 

lent to applying an 2D DCT to the 2D matrix representation of 

hat vector (normally through reshaping) on a m × n sized grid. As 

oth the matrices I m 

� I n and D m 

� I n + I m 

� D n are diagonal, we

an convert the matrix-vector multiplication into a point-wise di- 

ision performing on the grid, which reads 

[ I m 

� I n − (D m 

� I n + I m 

� D n )] −1 u = 

U 
1 −( 2 cos ( qπm ) + 2 cos ( rπn ) −4 ) 

, 

here r ∈ [0 , n ) and q ∈ [0 , m ) are the integer indices and U ∈
 

m ×n is equivalent to u after reshaping back to the m × n sized 

rid. 1 −
(
2 cos 

(
qπ
m 

)
+ 2 cos 

(
rπ
n 

)
− 4 

)
is a coefficient matrix result- 

ng from solving the discrete second-order PDE of (A.9) . 

3. General higher-order problems 

With the knowledge from Section A.2 , we further study simi- 

ar, but more general higher-order 11 PDE problems in 2D. However, 

he theorems established here have no problem to extend to 3D 

ases. Given an arbitrary order PDE with the Neumann boundary 

onditions , we should be aware that there exists a respective linear 

ystem M u = f , where the sparse matrix M is different depending 

n the order. For a general higher-order PDE defined on a m × n 2D

rid, M has the following general form: 

 = I m 

� I n + (−1) s 
s ∑ 

p=0 

(
s 
p 

)(
T s −p 

m 

� T p n 

)
, (A.12) 
11 By higher order, we mean that the order s in (A.12) should be greater than 1. 

owever, our derivations in this section still follow when s = 1 , because (A.12) is 

quivalent to M in (A.10) when s = 1 . 

r

g

15 
nd 

s 
p 

)
= 

p−1 ∏ 

l=0 

s − l 

p − l 

s a positive integer known as the binomial coefficient. Note that 

he subscript s − p on T m 

and the superscript p on T n denote the 

ower of the matrix. (−1) s 
∑ s 

p=0 

(
s 

p 

)(
T s −p 

m 

� T p n 

)
is equivalent 

o (−1) s D( div 
s ∇ 

s ) in (10) . 

heorem 4. Suppose that M = I m 

� I n + 

−1) s 
∑ s 

p=0 

(
s 

p 

)(
T s −p 

m 

� T p n 

)
is non-singular with T m 

∈ R 

m ×m 

nd T n ∈ R 

n ×n . If V −1 
m 

T m 

V m 

= D m 

, V −1 
n T n V n = D n , and f ∈ R 

mn , then

he solution to M u = f is given by 

u = ( V m 

� V n ) B 

(
V −1 

m 

� V −1 
n 

)
f, 

here B = [ I m 

� I n + (−1) s 
s ∑ 

p=0 

(
s 

p 

)(
D 

s −p 
m 

� D 

p 
n 

)
] −1 . 

roof. First, we show that the following derivation follows 

(V −1 
n T n V n ) p = (V −1 

n T n V n )(V −1 
n T n V n ) · · · (V −1 

n T n V n ) ︸ ︷︷ ︸ 
repeat p times 

= V −1 
n T 

p 
n V n = D 

p 
n . 

s such, we obtain 

( V −1 
m 

� V −1 
n ) 

(
(−1) s 

s ∑ 

p=0 

(
s 
p 

)(
T s −p 

m 

� T p n 

))
( V m 

� V n ) 

= (−1) s 
s ∑ 

p=0 

(
s 
p 

)(
V −1 

m 

T s −p 
m 

V m 

� V −1 
n T 

p 
n V n 

)
= (−1) s 

s ∑ 

p=0 

(
s 
p 

)(
D 

s −p 
m 

� D 

p 
n 

)
, 

hich implies that the theorem follows. �

Putting this in an array format, we have the following frame- 

ork that formally solves the linear system M u = f with M de- 

ned in (A.12) : 

u ← ( V −1 
m 

� V −1 
n ) f, 

u ← [ I m 

� I n + (−1) s 
∑ s 

p=0 

(
s 
p 

)(
D 

s −p 
m 

� D 

p 
n 

)
] −1 u, 

u ← ( V m 

� V n ) u. 

(A.13) 

inally, as both the matrices I m 

� I n and 

−1) s 
∑ s 

p=0 

(
s 

p 

)(
D 

s −p 
m 

� D 

p 
n 

)
are diagonal, we can convert 

he matrix-vector multiplication into a point-wise division per- 

orming on the 2D grid, which reads 

[ I m 

� I n + (−1) s 
s ∑ 

p=0 

(
s 
p 

)(
D 

s −p 
m 

� D 

p 
n 

)
] −1 u 

= 

U 
1+(−1) s (2 cos ( qπm ) +2 cos ( rπn ) −4 ) s 

, 

here (−1) s ( 2 cos 
(

qπ
m 

)
+ 2 cos 

(
rπ
n 

)
− 4 ) s is the coefficient matrix 

esulting from applying the fast trigonometric transform (i.e. DCT) 

o the higher-order linear PDE. This coefficient is the same to (11) . 

ppendix B 

In this section, we develop and implement a primal-dual algo- 

ithm to minimize the proposed model (2b) . We first introduce the 

eneral primal dual and then apply it to (2b) . 
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1. General primal dual 

Similar to ADMM, primal dual tackles saddle-point problems 

nd usually considers the form 

in 

x ∈ X 
max 

y ∈ Y 
F (x ) + λ〈 Kx, y 〉 − G (y ) , (B.1) 

here X and Y are two finite-dimensional real vector spaces, K : 

 → Y is a continuous linear operator, and F : X → [0 , + ∞ ) and

 : Y → [0 , + ∞ ) are convex functions. λ usually is a smooth pa-

ameter. Given the adjoint operator K 

∗, the primal-dual algorithm 

o optimise such an objective function is listed in Algorithm 2 . 

Algorithm 2: General Primal-Dual Algorithm 

Input variables : x 0 ∈ X , y 0 ∈ Y and ̂

 x 0 = x 0 

Input parameters : λ > 0 , σ > 0 , τ > 0 

while Not Con v erged do 

y k +1 = ( I + σ∂G ) 
−1 

(
y k + λσK ̂

 x k 
)

x k +1 = ( I + τ∂F ) 
−1 

(
x k − λτK 

∗y k +1 
)

̂ x k +1 = x k +1 + θ
(
x k +1 − x k 

)
Note that x −update and y −update in the algorithm respectively 

se the proximal operators of G and F , which correspond to the 

ollowing two minimization problems 

( I + σ∂G ) 
−1 

( ̂  y ) = arg min 

y ∈ Y 
G (y ) + 

1 
2 σ ‖ 

y −̂ y ‖ 

2 
2 , 

( I + τ∂F ) 
−1 

( ̂  x ) = arg min 

x ∈ X 
F (x ) + 

1 
2 τ ‖ 

x −̂ x ‖ 

2 
2 . 

ote that λ and the step sizes σ and τ need to satisfy λστ < 

1 
r( K ∗K ) 

for the algorithm to converge, where r( K 

∗K ) denotes the 

pectral radius of the matrix K 

∗K . Also note that ̂ x −update in 

lgorithm 2 is an extrapolation prediction step of the form ̂

 x k +1 = 

 

k +1 + θ
(
x k +1 − x k 

)
, where θ = 1 has been used in convex prob- 

ems such as motion estimation [31] . It have been analyzed for 

 −1 , 1] in [69] . Some authors have also suggested adaptive step 

izes [70] . In this study, we set θ = 1 to gain the acceleration of

peed. 

2. Applying primal dual to (2b) 

We now apply Algorithm 2 to our problem (2b) , which is 

in 

u 
‖ 

ρu ω (u ) ‖ 1 + λ
∑ 

i, j 

√ | ( ∇ 

n u 1 ) i, j | 2 + | ( ∇ 

n u 2 ) i, j | 2 . (B.2) 

he minimization problem (B.2) can be converted equivalently to a 

addle-point problem by writing the regularization term as a max- 

mization, i.e. 

max 
 

q ‖ ∞ ≤1 
〈 q , ∇ 

n u 〉 , (B.3) 

ver the dual variables q = (q 1 , q 2 ) for q 1 ∈ (R 

M×N ) 2 
n 

and q 2 ∈
R 

M×N ) 2 
n 
. The inner product in (B.3) is defined as 

 q , ∇ 

n u 〉 = 

∑ 

i, j 

2 n ∑ 

l=1 

[ 
( q 1 ) 

l 
i, j ( ∇ 

n u 1 ) 
l 
i, j + ( q 2 ) 

l 
i, j ( ∇ 

n u 2 ) 
l 
i, j 

] 
, 

nd ‖ q ‖ ∞ 

in (B.3) is the maximum norm which has the form of 

 

q ‖ ∞ 

= max 
i, j 

√ | ( q 1 ) i, j | 2 + | ( q 2 ) i, j | 2 . 
ith these, we can define a convex set for which the dual maxi- 

ization (B.3) is taken over 

 = 

{
q = (q 1 ∈ (R 

M×N ) 2 
n 

, q 2 ∈ (R 

M×N ) 2 
n 

) : ‖ 

q ‖ ∞ 

≤ 1 

}
. 
16 
e then introduce the indicator function of the set Q

( q ) = 

{
0 if q ∈ Q 

+ ∞ if q / ∈ Q 

. (B.4) 

With (B.3) and (B.4) , the non-smooth, regularized problem 

B.2) can be written in its primal-dual form 

in 

u 
max 

q 
‖ 

ρu ω (u ) ‖ 1 + λ〈 q , ∇ 

n u 〉 − δ( q ) , (B.5) 

hich is a saddle-point problem in the form of (B.1) with x = u ,

 = q , F = ‖ ρu ω (u ) ‖ 1 , G = δ( q ) , X = (R 

M×N ) 2 , Y = Q , K = ∇ 

n and

 

∗ = (−1) n div 
n 
. 

To apply Algorithm 2 , we need to specify the point-wise prox- 

mal operators in y −update and x −update , which respectively cor- 

espond to q −update and u −update below, given by 

 

I + σ∂G ) 
−1 

( ̂  q ) = arg min 

q 
δ( q ) + 

1 
2 σ ‖ 

q −̂ q ‖ 

2 
2 

= 

q i, j 

max 

(√ | ( q 1 ) i, j | 2 + | ( q 2 ) i, j | 2 , 1 
) , 

nd 

 

I + τ∂F ) 
−1 

( ̂  u ) = arg min 

u 
‖ 

ρu ω (u ) ‖ 1 + 

1 

2 τ
‖ 

u −̂ u ‖ 

2 
2 , 

hose closed-form solution can be found in (8) . Finally, the primal 

ual to optimize (2b) is given in Algorithm 3 . 

Algorithm 3: Primal-Dual Algorithm for (2b) 

Input variables : u 

0 = 0 , q 

0 = 0 , and ̂

 u 

0 = u 

0 

Input parameters : λ > 0 , σ > 0 , τ > 0 , λστ < 

1 
8 n 

, and θ = 1 

while Not Con v erged do 

q 

k +1 = ( I + σ∂G ) 
−1 

(
q 

k + λσ∇ 

n ̂ u 

k 
)

u 

k +1 = ( I + τ∂F ) 
−1 

(
u 

k − λτ (−1) n div 
n 
(
q 

k +1 
))

̂ u 

k +1 = u 

k +1 + θ
(
u 

k +1 − u 

k 
)

We remark that the spectral radius (largest absolute eigenvalue) 

f the matrix K 

∗K can be very efficiently computed by applying 

CT to the matrix, i.e., see (11) . Depending on the derivative or- 

er n , we have λστ < 

1 
8 n 

, which can used to select λ, σ and τ in

lgorithm 3 . The proof for this inequality is straightforward as the 

pper bound of (11) is 8 n . Also note that Algorithm 3 needs to be

ombined with Algorithm 1 to minimize (1) . That is to say, in order 

o compute u 

k +1 one just replaces the ADMM updates in the third 

oop in Algorithm 1 with the primal dual updates in Algorithm 3 . 

ppendix C 

In this section, we propose to derive the solution (8) for 

 −subproblem in Section 3.1 using a new primal-dual method dif- 

erent to Appendix Appendix B . Note that our derivations below 

re also different to those proposed in [71] . First, we recall the 

roblem (7) as 

in 

u 
‖ 

ρu ω (u ) ‖ 1 + 

θ2 

2 

2 ∑ 

p 

‖ v p − u p − d p ‖ 

2 
2 , 

here the discrete ρu ω (u ) has been given in (4b) . This minimiza- 

ion problem can be converted equivalently to a saddle-point prob- 

em by writing the first term as a maximization, i.e. 

 

ρu ω (u ) ‖ 1 = max 
‖ z ‖ ∞ ≤1 

〈 ρu ω (u ) , z 〉 , 

ver the dual variable z ∈ R 

M×N , where ‖ z ‖ ∞ 

= max i, j ( abs ( z i, j )) 

nd 〈 ρu ω (u ) , z〉 = 

∑ 

i, j (ρu ω (u )) i, j z i, j . As such, the above minimiza-

ion problem is equivalent to the following primal-dual (min-max) 
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roblem, i.e. 

in 

u 
max 

z: ‖ z ‖ ∞ ≤1 
〈 ρu ω (u ) , z 〉 + 

θ2 

2 

2 ∑ 

p 

‖ v k p − u p − d k p ‖ 

2 
2 , (C.1) 

ver the primal variable u and the dual variable z, respectively. 

If we differentiate (C.1) with respect to u and then set the 

erivative zero, we can obtain the following system of equations, 

rom which we have the closed-form solution of u : 

2 (u − v k + d 

k ) + z∇I ω 1 = 0 → u = v k − d 

k − z 
∇I ω 1 

θ2 

. (C.2)

ow we can plug the solution of u in (C.2) back to (C.1) . In this

ase, (C.1) is converted into a constrained maximization problem 

nly with respect to z: 

max 
: ‖ z ‖ ∞ ≤1 

〈
ρu ω 

(
v k − d 

k − z 
∇I ω 1 

θ2 

)
, z 

〉
+ 

θ2 

2 

∑ 

i, j 

∣∣∣∣z i, j 

(∇I ω 1 ) i, j 

θ2 

∣∣∣∣2 

2 

, (C.3) 

hich can be solved by projected gradient ascent. An important 

ote here is there is no coupling in (C.3) , so we can optimize it

oint-wisely. As (C.3) is differentiable, it is trivial for us to derive 

ts gradient with respect to z, which is ρu ω 

(
v k − d 

k − z 
∇I ω 

1 
θ2 

)
. With 

he gradient, the projected gradient ascent iterates as: 

 

+ 
i, j 

= P Z 

(
z i, j + t ρu ω 

(
v k i, j − d 

k 
i, j − z i, j 

(∇I ω 1 ) i, j 

θ2 

))
, (C.4) 

here P Z (x ) is a projection operator and defined as follows. This 

tep guarantees the solution after projection to satisfy the con- 

traint ‖ z ‖ ∞ 

≤ 1 

 Z (x ) = 

x 

max ( abs (x ) , 1 ) 
. 

n the other hand, t in (C.4) is a step size, which can be found

y using a line search process by plugging the quantity of P Z in 

C.4) to (C.3) and then maximizing the objective with respect to t . 

he optimal t is therefore: 

 = 

θ2 

| (∇I ω 
1 
) i, j | 2 . 

f we now plug this step size back to (C.4) we have a closed-form

olution for z without iterations, which is 

 i, j = P Z 

(
θ2 

| (∇I ω 
1 
) i, j | 2 ρu ω 

(
v k i, j − d 

k 
i, j 

))
. (C.5) 

If we plug (C.5) back into (C.2) we have the closed-form solu- 

ion for u without involving the dual variable z

 i, j = v k i, j − d 

k 
i, j − P Z 

(
θ2 

| (∇I ω 
1 
) i, j | 2 ρu ω 

(
v k i, j − d 

k 
i, j 

)) (∇I ω 1 ) i, j 

θ2 

, (C.6) 

hich is the same to the solution (8) in Section 3.1 . Finally, 

e note that the proposed primal dual here naturally applies 

o deriving the point-wise soft thresholding equation (12) from 

 −subproblem in Section 3.1 . 

For the non-smooth, convex problem (2b) , we can implement 

ts subgradient method directly without introducing any auxiliary 

ariable: 

 

k +1 
i, j 

= u 

k 
i, j − t k (g 

k 
i, j + r k i, j ) , (D.1) 

here the subgradients g ∈ (R 

M×N ) 2 and r ∈ (R 

M×N ) 2 are associ- 

ted with data and regularization term, respectively. By the chain 

ule, these two subgradients can be derived as: 

 

k 
i, j = (∇I ω 1 ) i, j 

sign [(ρu ω (u 

k )) i, j ] if (ρu ω (u 

k )) i, j � = 0 

[ − 1 , 1] if (ρu ω (u 

k )) i, j = 0 

, 
17 
nd 

 

k 
p = λ(−1) n div 

n 
(γ ) , 

ith γ ∈ R 

M×N defined as 

i, j = 

{ 

(∇ 

n u k p ) i, j √ ∑ 

p | (∇ 

n u k p | 2 ) i, j 

if 
∑ 

p | ( ∇ 

n u 

k 
p ) i, j | 2 � = 0 

{ z : | z | ≤ 1 } if 
∑ 

p | ( ∇ 

n u 

k 
p ) i, j | 2 = 0 

. 

or g , the gradient of this function is (ρu ω (u 

k )) i, j / | (ρu ω (u 

k )) i, j |
hen (ρu ω (u 

k )) i, j � = 0 but not well defined at (ρu ω (u 

k )) i, j = 0

ince the denominator will become 0. In r k p , ∀ p = 1 , 2 , z ∈ R 

2 n . For

 p , the gradient is also not well defined when the denominator is 

. In this case, the gradient is any element of the L 2 ball defined

s { z : | z | ≤ 1 } . 
For the subgradient method, we use λ = 0 . 1 and t k = 1 / 

√ 

k . The

efinition follows the diminishing step size rule [54] to guarantee 

lgorithm convergence. The formal subgradient algorithm to opti- 

ize (2b) is given in Algorithm 4 . Note that Algorithm 4 needs 

Algorithm 4: Subgradient Algorithm for (2b) 

Input variables : u 

0 = 0 

Input parameters : λ > 0 , and t = 1 

while Not Con v erged do 

t k = 1 / 
√ 

k 

u 

k +1 
i, j 

= u 

k 
i, j 

− t k (g k 
i, j 

+ r k 
i, j 

) 

o be combined with Algorithm 1 to minimize (1) . That is to say, 

n order to compute u 

k +1 one just replaces the ADMM updates 

n the third loop in Algorithm 1 with the subgradient updates in 

lgorithm 4 . 
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