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ABSTRACT

Current developments in object tracking and detection techniques have directed remarkable im-
provements in distinguishing attacks and adversaries. Nevertheless, adversarial attacks, intrusions,
and manipulation of images/ videos threaten video surveillance systems and other object-tracking
applications. Generative adversarial neural networks (GANNs) are widely used image processing and
object detection techniques because of their flexibility in processing large datasets in real-time. GANN
training ensures a tamper-proof system, but the plausibility of attacks persists. Therefore, reviewing
object tracking and detection techniques under GANN threats is necessary to reveal the challenges and
benefits of efficient defence methods against these attacks. This paper aims to systematically review
object tracking and detection techniques under threats to GANN-based applications. The selected
studies were based on different factors, such as the year of publication, the method implemented
in the article, the reliability of the chosen algorithms, and dataset size. Each study is summarised
by assigning it to one of the two predefined tasks: applying a GANN or using traditional machine
learning (ML) techniques. First, the paper discusses traditional applied techniques in this field. Second,
it addresses the challenges and benefits of object detection and tracking. Finally, different existing
GANN architectures are covered to justify the need for tamper-proof object tracking systems that can

process efficiently in a real-time environment.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Object tracking and detection techniques remained a dynamic
area of research for a long time, but it is exceptionally developed
in recent years. The increased research on object tracking and de-
tection is driven by its diverse applications, such as video surveil-
lance, human-machine interactions, traffic surveillance, and ma-
licious object or human behaviour detection. Malicious cyber,
criminal, and adversarial attacks on artificial intelligence (AI)
based applications are increasing daily, threatening the security
and safety of nations worldwide [1]. For instance, cities such
as Abu Dhabi and Dubai in the UAE faced around 86 cyber-
attacks at the beginning of 2018, wherein the famous cab service
Careem was also among the victims [2], these attacks increased
by 23% in the same year. The consequences of these attacks are
severe on Al-based surveillance systems because more than 14
million customers’ data leaked and were exposed on the Internet.
These malicious and adversarial attacks not only interrupt sys-
tems, business operations and services to citizens but also impose
danger to the economy and security on the national level.

Current advances demand tamper-proof object tracking, and
detection techniques have become common adversarial attacks,
intrusions, and hacks. Furthermore, real-time object tracking has
become necessary to rapidly process images when detecting ma-
licious objects during surveillance [3]. The security prerequisites
are increasingly demanding nowadays, and supervision relying on
human actors is insufficient. Thus, efficient object tracking and
detection techniques for security systems rely on independence
or automation of security measures, such as using ML algorithms
that enable feature learning and image/object generation but are
also critical to ensure the security and robustness of the deployed
algorithms. To guide the research in this field, several challenges
of video surveillance systems [4,5], including occlusion, viewpoint
variations, and the problem of illumination are discussed in the
latter part of this paper. The primary emphasis of this study
is to examine the vulnerabilities of object tracking and detec-
tion techniques towards generative adversarial neural network
(GANN) threats. It then discusses various types of GANN threats
and examines distinct types of adversarial attacks based on the
threat model, such as black-box, white-box, grey box attacks, and
other adversarial attacks. Finally, this paper provides a systematic
review of object tracking and detection techniques under GANN
threats, including implications and concluding remarks for future
work.

1.1. Purpose and contributions

The purpose of this study is two fold: to provide the re-
searchers with an overview of the traditional machine learning

algorithms applied in object tracking and detection; and to em-
phasise the need to explore different types of GANNs to add the
feature of demand for these proposed tamper-proof technologies.
Below are the major contributions of this study:

(i) A systematic literature review of different proposed object
detection and tracking algorithms
(ii) A summary of 48 studies grouped into GANN and non-
GANN related tasks, mainly adversarial attacks and de-
fences.
(iii) A discussion on the challenges, gaps, and future research
directions

1.2. Research methodology

For the systematic literature review, this study searched for
the techniques through well-known journals and conferences
related to the field for over eight years (2014-2021). The key-
word queries ‘object detection’, ‘object tracking’, ‘GANN’, ‘threats’
and ‘adversarial attacks’ have been used in the google scholar
academic research database for search filtration. The search were
limited to the first 98 pages, or 980 out of the 188 K total results,
because the database does not seem to operate after that amount
of data. We filtered the suitable papers by reading the abstracts
and excluding those unrelated to the scope of this research.
Furthermore, through backward snowballing related works, we
included a few papers that were not retrieved by the database.
The final number of studies presented in this paper is 48.

1.3. Scope

The paper is organised as mentioned: the starting section con-
tains the study’s introduction and an overview of object tracking
and detection. Then, the study provides background about object
detection techniques and object tracking methods that produce
state-of-the-art results. Delivering an evaluation and a systematic
review of various types of GANN threats and adversarial attacks
against object detection and tracking performance is included in
this study. Challenges and recommendations concerning object
detection and tracking techniques under GANN attacks are also
discussed. In the end, the conclusions and implications for future
research are discussed.

2. Overview of object tracking and detection

Object tracking and detection techniques are extensively used
in various applications, such as video surveillance, traffic mon-
itoring, security cameras, and vehicle recognition system. For
object detection and tracking, a video consists of diverse infor-
mation, such as the detected object’s shape, size, colour, texture,
and, sometimes, the object’s motion also aids in its detection and
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tracking. Therefore, many authors have proposed incorporating
features’ statistical analysis and motion information of the object.
Hence, nowadays, surveillance systems employ high-resolution
cameras and sensors in different applications, such as security
surveillance and vehicle detection systems.

2.1. Techniques and process for object detection and tracking

Typical object tracking and detection include three stages:
detection, classification, and tracking. The first stage is object
detection to confirm and locate the presence of the items in
an image/video. Afterwards, the detected object, such as birds,
vehicles, human beings, and other objects, is classified. Object
tracking, on the contrary, refers to the detection of an object in
the occurrence of occlusions, spatial items, and other changes.
The object’s colour, shape, texture, and location are essential
during object tracking [6]. The straightforward object tracking
process includes four steps [7]: video sequence, object detec-
tion, object recognition, and object tracking. Then, the image
sequences in a video are analysed to locate and detect objects,
followed by the aforementioned stages: detection, classification,
and tracking processes.

A video is a sequence of images, known as frames, that may
comprise still and moving objects. Koraqi and Idrizi [8] mentioned
that object detection requires prerequisites in a video system,
such as a basic data model, hypothesis, detect, and hypothesis
verifier. In addition, the region of interest (ROI) is expressed in
many object detection processes [9]. After defining the ROI, an ID
is given to the target object or continuous tracking and counting.
Then, another entry or object in the video sequence is given a
new ID. The tracking of the object with IDs is stopped once it
exits from the video sequence.

2.2. Challenges in object detection, classification, and tracking

The most common challenges of object detection and track-
ing include the following: variations in viewpoints, angles, and
dimensions of the object; occlusion, such as objects appearing
similar to humans; and illumination in the image sequence.

2.2.1. Viewpoint variations

The objects are identified from various angles, and direc-
tions/poses correctly. In the past, several methods have been
used to address the problem of viewpoint variations. For in-
stance, handcrafted features are employed using a discriminative
distance to separate faces (i.e. the distance would be smaller
for the same people’s faces). However, handcrafted features are
considered to provide less efficient results than deep learning
techniques [10]. Noord and Postma [11] developed a CNN to
address the problem of viewpoint variation through the deep
learning of the image characteristic. Similarly, Keceli [12] used a
pre-trained CNN model to map different views of 3D images and
translate them into 2D features that facilitate distinguishing face
images.

2.2.2. Occlusion

Occlusion also poses a significant challenge during object de-
tection and tracking in videos and images. The occlusion problem
affects the accuracy of object detection and tracking because
objects hidden by other objects in an image produce further
complexities. Previously, a sparse representation-based classifi-
cation (SRC) was considered a robust technique to deal with
the issue of occlusion in which an identity matrix is obtained
and used to reference the developed occlusion database with
presumed features [13]. However, Ou et al. [14] argued against
the complexity and computational challenges of the SRC model
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and proposed a structured SRC (SSRC). The SSRC model uses data
instead of an identity matrix that reduces the overall compu-
tational complexity. Computational complexity is an important
consideration when designing and developing machine learning
systems. Cao et al. [15] developed a framework to address the
problem of complexity but failed as it reduced the accuracy rate
(0.6) for object detection in the presence of occlusion.

3. Literature review

Countries, such as UAE and others in Gulf Cooperation Council
(GCC), are continuously looking for novel technologies and tools
to combat cyber and malicious attacks [16]. The old surveillance
technologies used for security video surveillance are identified to
be ineffective and inefficient [17]. The new surveillance applica-
tions use object detection, and tracking techniques based on deep
learning and are vulnerable to threats and adversaries. Therefore,
the UAE and many other countries are searching for an optimum
solution that can be helpful in the long term.

Fig. 1 provides a synopsis of the previous surveillance system.
The old systems used scattered monitoring systems based on
scattered data and federalised control units with decentralised
expenses. Fig. 2 shows the benefits of using novel surveillance
technologies based on Al and machine learning. The Al-based
system employs unified data where the centralised control unit is
used for optimisation and smart surveillance. These novel surveil-
lance systems are efficient, smart, cost-effective solutions to ob-
ject detection and tracking issues. Recent studies on new surveil-
lance technologies have widely used ML approaches for object
tracking and detection [18,19]. The new surveillance technology
relies upon Al-based/ ML-based technologies that are accurate,
robust, and efficient. However, these technologies have high-
lighted the need to prepare against threats and adversarial attacks
that can impact the network’s performance significantly. Per-
formance and accuracy improve when a network identifies and
distinguishes the attacks from real input images.

Tracking-learning-detection (TLD) is a well-recognised tech-
nique, proposed by Kalal et al. [20], which integrated three sep-
arate tasks, namely tracking, learning, and detecting to track
objects from frame to frame in a video feed. In TLD, continuous
tracking allows the retrieval of information and features to con-
tribute to localisation. In a TLD model, the error related to the
detector is computed and updated in the learning step, followed
by the detecting step, which consistently reduces the total er-
ror. However, similar to the issue in struck technique, Valestin
et al. [21] argued that TLD was also less satisfying because of its
low accuracy. Thus, deep learning-based neural networks have
become prominent in providing promising object detection and
tracking results.

Sun et al. [22] developed an object tracking model using
a combination of CNN and extreme machine learning. Large
datasets are used to train CNN-based models with a sufficient
computational requirement. This hybrid model is considered ro-
bust for tracking and detecting objects even in the presence of
occlusions, viewpoint variations, and illumination. This model is
running in a real-time environment, demonstrating an improved
tracking speed. Denis et al. [23] presented another object-tracking
technique that required high-resolution video processing to de-
tect small-size targeted objects. This technique reduced compu-
tational complexity by incorporating the block-wise processing of
images. Dong et al. [24] addressed the object detection of moving
objects using the deep learning technique in video sequences.
Using perspective transformation, the background motion is com-
puted from a moving camera. The patches around the moving
objects are classified using deep learning by subtracting the
sparse points from the image or the background. The temporal
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Table 1
Experimentation results of 45 video sequences for accuracy of object detection
of HD images.

Motion Appearance computation
difference only using deep learning
Recall 0.766 0.798
F-Score 0.684 0.806
Precision 0.630 0.819

analysis is performed using Kalman filter to increase the consis-
tency of moving objects. Table 1 shows the accuracy of object
detection of HD images from 45 video sequences used during the
experimentation by Dong et al. The videos are processed with 30
frames per second with one minute of length and recorded by
an HD resolution camera, such as 1920 x 1080. With appearance
information, actual video sequences showed improved results.
Gokhan and Siisstrunk [25] introduced another technique that
could detect fast-moving objects with enhanced accuracy by re-
ducing colours and developing two components to estimate ob-
ject saliency accurately. The first component is related to the
colours and space centre variation using effective filtering. The
second component computes the contrast of the entire image.
Next, a saliency map is calculated using 30 fps of HD videos using
these two components. Another work by Kim et al. [26] pro-
posed a novel framework that combines deep NN and background
subtraction to address fast-moving object detection. At first, back-
ground subtraction is performed in all image frames to detect the
objects. Then, the CNN classification practice recognises and cate-
gorises image frames into different groupings. This technique fur-
ther decreases the computational complexity compared to other
object tracking approaches [26]. According to Martins et al. [27]
many studies have used different object detection techniques that
address the problem of detecting intrusions and adversaries. On
the contrary, Kanimozhi and Jacob [28] argued that a wide range
of object detection and tracking models were developed and
discussed in the academic space, yet, their practicality concerning
real-life situations has not been established. Arguably, defence
mechanisms and enhanced security against GANN threats and
adversarial attacks have gained little attention, whereas most
studies discuss the resistance of these models towards attacks.

3.1. You-only-look-once

YOLO is a one-step approach to spotting and categorising
objects. Usually, the bounding box method is used to evaluate the
input image [29]. Many different models use the YOLO method
for object tracking and detection [30]. Redmon et al. [31] noted
that YOLO was a straightforward model; compared to CNN, its
application in a real-time environment is promising. Furthermore,
YOLO is trained on complete images and shows a simplified rep-
resentation of the target objects suitable for fast object detection.
However, the lack of availability of large datasets and complete
images is the biggest limitation in object detection when using
YOLO. Hence, a developer of YOLO models must be an expert
and professional to work with manual labels during training and
handle the above limitations.

The YOLOv3 [32] detected multiple small objects efficiently
and accurately through the deep-sort approach. A study [33]
argued against the deep-sort approach concerning its efficiency in
a real-time environment and supported an alternative approach
called kernerlised correlation filter (KCF). Moreover, Yadav and
Payandeh [34] also supported the use of KCF as it reduces overall
computational complexity during object tracking and detection.

3.2. AdaBoost and Haar cascade function

Phuc et al. [35] performed AdaBoost training and classification
using a Haar cascade classifier for object recognition and detec-
tion. The cascade function trains the algorithm on negative and
positive sample images. The four steps involved in the proposed
algorithm are the selection of Haar features, creation of im-
ages, training using AdaBoost, and classification using the Cascade
function. Ulfa and Widyantoro [36] used Haar cascade classifi-
cation to detect vehicles, whereas, Cuimei et al. [37] detected
objects of three different classes. Cruz et al. [38] demonstrated
the results of Haar cascade-based object tracking and detection
compared with the HOG method and LBP technique of object
detection. Haar cascade method showed improved results and
performance compared with the other mentioned techniques.

3.3. Convolutional neural network family
CNN is amongst the deep learning neural networks that are

flexible in training large datasets. CNN is praised for its im-
proved results in object detection and tracking in still images. Zhu
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et al. [39] used CNN to achieve the object detection of moving
objects in a real-time environment. Deep CNNs were used to
extract information from moving regions in the video frame,
and the model was trained using video clips. The objects were
accurately detected in moving frames using a framework-based
fine-grained and coarse-grained approach. The major limitation
of this approach is that it relies on high-resolution videos, which
might not_be possible with all surveillance cameras used for
security. V‘ah’akainu and Lehto [40] stated that lighting effects,
camera type, lens, and other factors could affect the quality of
video clips, thereby affecting the accuracy of object detection.

Girshick et al. [41] established a region-based CNN (R-CNN),
which trained CNNs on proposal regions from the input images in
terms of categories or background using an end-to-end classifier.
Hosang et al. [42] noted that R-CNN accuracy of subject detection
highly depends on the results of the regional proposal module. On
the contrary, Ren et al. [43] argued against this lack of accuracy
and efficiency in R-CNN and thus proposed a Faster R-CNN. It used
two units: first, a fully convolutional network (FCN) to determine
proposal regions, and the second unit, which is a finder in the
Faster R-CNN. The system works as a unit to detect objects, as
presented in Fig. 3. The region proposal network (RPN) serves as
the consideration to guide the Fast R-CNN module regarding the
object to locate.

Kuan et al. [44] stated that Faster R-CNN was suitable for
detecting objects from a large area, such as for surveillance on
parking lots. Alom et al. [45] praised CNNs for their flexibility
and adaptability to various applications, where the authors used
CNN to address the extraction problem and detected co-saliency
in the images. CNN models are also known to solve the problems
of viewpoint variations.

3.4. Generative adversarial networks

A typical GANN architecture uses two different convolutional
networks. The first network is known as a generator because it
generates adversaries to deceive the system, whereas the sec-
ond network, known as the discriminator, continuously operates
to identify these adversaries and separate them from real im-
ages [46]. GANNs are more suitable for the real-time environment
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than CNN because the latter is good at detecting small objects,
whereas the former is more scalable. GANNs are also used to
generate high-resolution images as the generator of the network
gradually learns to improve the pixel values and produce a high-
quality image. GANNs are a suitable choice in the presence of
obstructions and resolution issues. A wide range of studies has
praised GANNSs for their flexibility, training for a tamper-proof
system, adaptability to work with other tools/applications [47]
and ability to train large datasets of high-resolution images [48,
49]. Du et al. [50] stated that GANNs improved the performance
and accuracy as compared with previous methods, such as CNN
family, YOLO, and other object tracking and detection methods.
Liu et al. [51] highlighted that GANNs were beneficial because
multiple generative adversarial networks (GANs) can be used for
multiple object detection and tracking to increase efficiency and
accuracy. Liu et al. [52] developed a model based on multiple
GANs by training them on images to generate adversaries for
the tamper-proof object detection systems. Similar to CNN, vari-
ous variations of GANNs, such as DCGAN, cGAN, Cross-GAN, and
IDSGAN, have been developed in the past [53]. Lin et al. [54]
proposed a GAN framework called IDSGAN to address the false-
positive problem produced by adversarial attacks and obtained
effective results. Zhang et al. [55] proposed a GANN called multi-
task GAN or MTGAN, which detected small objects effectively. The
proposed network can be used with other detectors because the
network generates and distinguishes images simultaneously like
a conventional GANN. More significantly, the loss is computed
throughout, and backpropagating technique is used to guide the
network to produce high-resolution images for enhanced locali-
sation and classification. In MTGAN, the generator can capture in-
depth details from the input images and produces a high-quality
image that enhances the detection accuracy. Peng et al. [56] noted
that GANNs were used for translating images, but the details
are not preserved with quality. Concerning the use of the facial
expression, Aggarwal et al. [57] stated that GANNs had limited
applicability and are best suited for detecting and tracking ob-
jects. In this regard, Wang et al. [58] proposed the evaluation
metrics for GANNs and concluded that they are complex, require
a larger dataset for training, and cannot generate a quality image
as perceived by humans. With these limitations, GANNs are still
widely used in computer vision, machine learning and object
detection fields for various sensitive purposes. Lee et al. [59]
mentioned that GANNs can engage in a powerful learning and do
not require supervision. GANNs generate high-resolution images
and videos as adversaries that train the system to be tamper-
proof against attacks and threats. Although GANNs do not require
supervision, Pier Davide et al. [60]demonstrated that supervised
learning in GANN could aid in discriminating different objects
in space. Another benefit of GANNs for object detection and
tracking is that they can enhance the overall resolution of images
that help in making the small objects clearer, thereby deceiving
the discriminator to consider it a real-looking object. Kalirajan
and Sudha [61] stated that further research regarding the use
of GANNs was needed as it could contribute to enhanced, cost-
effective and efficient object detection and tracking along with
improved security under GANN threats. Several authors discuss
the limitations and drawbacks of GANNs. For example, Simao
et al. [62] evaluated the GANN framework and argued that the
model was beneficial in producing high-quality images. However,
the model was less effective in detecting gestures that were not in
the dataset. GANNSs are poor in generalising and have less ability
to determine the distribution across the dataset. The application
of GANN for untrained gestures is limited. Donahue et al. [63]
criticised GANN for its complexity, thereby making the training
harder compared with other deep neural networks (DNNs). Due
to its complexity, training on a large dataset may increase the
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computational complexity, which can affect the overall perfor-
mance of the system. Once GANNs are successfully trained on a
larger dataset, it generates an ample number of adversaries with
low computation. Based on this, it is argued that object detection
and tracking under the GANN threat is beneficial because it may
increase the complexity but can produce anomalies and prepare
the system against them. The current research on GANNSs for
object detection and tracking systems reveals that most stud-
ies, such as Zhang et al. [64], used images for training rather
than video clips. Considering that training under GANN threats
is a novel area of research, tamper-proof object detection and
tracking real-time systems have not been extensively investigated
before [65]. A cost-effective solution that can detect small objects
in video feed accurately and efficiently is required for a real-
time video surveillance system. Furthermore, with high accuracy,
the benchmark of computational complexity must be achieved
because a tamper-proof system should be robust and efficient.
Table 2 is included below to provide a systematic review and
comparison of the above-discussed techniques. The table includes
techniques and algorithms used by different researchers for ob-
ject detection and tracking in images and videos. The accuracy of
each proposed model concerning object detection is shown along
with real-time object tracking performance on videos. The speed
of the algorithm is also analysed by examining tracking speed us-
ing the frames per second (fps) evaluation parameter. In addition
to that, the performance of each model is evaluated based on the
presence of different challenges like occlusion, illumination, scale
variance, multi-objects, anomalies, etc.

4. Threats to GANN in object detection

Identifying and detecting dangerously problematic objects and
threats in object recognition plays an important role in ensur-
ing and guaranteeing the security and safety of systems. Due
to the complex nature of the task, the human expert detection
performance is only about 80%-90% accurate. Deep convolutional
neural networks have already shown good results, but not at the
security level and adversarial attacks. Our goal in this section is
to conduct a literature review covering different GANN types that
might add value to this known issue and open opportunities for
promising future research work. Object tracking and detection
systems are often deceived by adversarial attacks that influence
their detection accuracy and produce complications for applica-
tions that rely on accurate object detection. An adversary can
be anything from a manipulated image, a similar-looking image,
noise in the image, or intrusions. Almost all neural networks are
susceptible to attacks and threats that can deceive the system into
generating false-positive results and affecting its performance.
The most common example of an adversarial attack is strategi-
cally established noise to add to the input image and deceive the
neural network. The classification algorithm has clear decision-
making boundaries in a neural network system, and an adversary
corrupts the process. Fig. 4 shows the real input data points,
the classified data points, and the adversaries. The green points
represent the accurately classified data points using the param-
eters and features used to design the decision boundary based
on which decision is taken. The orange data points represent the
adversaries wrongly classified as green dots.

The decision is manipulated because of attacks and perturba-
tions in the system. Today, various applications use neural net-
works, and machine learning approaches widely, and adversarial
attacks are the most significant challenge. In systems, where
human recognition, crime prevention and security surveillance
are involved, adversarial attacks must be resolved. For instance,
a DNN in an autonomous car and self-driving applications may
predict the occurrence of an adversarial attack falsely, thereby
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raising several concerns regarding safety and trust in these sys-
tems [79]. Pan et al. [80] noted that the problem of false-positive
in GANNs and other machine learning approaches was essential
to address; otherwise, the consequences could be severe. In the
applications of surveillance video, the first attack of the adver-
sary was executed by manipulating the pixel values of the input
image, leading to its misclassification [1]. Another way to create
an adversary is by applying ‘patches’ to the objects in the image
to deceive the network towards misclassification. Therefore, se-
curity surveillance systems are susceptible to adversarial attacks,
which can affect the overall accuracy and performance of the sys-
tem. Machine learning attacked by adversaries may not identify
anomalies accurately and may require human intelligence and in-
tervention. The surveillance video system can also face malicious
attacks that change or hide the content to deceive the network
and the human actors that monitor the security video feed, such
as security personnel. Ullah et al. [81] argued that human actors
monitoring the video feed of security surveillance were prone to
several issues, such as missing the changed content and may not
be able to detect threats in the presence of multiple video feeds
and cameras. Henceforth, using technology is an operative and
competent method to mitigate the challenge of adversarial at-
tacks and false positives in machine learning systems. The attacks
are classified into subsequent categories based on the information
accessible to the attacker or adversaries, as explained in the next
sub-sections.

4.1. White box attack

In a white box attack, the attacker has information regarding
the architecture, modelling of the system, details about the train-
ing set, weights, or the samples on which the system was trained.
The function used for the classification is prone to adversarial at-
tacks in a white-box setting because the attackers have adequate
knowledge to damage the system. Concerning neural networks,
a backpropagating technique, such as DeepFool and the fast gra-
dient sign method (FGSM), is used to conduct an attack because
the gradients are known to the attacker. FGSM aims to ensure that
the system misclassifies the data points and introduces intrusions
to influence the system’s accuracy and performance. The FGSM
algorithm can be employed to conduct a white-box adversarial
attack. An example input image is shown in Fig. 5. An adversarial
image is generated by using the formula shown in Eq. (1)

Advx = x + €.sin(VxJ(O, x, y)) (1)

The input is represented by x; the label is denoted by y;
€ is the multiplier, which will keep the noise or perturbation
unnoticeable, small, and effective. J is used to calculate the total
loss, and @ is for the model’s limitations. Using the FGSM method,
the gradients are selected to ensure that loss is as minimum as
possible based on the pixels manipulated from the real input
image. The chain rule is used to monitor and determine the loss
value, whilst perturbation is introduced to each pixel, maximising
loss. The white-box attacks can deceive an already trained system,
leading to misclassifying the object in an image. An example
is given in Fig. 5, where the original image x of a panda is
manipulated using small perturbations that deceive the network
and impact decision-making. The input image is misclassified
as a gibbon and is not accurately classified as a panda, hence
impacting the confidence level.

Basic iterative refers to the extended process of FGSM, and a
series of adversaries are produced in every iteration. The white-
box attack is more serious when extensive iterations are used,
and the model does not depend on system estimation [83]. Jaco-
bian Saliency Map Approach (JSMA) is another variation of FGSM,
in which the input image is manipulated to achieve the goal
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Table 2

Review of different object detection and tracking techniques in challenging scenes.
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Technique Cited Obj. Detect/ Track Total frames Tracking speed Performance during challenging scenes
accuracy
TLD Improved TLD [66] 80% 500 26.32 fps Performed well in the presence of a
algorithm moving camera, motion blur, similar
objects, scale change, illumination
changes, and occlusions
with SORT algo. [67] 85.1% 930 - -
YOLO YOLO-ACN [68] 55.8% (Average 4491 16 fps Performed well to detect occluded and
Precision, AP) small size objects in real-time videos
with hard-example [69] 90.49% - - Tested on images only. Detected objects
mining accurately in the presence of occlusion
Adaboost with Haar training [70] 85.9% - 20 fps Performed well in the presence of
occlusions
Faster R-CNN [71] 75.2% - 25 fps Performed efficiently in a real-time
CNN environment and detected multi-objects
in a single frame
with KCF [72] 86.6% (Precision) 576 - Detected human objects in the presence
of occlusion and scale variance (SV)
with Correlation [73] 49% (59.7% SV, - 8 fps The model was slower but effectively
Filters 59.2% occluded) detected objects in the presence of
occlusions and SV
NM-GAN [74] 90.7% - 0.031 fps Detected objects in the presence of
anomalies and detected anomalies as
GANN well
OPGAN [75] 84.2% - - Tested on images only, efficient in
detecting small objects
Deep learning [76] 91.9% (precision) - 14.8 fps Performed successfully in 11 challenging
with GAN scenes: occlusion, deformation, scale
variance, etc. The algorithm is slow,
with poor tracking performance in the
presence of long-term occlusion and
similar objects.
GAN with [77] 89.65% - - Detected small objects in images High
Faster-RCNN complexity time consuming and high
computation
GAN-Do [78] 67.47% - - Addressed the problem of object

detection in reduced quality images.
Performed well to detect images in a
camera-shake blur setting, Gaussian
Blur, Defocus Blur, and additive white
Gaussian noise

Fig. 4. Adversarial attack example.
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“nematode”
8.2% confidence

“panda”

57.7% confidence 99.3 % confidence

Fig. 5. Adversarial attack example [82].

of misclassification. A sample image is taken as input x with a
target denoted by t; a Jacobian matrix is implemented where
derivatives are forwarded gradually in each step. The pixel values
are incremented with each passing iteration, and gradually the
target class denoted by tx also increases. Thus, the value of t is
changed to t*, becoming the cause of misclassification. This type
of attack is limited to the training models that use supervised
training and targets. Therefore, this method of adversarial attack
generation is not suitable for all approaches and has limitations
when it comes to white-box attacks [84]. The benefit of creating
an adversarial attack in a white-box environment is that the ad-
versary is comparatively easier and simpler to create. In addition,
the white box setting allows the attacker to gain more access
and knowledge about the system, thus facilitating the generation
of adversaries. The time consumed in the overall process is also
less than other adversary generation approaches. The white-box
setting generates adversarial attacks and analyses the system
under GANN threats to ensure that the system is tamper-proof.
In less time, the system is prepared against the threats and GANN
attacks using white-box settings, such as by determining all the
system’s vulnerabilities. A white-box attack has limitations such
that the environment is not practical to be applied to real-life
machine learning-based application systems. Furthermore, the
computational cost gradually increases when the white box set
is used to conduct an attack or test the system’s vulnerability
because small perturbations are constructed to manipulate the
input samples.

4.2. Black box attack

Compared with white-box attacks, black-box attacks have in-
formation about the outputs of the model instead of the key inter-
nal/functional information (i.e., the architectural model, weights,
and other training details). The black-box attacks are conducted
in several ways based on the knowledge of outputs and other
sub-areas, as mentioned below.

4.2.1. Score-based attack

In this type of attack, the output layer is accessible and known
to the attacker. Using the information and knowledge regarding
the queries related to the output, the attacker determines the
classification approach used for the system. In a black-box envi-
ronment, the adversarial images are generated by manipulating
loss, confidence level and pixel values. The feedback is obtained
by interpreting the confidence level and score, and the pixel val-
ues in increments gradually change the value of the loss. A change
in the pixel value contributes to a change in the confidence
level, which then manipulates the system to misclassify the input
images. Using the score-based attack, the adversarial samples can
be generated without gradients. For instance, Brendel et al. [85]
developed a genetic-based algorithm that generated adversaries
without manipulating the gradients.
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4.2.2. Transfer-based attack

In this attack, a model is developed by using the available
knowledge and information regarding the original system. Then,
an auxiliary or imitated model is constructed to mimic the opera-
tions and outcomes generated by the original system. This model
is now used for transfer-based attacks using a white-box setting.
In other words, the attacker knows the auxiliary model’s training
details, architecture, and other parameters and uses this retrieved
information to attack the imitated model. If the attack on the
secondary model is successful, then the same attack episode is
conducted on the original model. Compared with a score-based
attack, the transfer-based attack is complex and time-consuming
because the attacker must design and imitate the original system.
In addition, the computational cost is also high for this type of
attack, given that the auxiliary model mimics complex operations.

4.2.3. Decision-based attack

The outcome and output values are accessible in this at-
tack, and the attacker commences a decision-based attack using
this knowledge. The decision-based attack is more relatable and
relevant than a score-based attack in real-world scenarios as
logits are rarely known or accessible to the attackers. Further-
more, compared with other attacks, decision-based black-box
attacks are resistant against common defences, such as gradi-
ent masking and robust adversarial training. Some benefits of
conducting a black-box attack to prepare and train the object
tracking and detection system under GANN threats are noted. The
first benefit is that the black-box environment is near to real-
life situations; thus, it is applicable for various applications, such
as self-driving autonomous cars. Another benefit of conducting a
black-box attack is that the attacker works with limited available
information whilst utilising all the available resources. Compara-
tively, decision-based and score-based attacks are easier because
transfer-based attack requires the imitation of the original model,
which increases the time and complexity of the process. The
systems trained and tested under black-box testing are more se-
cured and robust than those trained only for gradient-based and
score-based attacks. The limitations of black-box attack testing
and training include hard labels that complicate the process. The
adversaries are less likely to be generated in an environment
where the hard label is used. In such a situation, the attacker
attempts to use a series of queries, and convergence is uncertain,
further complicating the process. This attempt to use several
queries is referred to as the random walk approach. If the random
walk approach does not produce the desired results, then the
attacker moves to the optimisation-based technique. However,
the success of the optimisation technique relies heavily on the
dimensionality of the input and training dataset.

4.3. Grey box attack

In a grey box attack, also known as a semi-white box attack,
the attacker uses a generative model for training to generate
adversaries in a white box setting. Once the new model based on
generative training is developed successfully, the attacker does
not require the original model of the system and uses the gen-
erative model to create adversaries whilst keeping the black-box
attack.

5. Training under GANN threats

The real-life applications of using object detection and track-
ing techniques must be trained against adversarial attacks and
GANN threats. Appiah et al. [86] noted that security is required
in highly crowded areas and cities to prevent crime and terror-
ist attacks, including cyber threats; thus, the security officials
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are interested in employing Al in human behaviour and threat
detection. In 2017, the malicious attack on UAE’s Telecommunica-
tion Regulatory Authority (TRA) software and website interrupted
operations. According to Chandra et al. [87], the Dubai police
reported that almost every one of five residents in the UAE
faced a cyber-attack in 2015. Threats like these, intrusions and
malicious attacks can interrupt business operations and impact
sustainability. Therefore, training under GANN threats must be
conducted for object detection and tracking systems to ensure
tamper-proofing and enhance the security of these systems. The
object detection and tracking technique used in video surveil-
lance and security systems mainly deal with crowded spaces and
low-resolution images. Various reasons behind developing object
detection and tracking systems, such as crowd estimation, face
recognition, human identification and behaviour detection, can be
noted in [88]. GANN-based object detection and tracking ensure
that the system is prepared against possible attacks and threats.
The GANN model supports the training but generates different
adversaries and trains the network to distinguish the original
inputs from adversaries.

5.1. Generating adversarial samples

Several algorithms can be used to generate adversaries, which
are discussed below.

5.2. Fast Gradient Sign Method (FGSM)

This algorithm utilises a single-step technique in which per-
turbation and adversarial noise are computed by using the gradi-
ent method discussed in Huang et al. [89]. The gradient value is
given by Vx® because this objective function is used to train the
network. x represents the original input sample image, whereas
€ is the noise or perturbation that is added to the input (x). The
adversarial image noted by xadv is calculated by adding the noise
to the input image as shown in Eq. (2)

xadv =X+ €. sin(Vx/ Ox,y)) (2)

Every input image is given a label noted by y in Eq. (2) for
its correct classification. The noise in the image aims to attack
the system to misclassify the image. The noise is kept as small as
possible, which is performed by using Eq. (3)

X — Xagw |l 00 < € (3)

5.2.1. Broyden-Flecther-Goldfarb-Shanno (I-BFGS)

This algorithm views the problem of generating an adversary
similar to an optimisation issue and uses Eq. (4) to address the
problem. minuséc. ||§]|2 + ©(x + 6§, t)

Subject to

Im <x+4§ <Um (4)

where 6 is the objective function used by the algorithm. In this
case, the adversarial noise is denoted by &, and the label for
each input image x is given by t. The range of the pixel values
is between L to U for the maximum loss computation denoted
by m. Furthermore, the evaluation is conducted with the help of
the line-search method and recorded in c, as shown in the above
equation. The evaluation value should be greater than 0.
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5.2.2. Carlini-Wagner Method (CW)

In this algorithm, the distance metrics are utilised to calculate
the differences given by L0, L2, and Loo. CW proposed this algo-
rithm to generate an adversarial attack denoted by L2. Eq. (5) is
important in the process, as shown below: min || %(tanh(w))—i— 1—

x| G)] +cf (3 (tanh (w) + 1)) with
(™) = max (max {Z (x") : i # t} — Z (x), . K) (5)

As per the above equation, the main function of the algorithm
is given by f, whereas Z(x),; represents the logits. The optimisation
variable is represented by the letter w in the first part of the
equation. k is the confidence parameter. As opposed to the above
equation, the following equation is concerning the perturbations,
the distance metric oo is thus calculated.

mincf (x+8) + Y _[(6i — )] (6)

Eq. (6) shows that the threshold level t is used to monitor the
adversarial perturbation or noise introduced to the input image
to train the network on adversaries.

The algorithms mentioned above are widely used to generate
adversaries to train the DNNs and GANN on the adversaries for
creating a tamper-proof object detection system. The machine
learning-based deep neural networks attempt to use several tra-
ditional techniques to ensure that the model is robust against
adversarial attacks. The traditional methods include addressing
the problem of overfitting by using the weight decay techniques,
such as keeping the weights as small as possible. Another tra-
ditional technique is a dropout, in which the selected random
neurons are ignored during learning and training. However, the
traditional technique does not provide an efficient and practical
security mechanism against adversarial attacks. Currently, only
two methods are known to provide an effective defence against
adversarial attacks and samples. Defensive distillation is a strat-
egy, in which the machine learning model is trained to produce
output based on the probability of different classes instead of
making a difficult decision. An earlier model that provides the
probabilities of the outcomes belonging to the respective class
is developed. Another method that is widely used and found
significant is adversarial training, which prevents the addition of
any weight updates of neurons that were removed on a backward
pass.

5.3. Generating adversarial samples

Adversarial training is a brute force solution in which numer-
ous adversarial sample images are generated, and the model is
trained on these generated images so that these samples do not
deceive the network. Previous work in this area includes GAN,
which was examined and used extensively for different applica-
tions. GANNs were initially introduced by Goodfellow et al. [90]
to generate examples by learning the probability distribution of
the training set effectively. The ability of GANN to discriminate
between the real image and adversary was well-received, and its
application for object detection and tracking was identified by
many researchers [91,92]. However, the adversarial attacks have
severely affected the object detection and tracking models that
use GANNSs for video surveillance and other security applications.
According to Kalbo et al. [93], GANN threats could influence the
accuracy of object detection and tracking, hence contributing to
vulnerabilities in the video surveillance security system. As a
result, more object detection and tracking models trained under
GANN threats will be needed. Massoli et al. [94] developed a
model that could detect adversaries effectively and trained the
model on adversaries to increase the robustness of the model
(see Fig. 6). A detection approach was employed by the classifier
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Fig. 6. Detection model (above), embedding process (below, c;).

fo(x) : X — C, C is the label given to input images in this case,
where x is the input image. About the above classifier, x belongs
to the different dimensions of the input image, such that, given
by X C Rd

Eq. (7) is important for the model because the classifier re-
ceives the input image x and performs operations on it.

fO @) =f"(0n—1;0,)°-°f°(x; ©0), (7)

The values of centroids and medoids are calculated by using
the following Eqs. (8) and (9), respectively:
1 Bl
Y o
|Bc| ; H
|Bc|

p{ = mﬁ = argminz ”o - o§n
n

p=c= (8)

(9)

2
()

In the above equations, the class j is denoted by o(i, n)j in
the ith layer to represent the output value of this class j in
the ith layer. The cardinality of the class j is shown by |Bc|,
which refers to the number of elements or properties related
to that class. This proposed method used the CW method, Basic
iterative method, and MI-FGSM technique to produce adversaries
and train the system to learn to distinguish between adversaries
and real inputs. As mentioned before, it is suggested that noise
or perturbation should be small so that its loss is minimum. In
this case, the noise is denoted by ¢, the authors kept the values
of perturbation, ¢ = (0.03, 0.07, 0.1, 0.3). The value of noise or
perturbation is as low as 0.07 to as high as 0.3. It is kept at less
than 1. The adversarial images are generated using the mentioned
algorithms, and the process is described using Fig. 7.

The authors used a kNN classifier to view the problem of
generating an adversary as an optimisation issue and to guide the
source, as shown in Fig. 7. The above part of the figure shows
the source and guide before the attacks, whereas the below part

10

shows the results after the adversarial noise has been added.
SotA, one of the state-of-the-art feature extraction models, is
used to extract the features from the input image. The threshold
values have been applied during the adversary generation. The
adversarial noise limits or threshold values were set between 5.0
and 10.0 for this case, such that §e 5.0, 7.0 and 10.0, 5.0.

The perturbation value is kept at 10.0 for the upper row of
images in Fig. 8. This example shows that with an increased
perturbation value of 10.0, the input image still looks similar
to the output image. The accuracy to detect perturbations in
such images was found to be 96.3% for supervised learning and
96.8% for the unsupervised learning environment. Table 3 shows
a comparison of various adversarial attacks along with the kind
of adversarial attacks or other threats to fool the network. The
training or the core method used to generate the threat is dis-
cussed, followed by the nature of the attack, such as targeted,
untargeted, or both. The information required to be accessed
by the generated adversarial attacks is also highlighted, such
as either model parameters information or logits, which implies
inputs to the softmax layer of the model. The distance metric used
for each adversarial generation method is also identified, followed
by the vulnerability of the models, which are found to be easily
fooled by the respective adversarial attacks or threats.

6. Discussion

This section presents discussions regarding the outlook of the
current research direction based on the literature systematically
reviewed in the earlier sections. In all, this review has examined
and demonstrated several different facts and useful insights re-
lated to the use of GANNs in tamper-proof object detection and
tracking. The previous sections provided a brighter and broader
prospect for the readers, including technical details.
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Table 3

Comparison of different adversarial attacks and vulnerable models.
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Cited Attacks/Threats Training/ Core method Target/ untargeted Accessed Info. Distance metric Vulnerable models

[95] DeepFool/ perturbations to fool Iterative linearisation Both Model parameters Lp, pe[1, oo] Deep Neural
the network Networks

[96] Universal adversarial Generalising DeepFool to Both Logits L2 (Universal Deep neural
perturbations create universal perturbation) network classifier

adversarial attacks

[97] High confidence adversarial Adam optimiser Both Logits L0, L2, Loo Distilled/
examples, targeted undistilled Neural
misclassification Networks

[98] JSMA, adversarial perturbations Jacobian Saliency Both Model parameters Lo Deep Neural

Networks

[99] Misclassification by rotation Natural transformations Both Logits n/a CNN
and /or translation

[100] Image, and universal GAN based adversarial Both Logits Lp (Universal FCN
perturbations generation perturbation)

[101] Spatially transformed Minimising adversarial Both Logits Llow Deep Neural
adversarial examples, and Lflow loss (Measuring Networks
high-quality sophisticated geometric
adversarial attacks distortion)

[102] Few-Feature-Attack-GAN, Mask mechanism, GAN Targeted Logits L0, L1 Machine learning
black-box attack training models
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Fig. 7. Generating adversarial samples.

Source Image Adaptability. Adaptability is significant for object detection and
tracking method using machine learning. Some models, such as
YOLO, defend against one type of attack and leave room for
another kind of open attack for the attacker who knows the
defence mechanism. It is analysed that machine learning-based
algorithms and models widely used for object detection, such
as R-CNN, YOLO, Faster RCNN, and CNNs, are broken and vul-
nerable to adversarial attacks in surprising ways. The failure to
defend against the adversarial examples revealed that even the
most straightforward algorithm behaves differently in an attack
scenario than what the algorithm intended to do. It shows that
adversaries can affect a model’s learning and training outcomes
in the presence of an attack. Thus, machine learning models for
object detection and tracking should be trained under GANN

Adversarial Noise

Fig. 8. Adversarial Samples and threshold [96].
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threats to reduce the gap between what developers intended and
how the algorithm performs.

This study has reviewed different techniques and found GANNs
to be useful for object detection and tracking in viewpoint vari-
ations and occlusions. GANNs are complex and require more
computational capacity, whereas adversarial training produces
robust outcomes and provides a better mechanism against ad-
versaries. Furthermore, once GANN has been trained on a large
dataset, it can generate desirable results with low computation
and more adversarial samples. Further research is required to
review the existing object detection and tracking technique under
GANN threats. It is suggested that GAN-based detectors should
be developed for robust object detection and tracking. Using
GANs for data augmentation and generating more adversarial
samples would be beneficial, whereas the efficiency of GANNs
to work with large datasets can be exploited to obtain a robust
and efficient detector. Thus, GANN based detector is likely to
produce robust results with strong generalisation with the help of
using a combination of real-world images and simulated images
generated by GAN.

Adversarial attacks. Adversarial attacks, such as white-box, black-
box and grey-box, were reviewed. It is assessed that white-box
attacks have less plausibility of occurring in real-life scenarios.
On the contrary, black-box attacks are relatable and relevant to
real-world scenarios because less information is accessible for the
attacker in this type of attack. Therefore, the object detection
and tracking technique under GANN threats must be trained
on all adversarial attacks, emphasising black-box attacks. The
models trained under black-box attacks are robust and provide
a strong defence against adversaries. Adversarial training can be
performed using the object detection and tracking technique to
generate and train the system on adversarial examples. Several
algorithms, such as FGSM, L-BFGS and CW, are utilised to generate
adversarial instances for the training of the model. A dataset
is a significant element of adversarial training; currently, COCO,
Openlmages and WIDER face are the benchmark datasets for eval-
uating different object detection models [103-105]. The problem
of the large and useful datasets can also be solved by using GANs
to generate more adversarial samples for adversarial training.

Threats to deep learning model. Adversarial attacks are serious
and are a major concern for machine learning-based object detec-
tion and tracking. Although few studies claim that adversaries are
not a serious issue, a wide range of studies suggest the opposite.
The literature discussed in Section 3 suggests severe and grave
consequences of adversarial attacks on deep learning. The review
shows that deep neural networks, such as CNNs and RNNs, can
be deceived in various ways, such as detection and recognition.
In general, deep learning models are susceptible to adversarial
attacks and threats.

Transfer property of adversaries. The adversarial examples trans-
fer well amongst different neural networks. This observation
is valid, particularly for the models or networks with similar
construction designs and architecture. Concerning this, black-box
attacks are often determined to exploit adversaries’ generalisa-
tion.

The notion of linearity. The design of neural networks forces the
model to behave linearly, which makes the model susceptible to
threats and adversaries. Although this notion is argued against
and criticised, the literature review suggests that linearity is one
of the weaknesses of neural networks in adversarial attacks.

12
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Further investigation. This study examined improper training,
computational capacity, architecture and design of the model, and
weak defence mechanism amongst various viewpoints. However,
the viewpoints lack alignment in a single direction. Thus, further
investigation should be conducted in this direction to reveal
the causes behind the weaknesses of neural networks towards
adversarial threats.

7. Conclusion

In this paper, the existing object detection and tracking tech-
niques were discussed and reviewed. In addition, image classifica-
tion, object localisation, and detection techniques were reviewed,
such as SVM, Adaboost, HOG, Haar cascade, CNN family, YOLO and
GANNs. GANNs and CNNs produce better results than other ob-
ject detection and tracking models in real-time. However, under
adversarial training, GANNs are more suitable for object detec-
tion/tracking because they can work with large datasets and
generate more data from the samples. Object detection and track-
ing have several different applications in real-life, such as face
detection and recognition, medical imaging, traffic monitoring,
weapon detection, vehicle recognition and video surveillance se-
curity systems. The real-life applications of object detection and
tracking come with certain challenges. The real-world images
vary in terms of light, angle, variations, and occlusions, such as
objects that look like humans, etc. These challenges are consid-
ered significant in machine learning-based object detection and
tracking. CNNs are deemed effective in addressing the problem of
viewpoints variations where the handcrafted features technique
failed to provide desired results. Similarly, CNNs have also been
praised for addressing the problem of illumination and occlusions
in addition to viewpoint variations. Concerning the challenges
faced by machine learning and deep neural network (DNN) for
object detection and tracking, the adversarial attack problem is
among the most significant.

Adversarial samples are not easy to defend because the ma-
chine learning models must generate good output value for pos-
sible input images. Most machine learning models, such as YOLO,
AdaBoost and Haar cascade-based object detection, are perceived
to work well. Still, they tend to work on a small amount of dataset
or possible inputs the model may encounter. Various object de-
tection and tracking techniques have been reviewed in this paper,
and the practicality of these models in real-world applications is
questioned. Furthermore, the consideration of adversarial attacks
and defence against adversarial examples is lacking in most state-
of-the-art object detection and tracking techniques. Additionally,
after assessing the literature on white-box, black-box and grey-
box adversarial attacks, it was inferred that white-box attacks
have less plausibility of occurring in real-life scenarios. Finally,
the adaptability of an ML model is significant for object detection
and tracking method in the presence of an attack, and it should
be trained against adversarial threats to reduce the gap between
what developers intended and how the algorithm performs.

8. Future developments

The future work related to object detection and tracking under
GANN threats is dynamic and wide-ranging. The implications of
the susceptibility of deep learning-based neural networks object
towards adversaries in object detection, and tracking tasks are
gaining recent attention. Future developments and applications of
object detection and tracking under GANN threats are abundant.
Researchers in this field may focus on complex data sources and
dynamic targets concerning objects for the future. For example,
the current study has focused on the case of tamper-proof object
detection and tracking model for video processing in real-time
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under GANN threats. However, video object detection in real-life
scenarios is challenging because remote sensing issues, blur-
ring, occlusion, intense movement of target objects, and motion
ambiguity lead to complications.

Real-time detection using remote sensing is useful for agricul-
tural settings and crowded spaces, such as security surveillance
in public spaces. The automatic object detection and tracking
software with integrated hardware has opened a window of
opportunity for the UAE in this area. Another promising future
development application and improvement is multi-domain ob-
ject detection. Previous literature has established that detection
performance for the domain-related model is high for a spe-
cific domain/dataset. Thus, universal detection should be focused
on the future, such as a multi-domain detection that can work
on several datasets/domains without having preceding informa-
tion about new domains. Consequently, domain transfer is a
challenging yet beneficial area for future development.
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