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A B S T R A C T

There has been an increasing interest in the development of deep-learning models for the large data processing
such as images, audio, or video. Image processing has made breakthroughs in addressing important problems
such as genome-wide biological networks, map interactions of genes and proteins, network, etc. With the
increase in sophistication of the system, and other areas such as internet of things, social media, web
development, etc., the need for classification of image data has been felt more than ever before. It is more
important to develop intelligent approaches that can take care of the sophistication of systems. Several
researchers are working on the real-time images to solve the problems related to the classification of images.
The algorithms to be developed will have to meet the large image datasets. In this paper, the generalized
hierarchical fuzzy deep learning approach is discussed and developed to meet such demands. The objective
is to design the algorithm for image classification so that it results in high accuracy. The approach is for
real-life intelligent systems and the classification results have been shared for large image datasets such as the
YaleB database. The accuracy of the algorithm has been obtained for various classes of images using image
thresholding. The development of learning algorithms has been validated on corrupted and noisy data and
results of various classes of images are presented.
. Introduction

In the last few decades, deep learning techniques have attracted
ubstantial attention within the artificial intelligence community. The
ccomplishments have been primarily due to enhanced capability of
oday’s computer to gather, store and process large volumes or big
atasets. This increased capability led to significant increase in per-
ormance, accuracy, and efficiency of the overall system. Therefore, it
as become a possibility to gain highly accurate systems for several
earning tasks such as image processing, target recognition, object
dentification and classification [1] within enhanced performance. The
ost common deep learning approaches are implemented either by

uzzy logic or by neural networks [2] due to their ability to perform
nder multi-function compositions and ability to drive in multi-stage
earning processes.

Neural network defines a computational system developed in ref-
rence to biological neural logic i.e., the network interconnects by
rtificial neurons. Neural network [2,3] adapts the structure based on
he training dataset. With the available dataset, the learning process of
he model explores the best operating point.
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Fuzzy logic is defined by many valued logics i.e., focus on impre-
cise, uncertain, and approximate reasoning, etc. on contrary to precise
or fixed reasoning. The fuzzy logic characterizes the degree of truth
and takes any value in range [0,1]. Whereas conventional binary sets
characterize values as either 0 or 1. Because of this reason, fuzzy logic
provides a facility to acknowledge the concept of partial truth. Since the
preface of the fuzzy set theory concept in 1965 by Lotfi Zadeh [4], fuzzy
logic acts as a most viable option to handle imprecise and uncertain
data and helps in making decisions.

Fuzzy logic derives by mathematical decision depiction model,
which supports imprecise, uncertain, or ambiguous data, whereas neu-
ral networks involve human factors to resolve real-life issues without
modeling mathematically. Both fuzzy logic and neural networks sup-
port resolution [2] to non-linear issues, uncertain issues, or unrelated
issues. Fuzzy logic incorporates the development of models using
membership functions and interconnects them via rule base. Whereas
neural networks apply human thinking process to resolve any issue
i.e., learning process including specific algorithms and highly depended
on available training dataset.

Fuzzy logic has benefited a lot in real-life applications [5–7] such as
approximation, systems control, classification, clustering etc. With the
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help of fuzzy logic systems, these applications have shown the flexibil-
ity in designing with ease of interconnections and obtaining linguistic
results. Fuzzy logic-based systems are white-box implementations that
associate transparency in actual implementation and validation.

In general, fuzzy logic systems are universal approximators that
estimate accuracy of any continuous functions. Due to transparency and
applicability of fuzzy logic, substantial growth has been accomplished
in both theory and application in the last several decades. Fuzzy
logic has been exercised to more complicated and complex systems
but has become an obstacle for the complex and real-life applications
[5–7] with high dimensional datasets [8–10]. The limitations due to
dimensions can be summarized [9,10] as:

• Exponential increment in fuzzy rule-base with increase in number
of input variables

• Exponential growth in number of parameters in mathematical
relations of fuzzy systems with increase in input variables

• Increasing dataset necessity to identify the true behavior of the
fuzzy system with increase in input variables.

These constraints due to dimensions [9,10] damage the trans-
parency and interpretation of the system, which is the key pillar of
fuzzy logic. This leads to the incapability of interpreting and advocating
a huge number of fuzzy rule-bases with large numbers of parameters.
Most of the real-life applications [7] have limited data availability. Due
to this limitation, a huge number of rule-bases and parameters provide
an over-fitting result that damages the generalization of the overall
fuzzy systems.

To prevail over the limited dimension issue with fuzzy systems,
several authors [8–11] [12] proposed designing of fuzzy systems in the
form of hierarchical structure, commonly called as hierarchical fuzzy
systems. Contrary to conventional fuzzy logic, where a single fuzzy
logic system contains the information of full dimension. In hierarchical
fuzzy systems, several smaller sub-dimension systems, represented as
sub-systems, are interconnected in the form of hierarchy. Each sub
system is defined by a fuzzy logic unit. Apart from using hierarchical
fuzzy logic for prevailing the dimension issue, most of the researchers
leverage hierarchical fuzzy systems to refine the accuracy of the fuzzy
system. These refined algorithms of hierarchical fuzzy systems are
used in various applications such as data or image classification [1],
clustering, path prediction/estimation and tracking system etc.

1.1. Limitations of conventional fuzzy systems

For the conventional fuzzy logic, fuzzy terms and membership
functions are mainly used to segment input space and identify all the
possible interconnections in the form of rules. Every input is catego-
rized by its membership functions. As a repercussion, the number of
rules grows exponentially as the number of input variables increases.
The matrix below shows the grid structure of two inputs: X1 and X2;
and their membership functions (assuming each input has ‘m’ number
of membership functions ranges from [1, 2, …, m]) and each fuzzy
value will then be defined as {X1(1), X1(2), …, X1(m)} and {X2(1),
X2(2), …, X2(m)}. Fig. 1 shows the combination of two inputs in the
form of the matrix. Every combination leads to a rule and all the
combinations give the maximum number of rules possible [9,10].

A fuzzy rule-base for the above can be shown by pseudo algorithm
as:

If input X1 has membership functions as X1(i) and input X2 has
membership functions as X2(j), then the output is Y(i)(j). Where ‘i’=
1,2,3…m and ‘j’ = 1, 2, 3, … m

Since both the inputs have ‘m’ membership functions, to cover the
entire domain, the maximum number of rules for a fuzzy system is m2

nd is termed as rule base. Now, assume there are ‘n’ input variables,

nd each variable has ‘m’ membership functions, then the total number

2

Fig. 1. Matrix of 2-input membership functions.

of possible rules will be (m𝑛). For example: a fuzzy system consists of
0 input variables with each of them having 10 membership functions,
ontaining a total of (1010) rules. It is almost infeasible to design

conventional fuzzy with that many possible combinations.
With gradual increase in input variables, there is an associated in-

creasing number of parameters. Assume ‘p’ is the number of parameters
required for every rule-base, so with 10 input variables and each with
10 membership functions requires ‘‘p. (1010)’’ parameters.

Another limitation is the increase in training data required with
increase in input variables. It is expected that the training dataset
shall have at least the same number as the number of parameters. The
increase in the number of parameters leads to the increase in data for
the input variables.

The above limitations have lots of consequences, such as:

• Loss in transparency and interpretability because of incapability
to understand and generalize large number of rules and parame-
ters

• Real-life applications [7], due to limited data availability, lead to
overfitting of rules and data. This may damage the generalization
of the fuzzy system.

• Requires excessive computational power and large memory to
process data/rules

These limitations are the bottleneck for applying and designing
fuzzy based systems for large, complicated, and complex applications.
This further restricts the conventional fuzzy logic to solve various
applications via intelligent tools and with high dimensions successfully.

1.2. Hierarchical fuzzy tree structure

Hierarchical fuzzy logic was first introduced in the early 90’s by
Raju, Zhou and Kisner [8,9,13] to resolve the limitation of dimension
of conventional fuzzy logic. In general, a high-dimensional fuzzy sys-
tem is divided into several low-dimensional fuzzy systems, commonly
known as fuzzy logic units. These fuzzy logic units are interconnected
in hierarchical manner. In general, Hierarchical fuzzy systems are
categorized into various hierarchy levels and each level comprises sev-
eral sub-systems. Final hierarchical fuzzy sub-systems are described by
combining these various sub-systems committing to the final solution.
The sub-system at the lowest level acquires only real inputs and their
outputs become the inputs to the next level in the hierarchy and the
final layer possesses the final solution. This design has attracted a lot
of attention from various researchers.

A hierarchical structure [13] shown in Fig. 2 consists of multiple
levels and multiple subsystems at each level. The outputs from the
current level become the inputs to the next level and output from the
final level drives the final solution.

Similarly, Chung and Duan [8,9,12] categorizes hierarchical fuzzy

systems in following three forms:
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Fig. 2. Cascaded hierarchical tree structure.

Fig. 3. Incremental hierarchical tree structure.

1. Incremental structure, shown in Fig. 3.
2. Aggregated structure, shown in Fig. 4.
3. Cascaded structure, shown in Fig. 2.

Incremental structures are described by multi-stage reasoning. Each
stage is represented by one level and every level contains only one
sub-system. The lowest level (lth level) consumes the actual inputs,
whereas the (l−1) th level consumes output from previous level and
part of input variables. To make a precise system, it is important that
the most valued input variables should be assigned to the lowest level
possible. In the words of Wang and colleagues [3,8,9,12], a sub-system
with more valuable information shall be applied first and less valuable
information shall be applied later. This way, the output of the lowest
subsystem will then be propagated to the upper level within affecting
subsequent levels.

Aggregated structures are described by multi-layer and multi-sub-
systems, where each level may have single or multiple subsystems.
The lowest layer consumes all the real inputs. Other consecutive layers
consume the output from the previous level as inputs.

Cascaded structure is the combination of both incremental and
aggregated structures, as shown in Fig. 2.

Wang and colleagues [3,8,9,12] proposed methodology for incre-
mental structures. They considered various membership functions in-
cluding triangular membership functions and gaussian membership
functions as a universal approximator that approximates the accuracy
for any non-linear functions. For example, suppose there are ‘𝑛’ number
f input variables, and each input is defined by ‘𝑚’ membership func-
ions, and ‘𝐿’ is the number of levels, 𝑛𝑖 is the number of inputs at 𝑖th
evel, which also includes output from previous level (𝑖 − 1)th, in this
3

Fig. 4. Aggregated hierarchical tree structure.

Fig. 5. Incremental structure with 𝑁𝑖= 2.

case, the total number of rules is represented by Eq. (1) as:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑢𝑙𝑒𝑠 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚) =
𝐿
∑

𝑖=1
𝑚𝑛𝑖 (1)

To determine the minimum number of fuzzy rules, let us suppose
N𝑚𝑖 = 2 i.e., every model with two inputs, as shown in Fig. 5. The
maximum number of rules when 𝑁 𝑖 = 𝐿 (same as conventional fuzzy
systems) is M𝑁 and total number of rules with hierarchical fuzzy logic
can be expressed in Eq. (2) as below:
𝑁−1
∑

𝑖=1
𝑀2 = (𝑁 − 1) .𝑀2 (2)

For example, suppose 𝑁 = 𝑀 = 5, 𝐿 = 4, where 𝑁1 = 𝑁2 = 𝑁3
= 𝑁4 = 2, then the number of rules for hierarchical structure is 4*(52)

100, if we use only one level and one system i.e., equivalent to a
onventional fuzzy system, then the number of rules becomes 54 = 625.

The maximum reduction in rules between hierarchical fuzzy logic
and conventional fuzzy logic is 625 −100 = 525, which is more than 5
times the actual rule base for conventional fuzzy.

1.3. Problem statement

Despite several advancements discussed in literature, still there
are several open points and limitations such as narrow systems per-
formance when data is contrived by inherent noise, ambiguity, un-
certainty, incompleteness, vagueness. These limitations reduce the ef-
fectiveness and performance of the system and thus minimizes the
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ability of deep learning techniques to confront real-life applications [7],
which can be safety and security critical. This requires the necessity to
illustrate data in a better way by collection of additional data, more
analysis and clean dataset. Deep learning approaches often have low
transparency. This reduced transparency limits the understanding and
interpretation to other users.

The aim of this paper is to address the problems and limitations to
develop a fuzzy based model, which can handle large volumes of data,
especially real sets of images. With ability to maintain composition both
at functional level and linguistic level. Fuzzy based models are well
suited and have potential to handle data efficiently and provide a high
transparency due to its rule base nature. The recent development has
been around hierarchical fuzzy systems or fuzzy hierarchy networks.

It is a well-accepted fact that the conventional fuzzy systems have
limitations to data dimension [9,10]. This limitation restricts the usage
of fuzzy systems to solve complex problems and applications with large
data dimensions. In the last few decades, hierarchical fuzzy systems
have appeared to be a viable solution to overcome the limitation of
conventional fuzzy systems and, so far, bring significant attention.
This paper presents an approach to develop hierarchical fuzzy based
models with the focus to deal with large volumes of data, without
compromising the performance and effectiveness of the overall system.

As per authors’ knowledge, no one has developed the hierarchical
fuzzy system using image thresholding to process various classes of
image dataset. In this paper, the proposed algorithm has been validated
on a large, real-time image dataset i.e., YaleB dataset. For improved
and better analysis, it will be worthwhile to extend the scope of this
work towards other datasets [14–17], for example, video data, visual
data, x-view, image-net, etc. This scope would be a feasible option for
researchers to work and improve the performance.

2. Hierarchical system design

The representation of imprecise and uncertain data for real-life
applications poses an urgent and unique challenge. Deep learning
techniques such as neural networks, fuzzy logic, fuzzy neural net-
works etc. present meaningful approaches to handle these challenges
of maintaining datasets with large dimensions. To address the issues of
generalization, transparency and large dimensions, several researchers
[5,6,8–10,18] started the idea of designing fuzzy systems in hierar-
chical structure. Instead of designing conventional systems with high
dimensions, the system will be divided into subsystems with low di-
mensions and connected with each other in the form of hierarchy.
The hierarchical system is represented as a multi-input- single-output
system, and on other hand, without losing any generalization, multi-
input–multi-output systems can be represented in several multi-input-
single-output subsystems. Out of various algorithms available in the
literature, hierarchical fuzzy logic, i.e., fuzzy logic system design in a
form of hierarchy, introduces as a most effective approach to handle
such large dimension dataset in most effective manner. The common
applications to hierarchical systems are classification, clustering, plan-
ning, and tracking systems etc. Due to the limitation of fuzzy logic
rule-base for large datasets, an approach to design fuzzy logic systems
arranged in hierarchical architecture has been discussed in this paper,
to reduce the number of rule-bases without compromising effectiveness
and efficiency of the overall system.

With fixed number of input variables, an algorithm is presented by
Radek Sindelar [11] on Hierarchical fuzzy systems suggesting the use of
clustering approach to help divide the system into subsystems, identify
the center points and correlate with rule-base of various subsystems
with the help of clustering. However, the limitation of the algorithm lies
with the restriction to a small number of input variables and leveraging
a high dimension dataset is not a feasible option. The research also com-
pared the accuracy and effectiveness of various weighted approaches
for defuzzification such as maximum, centroid etc. to make the system

more efficient.

4

Hierarchical fuzzy tree structure [8–11] has been described in
Section 1 earlier i.e., the interconnections between various subsystems
are made in a way such that the output of lower-level subsystems
becomes the input to next level subsystems and so on. The proposed
algorithm starts with the lower level, where inputs are data from the
real images, especially with large dimensions. 2-side gaussian mem-
bership function has been preferred because of its smooth, continuous,
and differentiable properties. The realization of fuzzy systems has been
done in various steps such as: extracting rules from training networks,
optimizing network parameters using fuzzy logic, adding fuzzy logic
behavior to define required networks, realizing fuzzy membership
values, and representing fuzzy blocks for multi-layer networks. The
above said steps can be obtained for any of four given algorithms
i.e., grid partitioning, back propagation, subtractive clustering, and
fuzzy c-mean clustering. In this paper, we choose fuzzy c-mean clus-
tering methods due to its ability to do system design in both Mamdani
and Sugeno type fuzzy inference systems. Like conventional fuzzy, for
multi-layer networks, hierarchical fuzzy logic units are characterized
by three sub-systems: fuzzification, fuzzy inference systems for rules
or connections and defuzzification. The ‘‘centroid’’ weighted approach
has been considered for defuzzification. The comparison with other
weighted approaches such as Maximum etc. is listed in the result
section later. The approach suggested a cluster approach to define
subsystems, extracted from image data.

2.1. Conceptual flowchart

Fig. 6 represents the conceptual flowchart for designing hierarchical
fuzzy logic systems [6,8–10] [19]. As discussed previously on hierarchi-
cal tree structure, the algorithm for both aggregated and incremental
structures have been examined and then the comparison of results has
been made to get the closest result in reference to expected behavior.

One of the objectives of designing the hierarchical fuzzy systems
is to achieve better performance and accuracy by comparing various
tree structures. The algorithm offers the generalized design process con-
sisting of both incremental and aggregated hierarchical tree structures.
As shown in flowchart (Fig. 6), either aggregated or incremental tree
structure can be picked at a time. In our research, the selection of
hierarchical tree structure is made as per user input i.e., depending on
the requirements, the user manually selects tree structure. The results
of both aggregated and incremental tree structures have been presented
separately.

The aggregated tree structure is advantageous when all the inputs
are unified, and the system requires uniform transition from one level
to the next level of the hierarchy. The incremental tree structure is
advantageous when input parameters have varied impact on the system
and require variable transition among different levels. The cascaded
hierarchical tree structure is the amalgamation of both aggregated
and incremental hierarchical tree structures. The ideal selection of
hierarchical tree structure is based on the system requirements and
other external factors such as the prioritization or ranking of inputs
and hardware capabilities. For e.g., if inputs are coming from different
sensors and few of them are more critical than others, incremental tree
structure is preferred and if all the inputs have the same priority, then
aggregated tree structure can be leveraged. This is due to the fact that
in aggregated tree structure, all the real inputs are consumed at the
lower level of the hierarchy and the hierarchical structure does not
require any ranking or prioritization among the various inputs. On the
other hand, for incremental tree structure, a segment of real inputs
is consumed at every hierarchical level. For the effective incremental
tree structure design, it is highly important that the critical or higher
priority input shall drive the lowest level of the hierarchical level
and lesser priority input segment drives the top hierarchy. This can
be achieved by establishing the ranking or prioritization system of
the inputs based on their importance and effectiveness on the overall
system. Once the input ranking has been identified, the system can be
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Fig. 6. Conceptual hierarchical fuzzy logic implementation for the system.

esigned as specified. It will be worthwhile to design and develop the
anking system and segment the inputs before applying the algorithm.
t is up to the user discretion on how to utilize the cascaded structure to
chieve optimal performance and accuracy. The algorithm for cascaded
ree structure can be developed further.

The real input dataset attached to a specific level i.e., lower level
f aggregated structure consumes all the real inputs, on the other
and, for incremental structure, all the levels consume real inputs along
ith output from previous levels. Database, in Section 3, shows the
ig matrix of image data. Keeping output as expected labels, the data
atrix will further be segmented as a portion of column and row
atrices, where each segment represents one fuzzy logic unit of the
ierarchical systems.

.2. Image segmentation

Segmentation of image [20] is the process to partition a single
mage in multiple objects, commonly known as image segmentation
5

[9,16,17,20]. The basic usage of image segmentation is to streamline
image representation for better analysis i.e., identify objects, detect
boundaries etc. This process assigns labels to every pixel but with
varied characteristics. The behavior can be extracted from a different
set of contours obtained from Image.

The basic structure of image segmentation [20] is image threshold-
ing, which turns gray-scale or RGB image into binary form. There are
several methods available in the literature for image thresholding, such
as:

1. Entropy Method — This method uses the entropy of both fore-
ground and background regions using the probability distribution
functions. Assuming the foreground has largest entropy compared to
background or previous ground

2. Balanced Histogram Thresholding — This method uses Iteration
thresholding method. The image is classified into two regions front-
and back-ground and weighs on histogram to see which side is heavier
and then to make it lighter, removes the weight from the heavier side.

3. K-Means Clustering — This method is based on iterations. Every set
of image pixels is divided into K-clusters that refers to the minimum
distance between pixel and cluster center point. In the final step,
apply any weighted approach i.e., Centroid, Maximum, Minimum
etc. to get a result.

4. Otsu’s Method (Maximum Variance) — For Image processing, Otsu’s
method commonly referred after Nobuyuki Otsu is used for Image
thresholding. The algorithm provides intensity or threshold values
that differentiates between two-pixel classes. This approach deter-
mines the intra-or inter-class intensity variance and classifies image
thresholding points where the variance is high.

Image segmentation approach [9,16,20] partitions a single image
into multiple objects. It streamlines the representation of images for
better analysis in a fuzzy environment. In this paper, all the images
in the dataset are available in pixel format. Considering the format of
the image, Otsu’s method for image thresholding has been preferred.
One of the major rationales behind the selection of Otsu’s method is its
ability to provide multiple threshold values that differentiate various
pixel classes. Here Otsu’s method is used to identify multi dimension
threshold values. These multiple threshold values are then used to
modify real inputs and generate new sets of input.

Because of the capability of differentiating image pixel classes, in
this paper, Otsu’s multi-dimensional method [9,16] has been used to
create a generalized algorithm using hierarchical fuzzy logic for a
large database of images. The one-dimension Otsu’s method has the
limitation to have assumption of bi-model distribution. This method
applies better when there is a deep and sharp curve. The problems
discussed in this paper can be resolved by multi-dimensional methods
and thus the reason behind using the same in the algorithm.

It is observed that in various databases available for research, there
is a minimal difference in membership values between two image sam-
ples. This restricts the segmentation of the data matrix and contradicts
the design of the fuzzy logic system rule base. With similar membership
values, the expected output values are different. One of the solutions to
overcome this problem is to use Otsu’s image thresholding algorithm
to find multiple threshold values and multiply these values with input
membership values to create new input matrix but keeping output
membership values remain the same and is shown by Eq. (3) below:
𝑁
∑

𝑛=1
𝑋𝑁𝑒𝑤

𝑛 =
𝑁
∑

𝑛=1

𝑃
∏

𝑝=1
𝑇𝑝∗𝑋𝑛 (3)

Where, ‘𝑁 ’ = number of columns for input matrix per sample; and ‘𝑃 ’

= multi-threshold values from single sample input matrix.
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2.3. Algorithm design

The flow in hierarchical fuzzy system design [8–10,21] is, except
at the lower level, the outputs from previous level will become input
to the next level alongside real inputs and so on and so forth. From
second level onwards, consider previous output as input to the next
level; combine all the values and data segments in sub-systems; and
evaluate next values for next level by keeping the same expected
output; generate fuzzy logic unit models for every segment. For the last
level, it is expected to have only one fuzzy logic unit, which provides
final output. In this paper, fuzzy c-mean clustering is considered due to
its ability to generate center points that can directly be correlated and
used as a fuzzy rule base. With required cluster center points, these
regions are contrived to n required points depending on number of
rules required per fuzzy logic unit. Thus, center points can be converted
directly to rules. The steps for the algorithm to design hierarchical
system for different tree structure is define in following steps below:

1. Consider training data consists of large database with images
2. Define following information:

a. Number of hierarchical levels
b. Fuzzy logic units in every level
c. Number of clusters corresponds to required number of rules

for every fuzzy logic unit

3. Obtain multi-thresholding value from Otsu’s method and multiply
with each input elements to create new input

4. Group the Input dataset in various segments keeping the output
remain same as expected. For instance, the input dataset of [165,
1024] can be divided in to 1408 samples of [15, 8] or 704 samples
of [15, 16]

5. For the first or lower level of hierarchical structure i.e., aggregated
tree structure, all the real input adheres to the first or the lower
level of hierarchical structure. This layer consists of fuzzy logic unit
generated for all the input samples extracted in Step 3, the steps to
generate fuzzy logic unit is as follows:

a. Take input segment/ Sample and map with desired output
b. Using MATLAB commands, the syntax to generate Fuzzy

inference system is defined below:

i. Fuzzy System = genfis3([Input], [Output],’FIS Type’,
‘Number of Cluster’); Where –

1. [Input] = Input sample matrix
2. [Output] = Expected output matrix
3. ‘FIS Type’ = Choose type of inference system:

Mamdani or Sugeno
4. ‘‘Number of Clusters’’ = Desired number of rule

base for fuzzy logic unit

ii. Evaluate the output of the fuzzy logic unit with ‘evalfis’
command

iii. Store the evaluated output in a buffer

6. For the next level(s) of hierarchical structure,

a. Take all the output from previous hierarchy levels and con-
sider them as input to current level

b. Create a group of segments of matrix and map each segment
with map with desired output

c. Using MATLAB commands, the syntax to generate Fuzzy
inference system is as below:

i. Fuzzy System = genfis3([Input], [Output],’FIS Type’,
‘Number of Cluster’); Where —
1. [Input] = Input sample matrix d

6

2. [Output] = Expected output matrix
3. ‘FIS Type’ = Choose type of inference system:

Mamdani or Sugeno
4. ‘‘Number of Clusters’’ = Desired number of rule

base for fuzzy logic unit

ii. Evaluate the output of the fuzzy logic unit with ‘evalfis’
command

iii. Store the evaluated output in a buffer

7. For the last hierarchy level

a. Take all the outputs from previous levels and consider them
as input to current level

b. Create a group of segments of matrix and map each segment
with map with desired output

c. Using MATLAB commands, the syntax to generate Fuzzy
inference system is defined below:

i. Fuzzy System = genfis3([Input], [Output],’FIS Type’,
‘Number of Cluster’); Where —

1. [Input] = Input sample matrix
2. [Output] = Expected output matrix
3. ‘FIS Type’ = Choose type of inference system:

Mamdani or Sugeno
4. ‘‘Number of Clusters’’ = Desired number of rule

base for fuzzy logic unit

ii. Evaluate the output of the fuzzy logic unit with ‘evalfis’
command

8. Evaluate the last level of hierarchy to get final output.

Algorithm to design hierarchical tree structure has been shown
elow. For aggregated structure, all the real inputs are consumed
y lower levels. Next level onwards, each level has output from the
revious level as input to a fuzzy logic unit. Final level provides the
inal output. However, incremental structure has one fuzzy logic unit at
very level and except lower level, all the other levels have fuzzy logic
nits with input as a combination of real input segment and output
rom previous level. Final layer provides the final output evaluated.
ATLAB ‘Evalfis’ command [22] is leveraged to evaluate the respective

utputs from fuzzy units in the given hierarchical tree structure. For the
iven input values, this command evaluates the fuzzy inference system
nd returns the output value. The default evaluation option has been
elected.

The cascaded structure can be designed using the algorithm by
erging both aggregated and incremental design procedures.

The algorithm consists of a Machine learning approach having un-
upervised learning with the help of Fuzzy c-mean clustering method-
logy. The fuzzy c-mean clustering (FCM) method is considered for
esigning the fuzzy units due to its ability to generate center points
nd convert the generated center points into a form of rules and
ater transitioned to rule base. Fuzzy c-mean clustering is a technique
n which every data element of the given dataset belongs to every
luster to a certain degree. In terms of fuzzy logic, data elements,
eaning towards the center of the cluster, will have higher degree
.e., higher membership values and vice versa. By default, the fuzzy c-
ean clustering assigns every data element a unique membership value

or every cluster. Using continuous iteration method, the FCM corrects
he center of the clusters by adjusting the distance between any two

ata elements and membership values for every data element. Keeping
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in mind the size of the image, maintaining the default clustering option
could provide an optimal solution.

This will enhance computational time drastically and eventually
ower down the overall performance. Using the iteration method for
he image database with the help of MATLAB ‘fcm’ command [23], the
pproximate range for total number of clusters has been analyzed and
onsidered for further use. The MATLAB ‘genfis’ command [22] has
een exploited to create center points using a fuzzy c-mean algorithm
nd to generate a fuzzy inference system by converting these center
oints into rule base. The algorithm manages every fuzzy unit and
acks the output at each hierarchical level independently. There will
e numerous ways the algorithm can be managed further. If new data
verrides the existing data and forms the same clusters, the generation
f new center points or fuzzy clusters is not needed. If the new data
7

does not override with existing dataset, the generation of new center
points is needed. This can create a situation to re-design fuzzy inference
systems with new clusters. Examples include adding additional hierar-
chical structure and aggregate output with the existing model or the
additional fuzzy unit can be designed separately and later added at the
lowest or highest hierarchical level or re-learn complete structure while
maintaining the same total number of clusters.

The description of the database used to validate the algorithm is dis-
cussed in Section 3. The validation of these algorithms for hierarchical
tree structure, for all the image classes discussed in this section, has
been shown in Section 4.

3. Database – real images

In real-life applications [7], there is always a challenge to han-
dle datasets of large dimensions and there is an urgent need for a
strategy to develop distributed systems [5–7]. Various companies such
as Google, Amazon, Yahoo, Facebook, LinkedIn etc. already acquire
large databases including huge databases of real images for object
detection and target identification [17,24] etc. and are now striking
the benefit of acquiring and processing such data. The dataset for
real-life applications is non-linear and robust in nature, i.e., comprises
supervised and non-supervised datasets.

For the development of efficient systems, it is easy to use existing
pre-trained models that are available for image classification, image
segmentation [15,16,20], handwriting spot, face recognition etc. These
pre-existing models contain pre-processed images i.e., images with
fixed sizes, normalized image intensities within RGB or Gray range
between [0, 255].

To benchmark the algorithm, it is always beneficial to leverage
standardized test databases, as it would be convenient for researchers
to compare results directly. With many image databases available and
currently in use, the choice of dataset shall be specific to the property
to be tested i.e., depend on the features of the algorithm. In this paper,
Yale face database [24] has been considered, since it provides more
images per class and more samples. This database is available publicly
but limited to research purposes only.

YaleB database [17,24] consists of 165 images of 15 individuals and
all the images are in GIF format. In general, per individual, there are
11 images defined, and the categorization of these images are based on
their facial expressions and configurations as: center-light, left light,
right light, with glasses, without glasses, happy, normal, sad, sleepy,
surprised, wink.

The standard Yale face database [17,24] contains a training and
testing set of images both in GIF format and in MAT format. Training
dataset is used for learning algorithms and testing dataset is used for
validation purposes. MAT format is convenient to extract in MATLAB
environment [22] and can be used to image resize and normalization
of images. In this paper, training data has been used to develop the
hierarchical fuzzy logic system, whereas testing data has been used to
evaluate the system to validate the effectiveness and efficiency.

Images are available in two sizes (in grayscale): 32 × 32 and
4 × 64. Depending on the requirement, these images can be resized,
ormalized etc. In recent times, the Yale database has been transformed
o Extended Yale database that has the database of 38 individuals and
ncludes 64 facial expressions and configurations. Fig. 7 shows the
ample images of the Yale Face database.

.1. Image data in pixel format

Fig. 8 illustrates various classes of images in pixel format. These
lassifications have been done using the Yale face database. Each data
s a matrix of [165 × 1025], with Input of size [165,1:1024] and output
abel of size [165,1025:1025].

Each number of rows shows the number of samples, whereas input
olumns for each row represent one pixel of image in 1-D, in other
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Fig. 7. Sample images from Yale face database.

words, the size of the images is 32 × 32 and each image is represented
in a row matrix with size [1,1024]. The row matrix represents the one-
dimensional matrix of a single image of size 32 × 32, where there will
e one row for each image and 32*32 = 1024 columns consist of pixel
ata.

The dataset of various image classes [9,17,24] has been discussed.
ach dataset is represented in different colors. The data is segmented
nto sub-columns and sub-rows. These segmentations are shown in gray
nd blue color. The level of the hierarchical system consists of fuzzy
ogic units designed for every segment and is connected in hierarchical
rchitecture. For example, in the case of aggregated hierarchical struc-
ure, all the fuzzy models, designed using these segments, must lie in
ower level and output from lower level becomes input to next level
nd so on. On the other hand, for incremental hierarchical structure,
very segment represents a single layer of hierarchical structure but
part from the first layer, output from the previous layer is also added
s one of the inputs for the next layer. The four classes of images [9]
re shown in Fig. 8 as:

. Raw Dataset (Default)
This class explains the raw image data in grayscale format. In the

urrent example, the size of the data is [165 × 1025], where Input size
s [165 × 1024] and Output size is [165 × 1]. Assuming 𝑋𝑚,𝑛 defines the
nput matrix and 𝑌𝑚 defines Output matrix, where ‘𝑚’ is the number of
amples and ‘𝑛’ is the total columns required to define one image. The
ataset in pixel format is represented in Fig. 8(A).

. Values in Fuzzy Range [0,1]
This class explains the modified image data, but all the membership

alues are within Range [0, 1]. The raw matrix for Input and Output
ith size of the data is [165 × 1025]. Assume 𝑋𝑚,𝑛 defines the raw

nput matrix and 𝑌𝑚 defines Output matrix, where ‘m’ is the number
f samples and ‘n’ is the total columns required to define one image.
hen the modified Input matrix is represented by Eq. (4) below and the
ataset in pixel format is represented in Fig. 8(B):

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝑚,𝑛 =

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

(𝑋𝑚,𝑛

255

)

(4)

Where, 𝑁 = total number of columns in input matrix and 𝑀 = Total
number of samples. This is the case of normalization and scaling of all
the inputs within range [0,1]. The fuzzy logic works best in the range
of [0,1]. The sole purpose is to normalize and scale all the inputs within
fuzzy limits, which is between 0 and 1.

3. Categorized in 4 Membership values
This class explains the modified image data in grayscale format,

but all the membership values are distributed within four membership
functions and all the membership values lie in range [0, 255]. The
raw matrix for Input and Output with size of the data is [165 ×
1025]. Assuming 𝑋𝑚,𝑛 defines the raw input matrix and 𝑌𝑚 defines
Output matrix, where ‘m’ is the number of samples and ‘n’ is the total
columns required to define one image. Then the modified Input matrix
 f

8

Fig. 8. Various image classes in pixel format.

is represented by Eq. (5) below and the dataset in pixel format is
represented in Fig. 8(C):

𝑋𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝑚,𝑛 =

224; ∈ {192 ≤ 𝑋𝑚,𝑛 ≤ 255}
160; ∈ {128 ≤ 𝑋𝑚,𝑛 < 192}
96; ∈ {64 ≤ 𝑋𝑚,𝑛 < 128}
32; ∈ {0 ≤ 𝑋𝑚,𝑛 < 64}

(5)

. Gaussian Noise
This class results in a modified image dataset with added gaussian

oise with mean 0.0 and variance 0.001 and it is expected that all the
embership values lie in range [0, 255]. The raw matrix for Input and
utput with size of the data is [165 × 1025]. Assuming 𝑋𝑚,𝑛 defines

he raw input matrix and 𝑌𝑚 defines Output matrix, where ‘m’ is the
umber of samples and ‘𝑛’ is the total columns required to define one
mage. Then the modified Input matrix is represented by Eq. (6) below
nd the dataset in pixel format is represented in Fig. 8(D):

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝑚,𝑛 =

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
(𝑋𝑚,𝑛 + 𝑈 ∗𝑋𝑚,𝑛) (6)

here ‘𝑈 ’ is the uniform distribution with mean 0.0 and variance
.001.

One of the objectives of the algorithm is to obtain the accuracy as
lose to desired behavior. Keeping in mind the value of membership
unctions and the working range in designing fuzzy inference systems,
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it is of utmost importance to analyze the threshold for defining func-
tions by which desired accuracy will be achieved. These four image
classes present the unique scenarios, where the ‘Default’ class refers
the maximum number of membership functions; the ‘In range’ class
refers the fuzzy working range i.e., [0, 1] and kept al the membership
functions within this range; the ‘Membership values’ class limits the
number of membership function per fuzzy inference system; and the
‘gaussian noise’ class refers the addition of noise on the existing data
and validates the proposed algorithm in case of noisy data.

In this paper, we added gaussian noise to the available YaleB dataset
and generated a new set of data. MATLAB ‘imnoise’ command [22] is
used to generate new data with gaussian noise with zero mean value
and small variance. It will be worthwhile to reevaluate this algorithm
in the future.

4. Validation and result analysis for various image classes

It is an accepted fact that conventional fuzzy logic holds the lim-
itation of dimensionality i.e., large number of inputs and rules. This
limitation restricts the application of conventional fuzzy towards large
datasets such as datasets consisting of a large number of real images.
Designing a conventional fuzzy logic system for large image datasets is
quite involved. To overcome this limitation, hierarchical structure pos-
sesses the most viable option. For the validation purposes, a multi-level
hierarchical structure has been considered. For aggregated hierarchical
tree structure, each hierarchical level consists of a total of 2(𝑁 − 1)
fuzzy units, where 𝑁 is the number of hierarchical levels. The lowest
or first level of hierarchical structure inherits the highest number of
fuzzy units i.e., 2(𝑁−1) fuzzy units. Similarly, the second level inherits
2(𝑁 − 2) fuzzy units; the third level inherits 2(𝑁 − 3) fuzzy units; and
so forth and so on. On the other hand, the incremental hierarchical
tree structure consists of 𝑀 hierarchical levels where each hierarchical
evel inherits only one fuzzy unit, and 𝑀 = Total number of input
arameters/ number of samples per input segment. Example, for image
ize of [1,1024], the input parameters can be defined as 1024, and if
ach input segment consists of 16 input parameters, the total number
f hierarchical levels = 1024/16 = 64. This is critical because all the
ierarchical levels consume part of real inputs.

.1. Verification of fuzzy weighted approach

Hierarchical fuzzy logic implementation resolves the issue of limi-
ation of dimension by simplify and minimize total rule base. However,
aintaining and retaining accuracy of the system are very crucial

oo. Fuzzy logic offers various aggregation methods, out of which
maximum’ and ‘weighted average’ are the most effective approaches.
o make a system more reliable and robust, it is highly important to
alidate two approaches and identify the best suitable use-case.

For designing the low dimension hierarchical system, Radek Sinde-
ar [11] presented the selection criteria of various aggregated methods
nd showcased that the two aggregated methods i.e., ‘maximum’ and
weighted average’ are most effective methods [3,4]. In this paper,
he behavior of these two aggregation methods have been compared
or hierarchical systems. Since a hierarchical fuzzy system comprises
everal fuzzy units at various levels of hierarchical structure, each unit
as its own rule base that is extracted from required clusters of data.
eeping numerous fuzzy units for one system in mind, it is critical to
elect the effective aggregation method for defuzzification for every
uzzy unit. The selection of aggregation methods provides better and
ore accurate results.

Fig. 9 Shows the graphical representation for the comparison of
wo aggregation methods, i.e., weighted average and maximum, with
espect to a conventional fuzzy system. Where ‘sFIS’ represents the
onventional system in blue color and ‘hFIS’ represents the hierarchical
uzzy system in red color. Fig. 9 presents the maximum aggregation

ethod comparison between conventional fuzzy and hierarchical fuzzy

9

Fig. 9. Comparison between weighted approaches.. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

systems. The figure also presents the weighted aggregation method
comparison between conventional fuzzy and hierarchical fuzzy systems.

It is observed that the aggregated method using weighted average
is a clear winner with 0.92 as correlation factor with expected output
and gives a closer result compared to maximum aggregate method with
correlation factor of 0.84. Note: during the analysis for the above said
situations, the rule base is considered the same.

4.2. Cumulative distribution

One of the objectives of this research is to design a system using al-
gorithms with higher accuracy. The accuracy between expected output
and actual output using various fuzzy inference system methodologies
have been compared and shown in Fig. 10 below.

The design of aggregated hierarchical tree structure is consid-
ered using both Mamdani and Sugeno type fuzzy inference systems
[3,4,8–10]. The analysis using two approaches provides critical infor-
mation as to which fuzzy inference system type provides a result closer
to the desired output. The descriptions of graphs are given as:

• Mamdani type fuzzy inference system

A. Image classification — Expected and Actual output
B. Output deviation

• Sugeno type fuzzy inference system

A. Image classification — Expected and Actual output
B. Output deviation

Fig. 10 represents the classification of images and the deviation
between expected and actual output using both Mamdani type and
Sugeno type inference systems. Where, Fig. 10(A) presents the analysis
using Mamdani inference system and Fig. 10(B) presents the analysis
using Sugeno inference system. The deviation is calculated by the
relative difference between expected and actual output i.e., [expected
output – actual output]. The closer the deviation is to ‘0’, the higher the
accuracy of the system will be. Where, the 𝑥-axis presents the number
of image samples and the 𝑦-axis represents the image classification
i.e., labels for the image data.

Please note that the testing dataset from YaleB is considered to
validate the performance of the algorithm proposed. This analysis has
been performed using aggregated hierarchical tree structure. Number
of samples represents the number of images available in the testing
dataset to validate. Testing image dataset has been sorted in ascending



S. Kamthan and H. Singh Memories - Materials, Devices, Circuits and Systems 4 (2023) 100023

o
A
a
L
a

w
w
c
g

Fig. 10. Deviation between actual and expected result.

rder as per expected label i.e., lowest value (1) to highest value (15).
fter the sorting is done, the results are compared between expected
nd actual output. The ‘smooth (default)’ command [22] in the MAT-
AB is used on actual output to remove and handle any fluctuations
nd noise. The following observations have been made:

• Image classification: It is visible from two left plots that the
Sugeno type fuzzy inference system offers much closer results to
expected labels from YaleB database than then Mamdani type
fuzzy inference system. The hierarchical system design using
Sugeno approach is better

• Maximum output deviation: Mamdani type fuzzy inference system
has higher deviation than Sugeno type fuzzy inference system.
This shows that the output difference between Mamdani type
fuzzy inference system and YaleB database for every sample is
large compared to Sugeno type that provides low deviation. In
the figure, the range of deviation through Mamdani approach is
[−5, 4] whereas the range of deviation through Sugeno approach
is [−3, 2]

Figs. 11–12 shows the empirical cumulative distribution function
ith respect to expected behavior. Graphs represent different classes
ith different hierarchical tree structures. Fig. 11 shows the empirical

umulative distribution with respect to expected behavior for aggre-
ated hierarchical fuzzy tree structure for all the mentioned classes
10
Fig. 11. Empirical Cumulative Distribution using aggregated hierarchical tree structure.

Fig. 12. Empirical Cumulative Distribution using incremental hierarchical tree
structure.

of images. Fig. 12 shows the empirical cumulative distribution with
respect to expected behavior for incremental hierarchical fuzzy tree
structure for all the mentioned classes of images.

Closer the graph to 𝑌 -axis, better the performance of the system. It
is observed that both incremental and aggregated hierarchical structure
results are closer to the desired behavior.

4.3. Performance of hierarchical system algorithms

Figs. 13–14, shows the comparison between expected output versus
actual output in raw form.

Fig. 13 shows the overall performance for expected and actual
values using aggregated hierarchical fuzzy structure for all the image
classes.

Fig. 14 shows the overall performance for expected and actual
values using incremental hierarchical fuzzy structure for all the image
classes included in this paper.

As stated in the previous section, the YaleB testing dataset has been
leveraged for the validation of the accuracy. The YaleB testing data is
random in nature and consists of all the image classes included in the
YaleB training dataset. Any image samples with varied image labels
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i.e., from 1 to 15) can be taken for further validation of this proposed
lgorithm. For visual purposes, the dataset has been sorted in ascending
rder as per expected output label and then expanded the selection
o the actual output. Every number on the 𝑥-axis presents the unique
mage with expected and corresponding actual output.

The performance of the system has been shown in the graphs
y observing the behavioral response of actual output with respect
o expected output. By comparing all the hierarchical tree structure
esults, aggregated structure results are better than the incremental
ierarchical tree structure. Among various image classes, the aggre-
ated hierarchical tree structure provides the worst-case scenario with
he absolute difference between expected output and actual output in
ange of [1.1, 1.4] whereas, the incremental hierarchical tree structure
rovides the worst-case scenario with the absolute difference between
xpected output and actual output in range of [2.2, 4.5].

The input ranking for the incremental hierarchical tree structure is
ased on randomization. It will be worthwhile to expand this research
nd add the new ranking and prioritization system for such cases. It is
xpected that with correct input rankings, the results for incremental
ierarchical tree structure can be improved significantly.

.4. Behavioral analysis

Tables 1–2 represents the behavioral analysis of expected and ac-
ual behavior for all the image classes with following parameters in
ATLAB environment [22]:
11
• Variance: Computes the consistency or dispersion of data over
specified vector dimension

• Standard Deviation (SD): Measure amount of variation or dis-
persion within dataset

• Median: Value separating data sample in two halves
• Mean: Average of all the values in dataset
• Skewness: Measure of asymmetry of the probability distribution

of real data around its mean value
• Interquartile Range (IQR): Measure of statistical dispersion

equally distributed between 25th and 75th percentile. It is the
measure of variability depending on the division of data in
quartiles

• Kurtosis: Peak value of a frequency distribution

Where, ‘‘Exp’’ = expected behavior; ‘‘Act 1’’ = actual behavior for
efault image class; ‘‘Act 2’’ = actual behavior for in-range [0,1] image
lass, ‘‘Act 3’’ = actual behavior for membership function image class;
nd ‘‘Act 4’’ = actual behavior for gaussian image class. All the results
hown are in reference to desired behavior.

We designed the proposed algorithm using both incremental tree
tructure and aggregated tree structure separately. Keeping this in
ind, the results shown in Tables 1 and 2 are shown separately.
owever, the image dataset input to the model is the same for both
ierarchical structures.

The significance of this analysis is to perform the quality check for
he algorithm and do the static analysis to ensure the actual results are



S. Kamthan and H. Singh Memories - Materials, Devices, Circuits and Systems 4 (2023) 100023

w
p

h
t

Fig. 14. Accuracy for incremental tree structure.

ithin a certain threshold compared to expected results. This analysis
rovides internal behavior.

Since all the inputs processed at the lower level in the aggregated
ierarchical tree structure, the other higher hierarchical levels hold
he degree of symmetry. This analysis can be seen with parameters
12
Table 1
Behavioral analysis of various image classes using aggregated
hierarchical structure.

Table 2
Behavioral analysis of various image classes using incremen-
tal hierarchical structure.

such as skewness which is ‘0’ for aggregated structure. However, for
incremental hierarchical tree structure, the hierarchical levels do not
hold the degree of symmetry because every hierarchical level consumes
real-input data, which is why variation in skewness can be observed.

4.5. Comparison

There are several open-source libraries available for various deep
learning methods including Convolution neural network (CNN)
[9,10,25]. One of the Mathworks toolbox i.e., MatConvNet is con-
sidered in this paper. The MatConvNet toolbox is mainly used for
computer vision applications. The Convolution neural network com-
prises both linear and non-linear filtration operations i.e., rectification,
convolution, normalization, and pooling. In MatConvNet toolbox, the
CNN [25] combines two networks: Simple neural networks (Simple
NN) that is relevant for linear network topology, for example, linear
sequence of computational blocks; and directed acyclic graph neural
network (Diag. NN) that is alternate to Simple NN and allows the net-
work with directed acyclic graph topology. One of the major benefits of
using MatConvNet toolbox is the ability to present an efficient platform
to several researchers. The YaleB database using CNN model [10,25]
has been considered to see the performance of the algorithm. In this
paper, standard CNN architecture i.e., ‘AlexNet’ is considered to train
complex models for large image dataset. This architecture allows fast
prototyping and efficient CPU and GPU computation.

Table 3 presents the comparison between the output gathered from
YaleB CNN model trained via MatConvNet and the output from the hi-
erarchical fuzzy system using aggregated and incremental hierarchical
tree structure. The comparison has been shown in a percentage that
represents the number of all the cases that lie within 10% of error
tolerance. The error tolerance is defined as the difference between the
expected output and actual output from the system. Higher the number
within 10% of error tolerance, higher the accuracy of the system.
For better performance, it is necessary to calibrate the system to the
minimum number of clusters where desired accuracy can be met. It is
also observed that as the number of clusters is reduced by half, the
accuracy diminishes as well.

For effective system design, apart from accuracy of the system,
the computational load is an equally important parameter. Table 4

shows the computational load in time [seconds] comparison among
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Table 3
Accuracy between CNN model and hierarchical fuzzy systems
using various tree structures.

Table 4
Computation time between CNN model and hierarchical
fuzzy systems using various tree structures.

CNN and various hierarchical tree structures presented in this paper.
Please note that the computation time for hierarchical tree structures
can further be reduced or enhanced by calibrating the total number of
fuzzy clusters required to design fuzzy units. It is visible in the table that
reducing clusters by half reduces the computational time. Depending
on the hardware limitations, this number can be adjusted to optimal
performance.

From these results, following conclusions can be drawn:

➢ For aggregated hierarchical tree structure, In Range image class
possesses a best case with 91% accuracy whereas Gaussian Noise image
class provides the worst case with 82%.
13
Table 5
Inference time for hierarchical tree structures.

(A) Inference Time for Aggregated Tree Structure.

(B) Inference Time for Incremental Tree Structure.

➢ For incremental hierarchical tree structure, Membership values
image class possess a best case with 85% accuracy whereas Gaussian
Noise image class provides the worst case with 70% accuracy.
➢ For aggregated hierarchical tree structure, the computational time

is generally better than convolution neural network
➢ For incremental hierarchical tree structure, the computational time

is higher than convolution neural network
➢ Aggregated hierarchical tree structure for In Range image class pro-

vides the same accuracy as the convolution neural network. However,
the computational time for In Range class is significantly lower than
the convolution neural network
➢ Incremental hierarchical tree structure for Membership values im-

age class provides accuracy less than the convolution neural network.
However, the computational time for the membership values class is
significantly higher than the convolution neural network.

It is observed from Table 3 that the accuracy reduces with a reduced
number of clusters. Per our analysis, to obtain higher accuracy, the
number of clusters must be higher. On the contrary, it is observed
from Table 4 that computational time is higher with higher number
of clusters and vice versa. This is up to the user’s discretion to ensure
the tradeoff between accuracy and computation time.

For the evaluation purposes, the size of the input segments at
various levels of the hierarchical tree structures plays a critical role
in analyzing the inference time. For aggregated structure all the real
inputs consumed at the lower level of the hierarchy and thus the input
segment size has the impact only at the lower level of the hierarchical
structure. For incremental structure, the size of the input segment
impacts all the levels of the hierarchical structure, as all the levels
consume part of real inputs. Considering the hierarchical system as
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a black box, the inference time is the time taken by the hierarchical
system to process inputs at various levels and provide final output.

Table 5 shows the analysis in the form of inference time with respect
to the input segments. Assuming the image dataset with each image of
size 32 × 32 i.e., a matrix of [1,1024]. In this paper, for designing the
aggregated hierarchical tree structure, the total of 2𝑛−1 fuzzy units has
een considered at the lowest level and all the levels above consumes
utputs from two fuzzy units at lower level i.e., 2𝑛−2 fuzzy units
equired in the next level. Similarly for designing the incremental tree
tructure, only one fuzzy unit is considered for each hierarchical level.

The hierarchical structure is designed in reference to the number
f segments or how many fuzzy units are required to consume all the
egments. Considering four layer aggregated hierarchical tree structure,
he segments of real inputs determine the number of maximum real
nputs for each fuzzy unit at the lowest level. Assuming every fuzzy
nit in the next layer acquires outputs from two previous fuzzy units in
revious layers, this sums up to the total number of hierarchical fuzzy
nits. The inference time is defined in reference to the total number of
uzzy logic units and number of inputs per fuzzy unit.

It is observed from Table 5 that the size selection for input segments
equires an iteration approach. Too less or too high size leads to the
ituation of less accuracy or more computation time. There are numer-
us ways to design any specific hierarchical tree structure. For e.g., the
ggregated tree structure can be designed with a random number of
uzzy units at any hierarchical level. The key point is that all the inputs
hall be consumed at the lowest level. It is important to consider the
umber of fuzzy units. Depending on the system capabilities, if the
umber of fuzzy units are too high, the size of the input segments will
e adjusted. It is observed that the inference time for the lowest level
f aggregated tree structure and for all the levels of incremental tree
tructure is similar.

The YaleB database consists of finite and precise image datasets. It
s expected that with more uncertain, imprecise, and vague datasets
uch as real-life human assessments, the proposed hierarchical fuzzy
lgorithm design will overcome various existing models available in the
iterature and will provide more accurate outcomes.

. Conclusion

The limitation of dimensionality in conventional fuzzy systems leads
o the motivation for the development of hierarchical fuzzy structure.
he real-life applications, with large amounts of data or images, leads
o an increasing number of rules, parameters and increasing input
ariables. Therefore, there is always a necessity for a robust, and
ractical solution that will work in highly complex and complicated
ssues irrespective of their dimensions. The results have shown that
ierarchical fuzzy systems are a very effective and viable option to
vercome a lot of limitations of conventional fuzzy and fuzzy neu-
al networks. Despite significant achievement, there are various open
oints such as handling of intermediate variables between two levels of
ierarchical fuzzy structure and, determining few environments where
ther hierarchical structures such as incremental and cascaded will be
ore effective. Further investigation including detailed research could
elp address more complicated and more complex problems with both
ow and high dimensions. The database taken is for facial recognition,
he approach is applicable for other large datasets such as video data,
udio data, MNIST, CIFAR, etc. It is hoped that the approach suggested
ere will be exploited in future for the classification of images for a
ariety of applications.
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