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Abstract: Artificial intelligence (AI) offers a promising avenue for developing sustainable reconfig-
urable manufacturing systems. Although there has been significant progress in these research areas,
there seem to be no studies devoted to exploring and evaluating AI techniques for such systems. To
address this gap, the current study aims to present a deliberation on the subject matter, with a par-
ticular focus on assessing AI techniques. For this purpose, an AI-enabled methodological approach
is developed in Python, integrating fuzzy logic to effectively navigate the uncertainties inherent in
evaluating the performance of techniques. The incorporation of sensitivity analysis further enables
a thorough evaluation of how input variations impact decision-making outcomes. To conduct the
assessment, this study provides an AI-powered decision-making application using large language
models in the field of natural language processing, which has emerged as an influential branch of
artificial intelligence. The findings reveal that machine learning and big data analytics as well as fuzzy
logic and programming stand out as the most promising AI techniques for sustainable reconfigurable
manufacturing systems. The application confirms that using fuzzy logic programming in Python
as the computational foundation significantly enhances precision, efficiency, and execution time,
offering critical insights that enable more timely and informed decision-making in the field. Thus,
this study not only addresses a critical gap in the literature but also offers an AI-driven approach to
support complex decision-making processes.

Keywords: artificial intelligence; reconfigurable manufacturing systems; sustainable manufacturing
4.0; AI-enabled decision-making; intelligent fuzzy systems; natural language processing; ChatGPT

1. Introduction

In recent years, the fusion of reconfigurable manufacturing systems (RMSs) with sus-
tainable manufacturing (SM) has sparked growing global research interest, leading to the
emergence of sustainable reconfigurable manufacturing systems (SRMSs). As the manufac-
turing landscape evolves, SRMSs stand at the forefront of innovation, blending the adaptive
capabilities of RMSs with the principles of SM to create a forward-thinking production
paradigm. RMSs, introduced in the late 1990s as the next-generation manufacturing system,
involve the development of a production system at the frontier of flexible manufacturing
systems and dedicated lines in response to sudden changes in the market and/or regulatory
requirements [1–3]. SM, viewed as a practice of circularity in manufacturing under the
circular economy concept [4], entails developing more sustainable products—those that are
energy-efficient, eco-friendly, and socially responsible—using sustainable processes and
systems, i.e., those that produce minimal adverse environmental effects, conserve energy
and natural resources, are harmless to people and are viable for profit [5–7]. The SRMS con-
cept brings together the adaptability of RMSs and the sustainability considerations of SM.
RMSs are characterized by six core characteristics—modularity, integrability, diagnosability,
customization, convertibility, and scalability—enabling rapid reconfiguration of manu-
facturing systems to accommodate varying tasks [8]. By embedding these characteristics
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within an SM framework, SRMSs support the development of manufacturing systems that
respond to the dual demands of sustainability and reconfigurability [9,10]. By definition,
SRMSs are designed to quickly adapt to changes in product types and volumes through
the modular and flexible arrangement of resources, while simultaneously ensuring that
operations are conducted in an environmentally responsible and socially beneficial manner.

Artificial intelligence (AI) techniques, categorized by four key features—human think-
ing, human acting, rational thinking, and rational acting—are utilized to enable systems
(machines and equipment) to acquire knowledge from information and data collected from
their external environment [11,12]. These techniques allow systems to apply cognitive
capabilities that support humans in performing complex tasks [13–16]. AI algorithms are
generally inspired by the functioning of human cognitive systems and natural organisms,
processing information through mechanisms such as learning, adaptation, reproduction,
and survival [17–19]. Numerous prior studies have highlighted the significant potential of
AI techniques to enhance intelligent decision-making processes and to develop proactive
and predictive capabilities within supply chain and production systems [16,20]; however,
there seems to be a leveling off in the adoption of AI techniques for enhancing system
resiliency and intelligent decision-making across many companies [21]. As evidenced
by the literature, research integrating AI techniques with intelligent decision-making to
build resilient systems is still in its early stages, with most studies adopting case-study
approaches to investigate specific problems [12,22]. To this end, the existing research land-
scape on SRMSs and their integration with AI reveals a significant gap. This gap highlights
a crucial research opportunity and stresses the need for pioneering studies to explore how
AI techniques can contribute to this understudied context. Motivated by addressing the
recognized gap, this study aims to present a deliberation on the subject matter, with a
particular focus on assessing AI techniques for SRMSs.

To achieve this, I developed an AI-enabled methodological approach using fuzzy logic
programming in Python as the computational foundation. Belhadi et al. [12] provided
valuable insight into the potential of AI techniques like fuzzy logic programming, big data
analytics, machine learning, agent-based systems, etc., in enhancing supply chain systems’
resiliency. They highlighted the importance of these techniques but also acknowledged a
gap in research, particularly in applying fuzzy logic programming. Thus, this study reveals
that developing fuzzy logic programming solutions in Python for decision-making prob-
lems in SRMSs could be a promising avenue for research and practical application. Fuzzy
logic provides a framework for handling uncertainty and imprecision, which are common
in sustainability- and resiliency-related decision-making processes. Python’s simplicity and
flexibility make it well suited for prototyping, experimenting with different algorithms, and
integrating with concepts. However, the literature lacks such AI-driven approaches, and
only a few scholars have consistently advocated for enhancing decision-making processes
with these AI techniques [12,23]. The contribution of this research also entails uniquely pre-
senting an AI-powered decision-making application using large language models (LLMs)
in the field of natural language processing (NLP), which has become a dominant branch
of artificial intelligence [24,25]. Marking a first in measurement/decision science, this
research leverages LLMs to conduct assessments, introducing an innovative approach
that incorporates unbiased expert judgment even in the context of limited knowledge and
expert availability.

To expound upon my research’s contribution, this paper is organized as follows:
Section 2 provides insights into the core domains for the sake of the research aim. Section 3
presents the AI-enabled methodological approach. Section 4 clarifies the approach devel-
oped in this study through an AI-powered decision-making application to accomplish the
purpose of the research. Next, Section 5 delves into a thorough discussion of the findings
and implications. Finally, Section 6 outlines the conclusions and recommendations.
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2. Literature Review
2.1. Sustainable Reconfigurable Manufacturing Systems

According to Koren et al. [10], to manufacture sustainable products through sus-
tainable processes, production systems must have capabilities that enhance economic,
environmental, and societal sustainability—RMSs’ characteristics not only facilitate rapid
system responsiveness at a low cost but also play an important role in promoting overall
system sustainability. The academic conversation around SRMSs is continuously evolving,
with researchers delving into a wide range of elements related to RMSs. This exploration
spans from foundational theories to real-world applications that aim to enhance the princi-
ples of SM. Mekid et al. [26] initially played a role in shaping this discourse by investigating
the advancements in RMSs, which set the stage for the development of SRMSs. Their
research stressed the necessity of embedding intelligence and adaptability within manufac-
turing systems, enabling them to respond effectively to shifting market conditions while
aligning with sustainability goals.

Bi [27] further explored the system paradigms from the viewpoint of SM, providing
an abstract representation and conceptualization that enriches the discourse on SRMSs
by advocating for a paradigm shift toward more sustainable manufacturing practices.
Azab et al. [28] proposed a mechanics-of-change framework to reconfigure manufacturing
systems, incorporating sustainability objectives into RMSs, thereby contributing to the
conceptualization of SRMSs by highlighting the importance of adaptability and sustainabil-
ity. Garbie [29,30] presents a comprehensive framework and methodology that advances
the integration of sustainability into RMSs. In 2013, Garbie [29] introduced the design of
a sustainable manufacturing enterprises (DFSMEs) framework, outlining design princi-
ples that align RMSs with SM objectives, thereby setting the stage for SRMSs. Building
on this foundation, Garbie’s [30] study proposed a methodology for RMSs, focusing on
enhancing both adaptability and sustainability—key tenets of SRMSs—by detailing action-
able steps toward embedding sustainable practices within RMSs’ operations. Copani and
Urgo [31] presented innovative, flexibility-oriented business models and system configu-
ration approaches for industrial applications, underpinning the essence of RMSs. Their
work emphasized the importance of adaptable production systems to maintain competi-
tiveness and sustainability, contributing to the SRMSs dialog. Peukert et al. [32] addressed
sustainability and flexibility in manufacturing through smart modular machine tool frames,
extending the RMSs concept. This approach placed crucial emphasis on sustainability
within RMSs, thereby advocating for the development of SRMSs that support sustainable
value creation. Lee et al. [33] developed a simulation model for a self-reconfigurable man-
ufacturing system that incorporated sustainability factors. Their research represented a
convergence between self-reconfigurability and SM, offering valuable insights into the
interplay between manufacturing system adaptability and sustainability, thus forwarding
the SRMSs narrative.

Ribeiro and Bjorkman [34], in their examination of the transition from standard au-
tomation to cyber-physical production systems, underlined the potential of enhanced
system reconfigurability to make production activities more sustainable. This work indi-
rectly supports the SRMSs concept by highlighting the role of advanced technologies in
achieving SM. Huang et al. [9] set forth a discussion on developing SRMSs by using SM
metrics to evaluate RMSs’ performance. Their analytical approach to quantifying convert-
ibility and its impact on sustainable performance signifies a methodical advancement in
SRMSs research. Koren et al. [10] introduced the concept of sustainable living factories for
next-generation manufacturing, which resonates with the ethos of SRMSs. They examined
the integration and implementation of RMSs’ characteristics with SM principles, paving
the way for living factories that embody the SRMSs model. Touzout and Benyoucef [35]
explored multi-objective sustainable process plan generation within an RMSs environment.
They presented exact and adapted evolutionary approaches that incorporate environmental
considerations, pushing forward the understanding of SRMSs in a practical context. Huang
et al. [36] discussed reconfigurable machine tools (RMTs) design for multi-part families,
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highlighting modularity and sustainability issues. Their philosophy aligns with the RMSs
framework and implicitly supports the pursuit of SM by emphasizing the reusability and
sustainability of machine tool structures. Salah et al. [37] leveraged virtual reality-based
engineering education to enhance manufacturing sustainability in the Industry 4.0 con-
text. Focusing on educational tools for RMSs, their work promotes an understanding of
sustainability within RMSs, contributing to the body of knowledge on SRMS.

In more recent studies, Massimi et al. [38] proposed a heuristic-based non-linear
approach aimed at optimizing the modularity and integrability of SRMSs. Their work
explicitly intertwines sustainability with RMSs, strengthening the theoretical foundations
of SRMSs. Mesa et al. [39] explored the application of modular architecture principles
in designing sustainable open-architecture products. By emphasizing modularity, a core
feature of RMSs, their research contributed to the discourse on SM and, consequently, to the
further development of SRMSs. Ghanei and Algeddawy [40] developed a model for layout
planning and scheduling within SRMSs, integrating energy sustainability into decisions
on system configuration. Their research highlighted the economic and environmental as-
pects of SRMSs by underscoring the importance of energy efficiency within RMSs. Battaïa
et al. [41] examined RMSs as a foundation for sustainable manufacturing, proposing re-
search directions aimed at extending a system’s lifespan, considering end-of-life strategies,
and reducing energy consumption and emissions. Gordon [42] took a different approach by
analyzing IoT-based real-time logistics in cyber-physical manufacturing systems, focusing
on automation and sustainability within RMSs and SRMSs. This work demonstrated how
technology, particularly automation, plays a vital role in advancing SM. Gao et al. [43],
Khezri et al. [44], and Kurniadi and Ryu [45] contributed to the SRMSs discourse by devel-
oping models that integrate process planning, scheduling, and layout optimization with
sustainability metrics in RMSs. Collectively, their research offers practical solutions to
enhance sustainability in manufacturing. Furthering this line of inquiry, Khettabi et al. [46]
introduced a multi-objective evolutionary-based model for SRMSs design that balances
environmental considerations with traditional manufacturing objectives. Pedro [47] criti-
cally examined the role of flexibility and adaptability in RMSs design, advocating for the
integration of sustainability into the design process, thus aligning with the SRMS paradigm.
Lee and Ryu [48] developed methods for reconfiguring smart, self-optimizing, and self-
organizing RMSs, advancing the concept of autonomous manufacturing operations, a
key aspect of SRMSs. Kombaya Touckia et al. [49] addressed the challenges of modern
manufacturing environments, exacerbated by the COVID-19 pandemic, by developing a
digital twin framework for RMSs. This framework enhances reconfigurability and aligns
with SRMSs’ goals.

Vavrík et al. [50] examined the incorporation of backup machines in RMSs, emphasiz-
ing the importance of system reliability and adaptability. Napoleone et al. [51] extended
the strategic potential of RMSs to the supply chain level, investigating how RMSs can
improve resilience and sustainability within supply chains. Their methodology, which
includes a machine reusability index and a mixed-integer programming algorithm, facili-
tates the identification of reusable and reconfigurable machines during network design.
Yazdani et al. [52] tackled process and production planning within SRMSs by focusing
on the three pillars of sustainability—social, environmental, and economic. Through the
development of a linear mixed-integer model and a Lagrangian relaxation-based approach,
they offered practical methodologies for integrating SRMSs into the broader context of
sustainable manufacturing. Hariyani and Mishra [53] conducted a descriptive statistical
analysis identifying key enablers of integrated sustainable manufacturing systems within
Indian industries. Their findings highlighted the critical impact of SRMSs enablers on
improving organizational performance. Pansare et al. [54] assessed the role of Industry 4.0
and RMSs practices in achieving sustainable development goals (SDGs). They developed a
comprehensive framework that integrates RMSs practices with sustainability objectives,
facilitating the attainment of these global targets. Delorme et al. [3] took a more technical
approach, focusing on balancing and planning within RMSs under uncertain demand and
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fluctuating energy costs. Their bi-level optimization model emphasized both productivity
and energy efficiency, which directly aligns with SRMSs’ goals of optimizing resource
use in manufacturing. Zidi et al. [55] provided a literature review on the selection of
reconfigurable supply chains, outlining a research roadmap that identifies key criteria and
methods for efficient supply chain configuration. This work serves as a foundational step
toward realizing SRMSs in supply chain systems. Milisavljevic-Syed et al. [56] tackled
the realization of responsive and sustainable reconfigurable manufacturing systems. They
developed a decision engineering framework for RMS, with a focus on energy efficiency,
thereby bridging the gap between RMS and sustainable manufacturing practices. In an-
other study, Pansare et al. [57] explored the key factors driving the adoption of RMS in
manufacturing industries. Through the validation of a structural model, they emphasized
practices that enhance RMS adoption and performance, which are essential for fostering
sustainability and flexibility in modern manufacturing settings.

In general, these studies demonstrate the ongoing efforts to align RMS with SM goals,
thereby advancing the concept of SRMSs. They reflect the growing commitment to integrat-
ing SM principles with RMSs’ core characteristics, as described in Table 1. The extensive
body of work on SRMSs, encompassing theoretical explorations, practical methodologies,
and innovative applications, has established a solid foundation for future research focused
on enhancing sustainability and adaptability in the manufacturing sector. However, a re-
view of the existing literature reveals that, although a wide range of topics has been covered,
there is a noticeable gap in research specifically centered on the application of AI techniques
for SRMSs. This lack of focus points to a critical need for further investigations aimed at
developing frameworks, models, and decision-making tools that integrate AI into SRMSs.
Addressing this gap would not only enrich the existing body of knowledge but would
also provide practical guidance for stakeholders looking to improve the sustainability and
resiliency of their manufacturing systems through the use of AI.

Table 1. RMS characteristics [2,8].

Characteristic Description Code

Modularity Involves the breakdown of operational functions into units that can be reconfigured or
rearranged to optimize production processes across different schemes. C1

Integrability
Pertains to the system’s capability to integrate modules rapidly and accurately using

mechanical, informational, and control interfaces, facilitating communication and function
between components.

C2

Diagnosability Deals with the system’s capability to automatically monitor and diagnose its state to
promptly detect, diagnose, and correct defects in the output product. C3

Convertibility Emphasizes the system’s ability to easily transform its functionality to meet new production
requirements, making it adaptable to changes in product design or production process. C4

Customization Refers to the system’s or machine’s flexibility being limited to a specific product family, which
allows for customized flexibility within that family. C5

Scalability Focuses on the ability to modify production capacity easily by adding or subtracting
resources, such as machines, or by altering components within the system. C6

2.2. Artificial Intelligence Techniques

Based on the work of Russell and Norvig [11], researchers have explored various
interpretations of AI. Some define intelligence based on how closely it mimics human
performance, while others adopt a more abstract, formal definition centered on rationality—
essentially, the ability to consistently make the “right” decisions. Perspectives on AI
also differ in terms of focus: some view intelligence as an attribute of internal cognitive
processes and reasoning, while others emphasize intelligent behavior, assessing it from an
external, observable standpoint. In the production context, Dhamija and Bag [16] describe
AI as machine-driven manufacturing systems that replicate human behaviors, aiming to
resemble original human practices. AI algorithms are often modeled after the cognitive
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processes of humans and natural organisms, enabling machines to process information
through mechanisms such as learning, adaptation, reproduction, and survival [17–19].
The expansive field of AI encompasses a diverse range of tools and techniques, including
artificial neural networks, fuzzy logic, agent-based systems, genetic algorithms, machine
learning, and deep learning [13]. According to Russell and Norvig [11], AI techniques
can be characterized by four key attributes: thinking like humans, acting like humans,
reasoning, and acting rationally. These attributes allow AI techniques to be categorized
into four groups [12], as described in Table 2.

Human thinking techniques encompass a range of AI methods designed to mimic
human cognitive processes, particularly with regard to recognizing and understanding
information patterns [11]. These techniques include network-based algorithms such as
artificial neural networks [58,59], Bayesian networks [60,61], and Markov processes [62].
Tree-based clustering is a common technique in AI literature within the operations and
supply chain context, which is used to identify patterns and predict trends [63]. Zan-
jani et al. [64] applied tree clustering for supply chain planning under uncertainty, while
Thomassey [65] used k-means clustering for sales forecasting in the clothing industry.
Rough set theory has also been applied in several studies, e.g., for inventory control [66],
supply chain evaluation [67], and supplier selection [68]. Inspired by the collective decision-
making observed in natural swarms like fish schools and bird flocks, artificial swarm
intelligence applies these principles to networked human groups through AI algorithms.
Known also as “human swarming,” it connects users in real time to function as a closed-loop
system, enhancing group intelligence and decision-making accuracy [69]. This technology
has proven effective across various applications, from financial forecasting to medical diag-
noses, by amplifying collective insights and optimizing group decisions in manufacturing
and beyond [70,71]. Human acting techniques encompass a variety of AI approaches de-
signed to emulate human behavior during interactions with people, adhering to established
conventions of human communication [11]. The most prevalent method in this category is
machine learning, often coupled with big data analytics [12,23,72], e.g., researchers [73–75]
have employed machine learning algorithms for prescriptive decision-making in oper-
ations and supply chain management. Techniques such as reinforcement learning [76]
and natural language processing [63,77] are less common in these contexts. Furthermore,
genetic algorithms have been applied to enhance interactions in virtual environments, as
demonstrated by [78–80]. Expert systems have also been utilized (e.g., [81,82]) to facilitate
efficient interconnections between production entities.

Rational thinking techniques involve AI methods that model thinking as a logical,
structured process, where conclusions are derived from symbolic logic [11]. Among the
most commonly used approaches are fuzzy logic and fuzzy programming [83,84], stochastic
programming [85,86], and robust optimization [23,79]. In addition to these, less frequently
used techniques have also been explored in the literature, such as knowledge representation
and reasoning [21,63]. Rational acting techniques encompass AI approaches that, based
on specific beliefs, enable the achievement of particular goals through rational actions [11].
These methods primarily focus on the rational agent approach, which utilizes agent-based
systems [23,87–89] to simulate logical actions within given constraints. These techniques
also incorporate more advanced approaches such as model predictive control [90,91],
robotic process automation [92], and computer vision [16,22]. These techniques allow AI
systems to perform tasks in a manner that mirrors human rationality.
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Table 2. AI techniques [11,12].

Attribute Technique Description Code

Human
thinking

Network-based
algorithms

Utilizes neural networks, Bayesian networks, and Markov processes to analyze
complex data structures and predict dynamic system behaviors, which can be

applied to configure adaptive manufacturing settings.
T1

Tree-based clustering
Organizes large datasets using hierarchical clustering to identify patterns and

predict trends, which is vital for predictive maintenance and optimizing
manufacturing operations.

T2

Rough set theory
Employs mathematical approaches to manage vagueness and uncertainty, which
is useful in feature selection and decision support within manufacturing systems

planning and quality control.
T3

Artificial swarm
intelligence

Inspired by biological swarm behaviors, it connects networked human groups in
real time through AI algorithms for amplifying collective intelligence and

optimizing group decisions across various domains, including manufacturing
systems.

T4

Human
acting

Machine learning
and big data

analytics

Leveraging large datasets and machine learning algorithms to make predictive
decisions and automate processes. T5

Reinforcement
learning

A type of machine learning in which an agent learns to behave in an
environment by performing actions and seeing the results. T6

Genetic Algorithms Optimization algorithms based on the principles of natural selection and
genetics, used for solving optimization and search problems. T7

Expert systems AI systems that mimic human expert decision-making using rule-based
algorithms to solve complex problems in specific domains. T8

Natural language
processing

The ability of a computer program to understand human language as it is
spoken and written, used extensively in data analytics. T9

Rationale
thinking

Fuzzy logic and
programming

Techniques that allow reasoning under uncertainty by employing fuzzy logic,
which handles imprecision without requiring crisp data. T10

Stochastic
programming

A framework for modeling optimization problems that involve uncertainty in
the data, allowing for solutions that can adapt to realized data. T11

Robust optimization
An optimization approach that seeks to hedge against possible future

uncertainties in predictions and modeling, applicable in enhancing system
resilience.

T12

Knowledge
representation and

reasoning

Techniques that use structured sets of rules and relationships to represent
knowledge logically for automated reasoning and inference. T13

Rationale
acting

Agent-based systems Systems that use autonomous agents, each following a set of rules, to simulate
actions and interactions within an environment. T14

Model Predictive
Control

Uses models to predict and optimize real-time manufacturing operations,
ensuring optimal system performance within predefined constraints. T15

Robotic Process
Automation

The use of software with AI and machine learning capabilities to handle
high-volume, repeatable tasks, and thus reduce human intervention

and error.
T16

Computer vision
Techniques that derive meaningful information from digital images, video, and

other visual inputs to automate tasks or make enhanced decisions, crucial in
modern manufacturing systems.

T17

3. AI-Enabled Methodological Approach

Rooted in the foundational work of Bellman and Zadeh [93], fuzzy logic has evolved
into an AI-driven approach for addressing multicriteria decision-making problems [12,83,84].
In 1970, Bellman and Zadeh [93] introduced a framework in which a decision criterion is
represented as a fuzzy subset within a set of decision alternatives, denoted as X. In this
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framework, the membership function of an alternative x in a given criterion Cr, expressed
as Cr (x), measures the degree to which x satisfies the criterion Cr. When dealing with
multiple criteria labeled Crj, where j ranges from 1 to q, these authors proposed a method
for constructing an aggregate decision function D, such that D =

⋂q
j=1 Crj. This aggregate

function, which is also a fuzzy subset of X, is defined by D(x) = minq
i=1[Cri(x)], reflecting

the extent to which x simultaneously satisfies all of the criteria. Since the development of
this foundational model, subsequent research has explored the use of alternative operators
to combine satisfaction levels across various criteria. These studies have investigated differ-
ent methods for aggregating criteria, moving beyond the original approach, to improve
decision-making processes in complex multicriteria environments. The integration of these
alternative operators provides more flexibility and precision in determining how well
alternatives meet the combined requirements of multiple criteria.

Building on the concept of ‘technique for order performance by similarity to ideal
solution’, initially formulated by Hwang and Yoon [94], this study developed an AI-
driven decision-making model using Python to facilitate decision-making in complex
scenarios. These scenarios often involve intricate analysis and assortment across multiple
characteristics, criteria, and stakeholders, all within a fuzzy environment. To address
the uncertainty present in decision data and group decision-making processes, linguistic
or artificial variables were employed to assess both the weights of the criteria and the
ratings of each alternative against each criterion. Triangular fuzzy numbers (TFNs) were
primarily utilized as artificial variables for preference assessment due to their ease of use
and simplicity in calculation, which aids decision-makers in fuzzy environments. A TFN
is defined by a triplet (A, B, C), where A represents the smallest possible value, B is the
most likely or probable value, and C denotes the largest possible value. This structure
enables decision-makers to account for uncertainty and variability, encapsulating a range
of values that reflect the imprecision inherent in assessments or measurements within a
fuzzy system.

Definition 1. Let Y = (A, B, C) and Z = (A1, B1, C1) be two triangular fuzzy numbers. Then, the
basic operations of TFNs are defined as follows:

Y(+)Z = (A + A1, B + B1, C + C1) (1)

Y(−)Z = (A − A1, B − B1, C − C1) (2)

pY = (pA, pB, pC) (3)

(Y)−1 =

(
1
C

,
1
B

,
1
A

)
(4)

The distance between fuzzy numbers Y and Z is computed:

d(Y, Z) =

√
1
3
[(A − A1)2 + (B − B1)2 + (C − C1)2] (5)

In the case of a group consisting of P decision makers, where each decision-maker
Dp (for p = 1, 2, 3, . . ., P) provides a fuzzy rating in the form of a positive triangular
fuzzy number Rp = (Ap, Bp, Cp) and the membership function FRp(x) represents the
degree to which a given value x belongs to the fuzzy set. The aggregated fuzzy rating
R = (A, B, C) is determined by applying a chosen aggregation operator, which combines
the fuzzy ratings provided by the group of decision-makers. This aggregation process
integrates the varying assessments of each decision-maker into a unified representation.
The aggregation operators frequently used in this study include a variety of methods,
which are outlined as follows:
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• Arithmetic Mean of TFNs—this is a method that is commonly used to aggregate
fuzzy ratings by calculating the average values of the parameters that define the fuzzy
numbers across multiple inputs or data points. This method assumes that all inputs
are of equal weight (importance). It is computed as follows:

R =

(
1
P

P

∑
p=1

Ap,
1
P

P

∑
p=1

Bp,
1
P

P

∑
p=1

Cp

)
(6)

• Weighted Arithmetic Mean of TFNs—this method extends the basic arithmetic mean
by incorporating weights that represent the relative importance or reliability of each
input. This method is particularly beneficial in situations where certain decision-
makers or criteria are considered more influential or significant than others. The
weighted arithmetic mean allows for a sounder aggregation by assigning different
weights to the inputs. The following formula is applied accordingly:

R =

(
∑P

p=1 wpAp

∑P
p=1 wp

,
∑P

p=1 wpBp

∑P
p=1 wp

,
∑P

p=1 wpCp

∑P
p=1 wp

)
(7)

where wp is the weight assigned to the p-th decision-maker’s rating and ∑P
p=1 wp is

the total weight. This method ensures that the aggregated fuzzy rating reflects the
varying levels of significance or trust placed in the inputs, thereby offering a more
accurate and context-sensitive representation of the group’s overall assessment.

• Min–Max–Mean Method—this method calculates the minimum, mean, and maximum
values of the parameters defining the fuzzy numbers across a set of inputs. This
method is designed to capture a broad range of perspectives, from the most conser-
vative to the most optimistic evaluations. By considering these three distinct points—
minimum, mean, and maximum—the method provides a more comprehensive view
of potential outcomes, reflecting the full spectrum of uncertainty in decision-making.
The approach ensures that decision-makers account for the lowest possible, most
likely, and highest possible scenarios, offering a balanced representation of the varying
degrees of confidence in the input data.

R =

(
minP

p=1Ap,
1
P

P

∑
p=1

Bp, maxP
p=1Cp

)
(8)

Each of these aggregation methods serves a distinct purpose and may be applied in
specific decision-making contexts. Given these considerations, the following algorithm
summarizes the main steps used in the proposed approach.

# Step 1: Define criteria (characteristics) and their types, i.e., benefit and cost criteria.
# Step 2: Design TFNs corresponding to the importance of the criteria and the AI

techniques’ performance.
# Step 3: Determine criteria weights and performance ratings using TFNs assigned by

the AI models. Equations (6), (7) or (8) can be used to aggregate.
# Step 4: Normalize fuzzy decision matrix:

R = [rij]m×n, i = 1, 2, 3, 4, . . . , m; j = 1, 2, 3, 4, . . . , n (9)

where m and n represent the number of alternatives and criteria, respectively, and rij, which
represents the normalized fuzzy rating of alternative i for criterion j, is calculated as follows:

rij =

(
Aij

C+
j

,
Bij

C+
j

,
Cij

C+
j

)
, j ∈ J, C+

j = maxi Cij, (10)
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rij =

(
Aj

−

Cij
,

Aj
−

Bij
,

Aj
−

Aij

)
, j ∈ J′, A−

j = miniAij (11)

where J and J′ are associated with benefit and cost criteria, respectively.
# Step 5: Formulate the weighted normalized fuzzy decision matrix for all AI tech-

niques:
V = [vij]m×n (12)

where vij = rij × wj and wj is the weight of the jth criterion.
# Step 6: Compute the fuzzy positive optimal outcome (FPO) and fuzzy negative

optimal outcome (FNO) for all AI techniques:

FPO =
{

v+
1 , . . . , v+

n
}

, where v+
j =

{
max

(
vij
)

if j ∈ J; min
(
vij
)

if j ∈ J′
}

, j = 1, . . . , n (13)

FNO =
{

v−
1 , . . . , v−

n
}

, where v−
j =

{
min

(
vij
)

if j ∈ J; max
(
vij
)

if j ∈ J′
}

, j = 1, . . . , n (14)

# Step 7: Compute the distances from FPO and FNO following Equation (5).
# Step 8: Calculate the closeness coefficient (CC) and order the AI techniques based on

CCi values:

CCi =
d−

i

d−
i + d+

i
, i = 1, 2, . . . , m (15)

d+
i =

n

∑
j=1

dv

(
vij, v+

j

)
, (16)

d−
i =

n

∑
j=1

dv

(
vij, v−

j

)
, (17)

# Step 9: Sensitivity analysis (SA), regarded as the hermeneutics of mathematical mod-
eling [95], systematically alters input parameters, such as weights, to assess their impact
on the model’s outcomes. This approach helps confirm the robustness of the results [96],
examining how changes in the criteria weights wj affect CCi. For each experiment, a new
set of CCi values for all AI techniques is programmatically calculated:

CC(k)
i =

d−(k)
i

d*(k)
i + d−(k)

i

k = 1, 2, . . . , z (18)

where d∗(k)i and d−(k)
i are the distances from the FPO and FNO, respectively, recalculated

for the k-th set of weights. Thus, in each experiment, the weights assigned to the criteria wj
are varied to observe how these changes impact CCi, providing insights into the robustness
of the outcomes.

The validation of this proposed method, coined as the Fuzzy set Technique for Or-
der Performance using Python (FuTOPy), is detailed in Appendix A, showcasing the
algorithm’s practical applicability and providing scientific evidence of its validity. It in-
cludes a comprehensive analysis of a real-world scenario, offering empirical evidence that
demonstrates the method’s effectiveness and reliability in practical settings. It introduces
researchers to the essential aspects of how the method can be applied to tackle complex
decision-making problems. The employment of varied data and operators in the case study
highlights the adaptability and robustness of the methodological approach, emphasizing
its capability to address diverse decision-making challenges effectively. Therefore, it can
serve as a pedagogical tool, enhancing understanding and providing valuable insights,
particularly for researchers who are new to the concept.

4. AI-Powered Decision-Making Application

Natural language processing (NLP) has become a fundamental branch within the
broader field of artificial intelligence (AI), as discussed in Section 2. NLP combines compu-
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tational linguistics—rule-based modeling of human language—with statistical and machine
learning models. It is used in a myriad of applications: more advanced uses involve inter-
active conversational agents, such as chatbots and personal assistants, that can engage in
human-like dialogs, make decisions, and offer recommendations based on contextual un-
derstanding [15,19]. According to Chowdhary [24], a growing volume of natural language
text makes it difficult for humans to extract knowledge efficiently, a task which automated
NLP aims to accomplish with accuracy and speed.

ChatGPT, an artificial intelligence-generated content model developed by OpenAI [18],
has gained worldwide attention for its ability to manage complex language understanding
and generation tasks in conversational form. This large language model (LLM) utilizes
advanced technologies like deep learning, unsupervised learning, instruction fine-tuning,
multi-task learning, in-context learning, and reinforcement learning, all of which are
highly effective in processing sequential data and have been revolutionary in the field
of NLP [18,25]. Built upon the original GPT (generative pre-trained transformer) model,
which has evolved from GPT-1 in 2018 to GPT-4, an LLM capable of processing both
image and text inputs and generating text outputs, ChatGPT demonstrates human-level
performance across various professional and academic benchmarks [97].

Advanced ChatGPT can process extensive prompts and maintain context over longer
interactions, allowing for more coherent and contextually relevant responses, which is a
critical feature for applications in complex domains such as SRMSs. Although it does not
dynamically learn during interaction, it can be fine-tuned on specific datasets to better
perform in niche areas like sustainable manufacturing, providing insights based on the
vast array of data it was trained on. With the ability to understand and generate multiple
languages, ChatGPT can serve a range of geographical locations, making it a valuable tool
for global operations. The model excels in generating informative, accurate, and engaging
content, which is useful for reports, summaries, and analysis in decision-making processes.
The study aimed to leverage the unique capabilities of its advanced models, i.e., ChatGPT-4,
which is known for its robust performance in generating contextual and responses, making
it suitable for analyzing complex system interactions and sustainability criteria; ChatGPT-
40mini (while hypothetical, if assumed to be a scaled-down version, it could be ideal for
rapid, less computationally intensive queries, allowing for quick hypothesis testing or
preliminary analysis); and ChatGPT-40—this model represents a significant upscale in
processing power and knowledge base, potentially providing deeper insights and more
comprehensive analyses.

Incorporating multiple LLMs in a decision support system offers a promising avenue
for enhancing decision-making processes by leveraging diverse computational perspectives
and capabilities. Therefore, the initial step involved an assessment of each model across
three critical dimensions: accuracy—the precision with which models respond to queries
related to SRMSs; relevance—the degree to which each model’s training and fine-tuning
align with the specific requirements of SRMSs; and consistency—the reliability with which
each model provides dependable outputs across a range of inputs. These assessments can
be derived from a combination of preliminary testing phases, where models’ outputs are
benchmarked against known datasets. Based on the evaluation, differential weights are
assigned: ChatGPT-4, with a weight of 0.5, is recognized for its extensive training database
and proven effectiveness across a wide range of scenarios, indicating high reliability and
accuracy. ChatGPT-40, with a weight of 0.3, is presumed to incorporate newer algorithms
that may offer fresh insights or enhanced computational methods, warranting a substantial
but cautiously optimistic weighting. ChatGPT-40mini, with a weight of 0.2, likely a scaled-
down version, is designated for less complex or highly specific tasks within the SRMSs,
reflecting its focused utility and narrower scope of application.

Thus, due to the scarcity of available knowledge and experts in the field, this study
utilized the advanced capabilities of these LLMs to explore a range of AI techniques (T1–
T17, discussed in Table 2) for the sake of SRMSs. The core characteristics (criteria) of these
systems (C1–C6; discussed in Table 1) were examined in depth. The application of these
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LLMs was primarily due to the scarcity of available knowledge and experts in the field,
positioning these AI tools as essential resources for filling knowledge gaps and providing
expert-level insights. The primary objective was to ascertain the contribution of various AI
techniques to the core characteristics essential for sustainable manufacturing. Each LLM
was queried based on the weights and performance ratings of the criteria and AI techniques,
e.g., applied to each criterion: “how would you weight the importance of modularity in
sustainable manufacturing on a scale from “very low (VL)” to “very high (VH)”, and
why?”, etc.; applied to each AI technique performance rating: “how would you rate the
performance of network-based algorithms for modularity in sustainable reconfigurable
manufacturing systems on a scale from “very poor (VP)” to “very good (VG)”, and why?”,
etc. Using this template ensures that all questions are aligned in their structure, making
it straightforward for LLMs to understand what is being asked and providing a uniform
basis on which to give their insights. This structured approach not only aids in collecting
detailed feedback (data) on the specific contributions of each AI technique to RMS core
characteristics but also helps to synthesize comprehensive insights that can be crucial for
strategic decision-making within sustainable manufacturing contexts.

To this end, the proposed method (FuTOPy) is applied to solve such decision-making
problems following the steps defined in Section 3. This approach is particularly well
suited for situations in which decisions are complex and involve uncertainty or vagueness,
allowing for a more intelligent analysis compared to traditional crisp decision-making
models. As shown in Figure 1, the script was executed in a Python 3.12.1 environment
using Visual Studio Code (VS Code). This version of Python provides advanced features
and improved performance, ensuring efficient handling of complex calculations involved
in fuzzy logic processing. vs. Code is a highly popular, free, open-source integrated
development environment (IDE) developed by Microsoft. It is widely recognized for its
versatility, user-friendly interface, and robust support for a wide range of programming
languages, including Python [98]. It effortlessly integrates with Python 3.12.1, allowing us
to write, execute, and debug the script to solve multicriteria decision-making problems in
fuzzy environments.
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As revealed in Figure 1, several key libraries play a crucial role in facilitating the
intelligent fuzzy set decision support models. NumPy, a fundamental package for scientific
computing in python, is instrumental for handling numerical operations, especially arrays
and matrix manipulations [99,100], which are essential for processing and calculating trian-
gular fuzzy numbers (TFNs). Matplotlib, a versatile plotting library, is utilized to visualize
these TFNs, offering a clear graphical representation that aids in understanding the shades
of fuzzy logic evaluations. It enables the creation of intuitive plots [101] that illustrate
the range and distribution of linguistic assessments converted into fuzzy numerical val-
ues. Lastly, Tabulate, a library for generating structured tables, is crucial for presenting
the aggregated data, normalized matrices, and final decision-making results in an easily
interpretable format. Together, these libraries form the backbone of the script, providing
the necessary tools for numerical computation, data visualization, and result presentation,
thereby enhancing the efficiency and clarity of the decision-making process.

Reviewing the inputs (Figure 1) reveals that six criteria (C1–C6) were defined for
evaluation, with each criterion categorized as either a “cost” or a “benefit” in # Step 1.
This classification is crucial, as it impacts how the criteria are normalized and weighted
during the analytical process. Figure 2 illustrates TFNs designed in # Step 2. The linguistic
terms (ranging from “Very Low (VL)” to “Very High (VH)”) are translated into TFNs. This
mapping allows LLMs to express their feedback in an effective manner, acknowledging the
inherent uncertainty and subjectivity in assessing the importance of criteria. Similarly to
weights, the performance ratings are expressed in linguistic terms (ranging from “Very Poor
(VP)” to “Very Good (VG)”) and converted into TFNs. In # Step 3 (Figure 1), the AI_TFNcw
represents the aggregated feedback of three LLMs (ChatGPT-4, ChatGPT-40, and ChatGPT-
40mini) on the importance of each criterion. Each criterion’s weight (cw) is expressed in
linguistic terms, later to be converted into TFNs using the TFNcw. Next, these TFNs are
aggregated to form a consensus or average representation of each model’s feedback based
on the weights given to the LLMs (AIw1, AIw2, AIw3) by using Equation (8). A similar
process is conducted for the AI techniques ratings across all criteria. Tables 3 and 4 show
the criteria weights and the performance ratings of the 17 AI techniques given by the LLMs,
respectively.

# Step 3: Criteria weights and performance ratings using TFNs assigned by the
LLMs were determined and aggregated following Equation (8). Tables 5 and 6, which are
screenshots of outcomes displayed in the terminal (see Figure 1), illustrate the aggregated
weights of the criteria and the aggregated performance ratings for AI techniques based on
criteria, respectively.

# Step 4: The normalized fuzzy decision matrix is presented in Table 7.
# Step 5: The weighted normalized fuzzy decision matrix is shown in Table 8.
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Table 3. Criteria weights given by the LLMs.

Criterion (Characteristic) ChatGPT-4 ChatGPT-40 ChatGPT-40mini

C1 H VH H

C2 MH H M

C3 M MH L

C4 MH VH MH

C5 ML M VL

C6 MH H MH

Table 4. Performance ratings of AI techniques based on criteria.

AI Technique Criterion (Characteristic) ChatGPT-4 ChatGPT-40 ChatGPT-40mini

T1

C1 G VG G

C2 MG G M

C3 M MG P

C4 MG VG MG

C5 MP M VP

C6 MG G MG

T2

C1 M G M

C2 M MG P

C3 P M VP

C4 M G M

C5 MP M P

C6 M MG M

T3

C1 P M P

C2 P MP VP

C3 M G M

C4 MP M P

C5 M MG M

C6 P M P

T4

C1 G VG G

C2 G VG MG

C3 MG G M

C4 G VG G

C5 M G MP

C6 G VG G

T5

C1 VG VG G

C2 G VG G

C3 G G MG

C4 G VG G

C5 MG G M

C6 VG VG G
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Table 4. Cont.

AI Technique Criterion (Characteristic) ChatGPT-4 ChatGPT-40 ChatGPT-40mini

T6

C1 MG G M

C2 M MG M

C3 G VG G

C4 G VG MG

C5 M G MP

C6 G VG G

T7

C1 G VG G

C2 MG G MG

C3 M G M

C4 G VG G

C5 M MG M

C6 G VG G

T8

C1 M G M

C2 G VG G

C3 G VG MG

C4 MG G M

C5 MP M P

C6 MG G MG

T9

C1 M MG M

C2 MP M P

C3 MG G M

C4 M MG M

C5 G VG G

C6 MG G MG

T10

C1 G VG G

C2 G VG G

C3 G VG G

C4 G VG G

C5 MG G MG

C6 G VG G

T11

C1 M MG M

C2 G VG G

C3 MG G M

C4 G VG G

C5 M M MP

C6 MG G MG

T12

C1 G VG G

C2 G VG G

C3 MG G MG

C4 G VG G

C5 M G M

C6 G VG G
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Table 4. Cont.

AI Technique Criterion (Characteristic) ChatGPT-4 ChatGPT-40 ChatGPT-40mini

T13

C1 MG G MG

C2 G VG G

C3 G VG G

C4 MG G M

C5 M MG M

C6 MG G MG

T14

C1 G VG G

C2 G VG G

C3 M G M

C4 G VG G

C5 MG G MG

C6 G VG G

T15

C1 G VG G

C2 G VG G

C3 MG G MG

C4 G VG G

C5 M G M

C6 G VG G

T16

C1 MG G MG

C2 G VG G

C3 G VG G

C4 MG G MG

C5 M MG M

C6 G VG G

T17

C1 G VG G

C2 G VG G

C3 MG G MG

C4 G VG G

C5 M MG M

C6 G VG G

Table 5. Weighted aggregated criteria weights.

Criteria Weights

C1 (0.76, 0.93, 1.0)

C2 (0.52, 0.72, 0.89)

C3 (0.3, 0.48, 0.6799999999999999)

C4 (0.62, 0.7899999999999999, 0.93)

C5 (0.14, 0.3, 0.48)

C6 (0.5599999999999999, 0.76, 0.93)
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Table 6. Weighted aggregated performance ratings for AI techniques.

AI Techniques C1 C2 C3 C4 C5 C6

T1 (7.60, 9.30, 10.00) (5.20, 7.20, 8.90) (3.00, 4.80, 6.80) (6.20, 7.90, 9.30) (1.40, 3.00, 4.80) (5.60, 7.60, 9.30)

T2 (4.20, 6.20, 7.90) (3.00, 4.80, 6.80) (0.90, 2.00, 3.80) (4.20, 6.20, 7.90) (1.40, 3.20, 5.20) (3.60, 5.60, 7.60)

T3 (0.90, 2.20, 4.20) (0.30, 1.40, 3.20) (4.20, 6.20, 7.90) (1.40, 3.20, 5.20) (3.60, 5.60, 7.60) (0.90, 2.20, 4.20)

T4 (7.60, 9.30, 10.00) (7.20, 8.90, 9.80) (5.20, 7.20, 8.90) (7.60, 9.30, 10.00) (3.80, 5.80, 7.50) (7.60, 9.30, 10.00)

T5 (8.60, 9.80, 10.00) (7.60, 9.30, 10.00) (6.60, 8.60, 9.80) (7.60, 9.30, 10.00) (5.20, 7.20, 8.90) (8.60, 9.80, 10.00)

T6 (5.20, 7.20, 8.90) (3.60, 5.60, 7.60) (7.60, 9.30, 10.00) (7.20, 8.90, 9.80) (3.80, 5.80, 7.50) (7.60, 9.30, 10.00)

T7 (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (4.20, 6.20, 7.90) (7.60, 9.30, 10.00) (3.60, 5.60, 7.60) (7.60, 9.30, 10.00)

T8 (4.20, 6.20, 7.90) (7.60, 9.30, 10.00) (7.20, 8.90, 9.80) (5.20, 7.20, 8.90) (1.40, 3.20, 5.20) (5.60, 7.60, 9.30)

T9 (3.60, 5.60, 7.60) (1.40, 3.20, 5.20) (5.20, 7.20, 8.90) (3.60, 5.60, 7.60) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30)

T10 (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (7.60, 9.30, 10.00)

T11 (3.60, 5.60, 7.60) (7.60, 9.30, 10.00) (5.20, 7.20, 8.90) (7.60, 9.30, 10.00) (2.60, 4.60, 6.60) (5.60, 7.60, 9.30)

T12 (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (7.60, 9.30, 10.00) (4.20, 6.20, 7.90) (7.60, 9.30, 10.00)

T13 (5.60, 7.60, 9.30) (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.20, 7.20, 8.90) (3.60, 5.60, 7.60) (5.60, 7.60, 9.30)

T14 (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (4.20, 6.20, 7.90) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (7.60, 9.30, 10.00)

T15 (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (7.60, 9.30, 10.00) (4.20, 6.20, 7.90) (7.60, 9.30, 10.00)

T16 (5.60, 7.60, 9.30) (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (3.60, 5.60, 7.60) (7.60, 9.30, 10.00)

T17 (7.60, 9.30, 10.00) (7.60, 9.30, 10.00) (5.60, 7.60, 9.30) (7.60, 9.30, 10.00) (3.60, 5.60, 7.60) (7.60, 9.30, 10.00)

Table 7. Normalized decision matrix.

AI Techniques C1 C2 C3 C4 C5 C6

T1 (0.7600, 0.9300,
1.0000)

(0.5200, 0.7200,
0.8900)

(0.3000, 0.4800,
0.6800)

(0.6200, 0.7900,
0.9300)

(0.1400, 0.3000,
0.4800)

(0.5600, 0.7600,
0.9300)

T2 (0.4200, 0.6200,
0.7900)

(0.3000, 0.4800,
0.6800)

(0.0900, 0.2000,
0.3800)

(0.4200, 0.6200,
0.7900)

(0.1400, 0.3200,
0.5200)

(0.3600, 0.5600,
0.7600)

T3 (0.0900, 0.2200,
0.4200)

(0.0300, 0.1400,
0.3200)

(0.4200, 0.6200,
0.7900)

(0.1400, 0.3200,
0.5200)

(0.3600, 0.5600,
0.7600)

(0.0900, 0.2200,
0.4200)

T4 (0.7600, 0.9300,
1.0000)

(0.7200, 0.8900,
0.9800)

(0.5200, 0.7200,
0.8900)

(0.7600, 0.9300,
1.0000)

(0.3800, 0.5800,
0.7500)

(0.7600, 0.9300,
1.0000)

T5 (0.8600, 0.9800,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.6600, 0.8600,
0.9800)

(0.7600, 0.9300,
1.0000)

(0.5200, 0.7200,
0.8900)

(0.8600, 0.9800,
1.0000)

T6 (0.5200, 0.7200,
0.8900)

(0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

(0.7200, 0.8900,
0.9800)

(0.3800, 0.5800,
0.7500)

(0.7600, 0.9300,
1.0000)

T7 (0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.4200, 0.6200,
0.7900)

(0.7600, 0.9300,
1.0000)

(0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

T8 (0.4200, 0.6200,
0.7900)

(0.7600, 0.9300,
1.0000)

(0.7200, 0.8900,
0.9800)

(0.5200, 0.7200,
0.8900)

(0.1400, 0.3200,
0.5200)

(0.5600, 0.7600,
0.9300)

T9 (0.3600, 0.5600,
0.7600)

(0.1400, 0.3200,
0.5200)

(0.5200, 0.7200,
0.8900)

(0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

T10 (0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

T11 (0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

(0.5200, 0.7200,
0.8900)

(0.7600, 0.9300,
1.0000)

(0.2600, 0.4600,
0.6600)

(0.5600, 0.7600,
0.9300)

T12 (0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

(0.4200, 0.6200,
0.7900)

(0.7600, 0.9300,
1.0000)
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Table 7. Cont.

AI Techniques C1 C2 C3 C4 C5 C6

T13 (0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5200, 0.7200,
0.8900)

(0.3600, 0.5600,
0.7600)

(0.5600, 0.7600,
0.9300)

T14 (0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.4200, 0.6200,
0.7900)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

T15 (0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

(0.4200, 0.6200,
0.7900)

(0.7600, 0.9300,
1.0000)

T16 (0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

T17 (0.7600, 0.9300,
1.0000)

(0.7600, 0.9300,
1.0000)

(0.5600, 0.7600,
0.9300)

(0.7600, 0.9300,
1.0000)

(0.3600, 0.5600,
0.7600)

(0.7600, 0.9300,
1.0000)

Table 8. Weighted normalized decision matrix.

AI Techniques C1 C2 C3 C4 C5 C6

T1 (0.5776, 0.8649,
1.0000)

(0.2704, 0.5184,
0.7921)

(0.0900, 0.2304,
0.4624)

(0.3844, 0.6241,
0.8649)

(0.0196, 0.0900,
0.2304)

(0.3136, 0.5776,
0.8649)

T2 (0.3192, 0.5766,
0.7900)

(0.1560, 0.3456,
0.6052)

(0.0270, 0.0960,
0.2584)

(0.2604, 0.4898,
0.7347)

(0.0196, 0.0960,
0.2496)

(0.2016, 0.4256,
0.7068)

T3 (0.0684, 0.2046,
0.4200)

(0.0156, 0.1008,
0.2848)

(0.1260, 0.2976,
0.5372)

(0.0868, 0.2528,
0.4836)

(0.0504, 0.1680,
0.3648)

(0.0504, 0.1672,
0.3906)

T4 (0.5776, 0.8649,
1.0000)

(0.3744, 0.6408,
0.8722)

(0.1560, 0.3456,
0.6052)

(0.4712, 0.7347,
0.9300)

(0.0532, 0.1740,
0.3600)

(0.4256, 0.7068,
0.9300)

T5 (0.6536, 0.9114,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.1980, 0.4128,
0.6664)

(0.4712, 0.7347,
0.9300)

(0.0728, 0.2160,
0.4272)

(0.4816, 0.7448,
0.9300)

T6 (0.3952, 0.6696,
0.8900)

(0.1872, 0.4032,
0.6764)

(0.2280, 0.4464,
0.6800)

(0.4464, 0.7031,
0.9114)

(0.0532, 0.1740,
0.3600)

(0.4256, 0.7068,
0.9300)

T7 (0.5776, 0.8649,
1.0000)

(0.2912, 0.5472,
0.8277)

(0.1260, 0.2976,
0.5372)

(0.4712, 0.7347,
0.9300)

(0.0504, 0.1680,
0.3648)

(0.4256, 0.7068,
0.9300)

T8 (0.3192, 0.5766,
0.7900)

(0.3952, 0.6696,
0.8900)

(0.2160, 0.4272,
0.6664)

(0.3224, 0.5688,
0.8277)

(0.0196, 0.0960,
0.2496)

(0.3136, 0.5776,
0.8649)

T9 (0.2736, 0.5208,
0.7600)

(0.0728, 0.2304,
0.4628)

(0.1560, 0.3456,
0.6052)

(0.2232, 0.4424,
0.7068)

(0.1064, 0.2790,
0.4800)

(0.3136, 0.5776,
0.8649)

T10 (0.5776, 0.8649,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.2280, 0.4464,
0.6800)

(0.4712, 0.7347,
0.9300)

(0.0784, 0.2280,
0.4464)

(0.4256, 0.7068,
0.9300)

T11 (0.2736, 0.5208,
0.7600)

(0.3952, 0.6696,
0.8900)

(0.1560, 0.3456,
0.6052)

(0.4712, 0.7347,
0.9300)

(0.0364, 0.1380,
0.3168)

(0.3136, 0.5776,
0.8649)

T12 (0.5776, 0.8649,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.1680, 0.3648,
0.6324)

(0.4712, 0.7347,
0.9300)

(0.0588, 0.1860,
0.3792)

(0.4256, 0.7068,
0.9300)

T13 (0.4256, 0.7068,
0.9300)

(0.3952, 0.6696,
0.8900)

(0.2280, 0.4464,
0.6800)

(0.3224, 0.5688,
0.8277)

(0.0504, 0.1680,
0.3648)

(0.3136, 0.5776,
0.8649)

T14 (0.5776, 0.8649,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.1260, 0.2976,
0.5372)

(0.4712, 0.7347,
0.9300)

(0.0784, 0.2280,
0.4464)

(0.4256, 0.7068,
0.9300)

T15 (0.5776, 0.8649,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.1680, 0.3648,
0.6324)

(0.4712, 0.7347,
0.9300)

(0.0588, 0.1860,
0.3792)

(0.4256, 0.7068,
0.9300)

T16 (0.4256, 0.7068,
0.9300)

(0.3952, 0.6696,
0.8900)

(0.2280, 0.4464,
0.6800)

(0.3472, 0.6004,
0.8649)

(0.0504, 0.1680,
0.3648)

(0.4256, 0.7068,
0.9300)

T17 (0.5776, 0.8649,
1.0000)

(0.3952, 0.6696,
0.8900)

(0.1680, 0.3648,
0.6324)

(0.4712, 0.7347,
0.9300)

(0.0504, 0.1680,
0.3648)

(0.4256, 0.7068,
0.9300)
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# Step 6: The fuzzy positive optimal outcome (FPO) and fuzzy negative optimal
outcome (FNO) for all AI techniques are displayed in Table 9.

Table 9. FPO and FNO.

Criterion FPO FNO

C1 (1.0000, 1.0000, 1.0000) (0.0684, 0.0684, 0.0684)

C2 (0.8900, 0.8900, 0.8900) (0.0156, 0.0156, 0.0156)

C3 (0.6800, 0.6800, 0.6800) (0.0270, 0.0270, 0.0270)

C4 (0.9300, 0.9300, 0.9300) (0.0868, 0.0868, 0.0868)

C5 (0.4800, 0.4800, 0.4800) (0.0196, 0.0196, 0.0196)

C6 (0.9300, 0.9300, 0.9300) (0.0504, 0.0504, 0.0504)

# Step 7: The distances from FPO and FNO are provided in Table 10.
# Step 8: The closeness coefficient (CC), presented in Table 11, is finally calculated to

rank the performance of AI techniques. A higher CC value is desirable, as it signifies that
the AI technique is closer to achieving the optimal outcome based on the assessed criteria.
As shown in Table 11, the AI techniques ranked from most to least preferable based on the
closeness coefficient are T5, T10, T12 and T15 (tied), T14, T17, T7, T16, T6, T13, T11, T4, T1,
T8, T9, T2, and T3.

Table 10. (a) Distances from FPO; (b) distances from FNO.

(a)

AI Techniques C1 C2 C3 C4 C5 C6

T1 0.256 0.4209 0.4463 0.3631 0.377 0.4117

T2 0.4785 0.5526 0.5613 0.4762 0.3708 0.5275

T3 0.7825 0.7646 0.3973 0.6755 0.3137 0.7408

T4 0.256 0.3308 0.3615 0.2879 0.311 0.3185

T5 0.2064 0.3127 0.3183 0.2879 0.2818 0.2801

T6 0.4029 0.5088 0.2938 0.3086 0.311 0.3185

T7 0.256 0.4 0.3973 0.2879 0.3137 0.3185

T8 0.4785 0.3127 0.3052 0.4124 0.3708 0.4117

T9 0.5212 0.6546 0.3615 0.5122 0.2449 0.4117

T10 0.256 0.3127 0.2938 0.2879 0.2744 0.3185

T11 0.5212 0.3127 0.3615 0.2879 0.3368 0.4117

T12 0.256 0.3127 0.3482 0.2879 0.3022 0.3185

T13 0.3745 0.3127 0.2938 0.4124 0.3137 0.4117

T14 0.256 0.3127 0.3973 0.2879 0.2744 0.3185

T15 0.256 0.3127 0.3482 0.2879 0.3022 0.3185

T16 0.3745 0.3127 0.2938 0.3884 0.3137 0.3185

T17 0.256 0.3127 0.3482 0.2879 0.3137 0.3185
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Table 10. Cont.

(b)

AI Techniques C1 C2 C3 C4 C5 C6

T1 0.7663 0.554 0.2798 0.5723 0.1283 0.5804

T2 0.5297 0.3984 0.1394 0.4518 0.1399 0.4452

T3 0.2177 0.163 0.3383 0.2483 0.2177 0.2077

T4 0.7663 0.6464 0.3884 0.6528 0.2167 0.6697

T5 0.8002 0.6674 0.4423 0.6528 0.263 0.6933

T6 0.6173 0.4533 0.4629 0.6296 0.2167 0.6697

T7 0.7663 0.5825 0.3383 0.6528 0.2177 0.6697

T8 0.5297 0.6674 0.449 0.5281 0.1399 0.5804

T9 0.4916 0.2883 0.3884 0.4201 0.3092 0.5804

T10 0.7663 0.6674 0.4629 0.6528 0.2763 0.6697

T11 0.4916 0.6674 0.3884 0.6528 0.185 0.5804

T12 0.7663 0.6674 0.4085 0.6528 0.2299 0.6697

T13 0.6526 0.6674 0.4629 0.5281 0.2177 0.5804

T14 0.7663 0.6674 0.3383 0.6528 0.2763 0.6697

T15 0.7663 0.6674 0.4085 0.6528 0.2299 0.6697

T16 0.6526 0.6674 0.4629 0.5589 0.2177 0.6697

T17 0.7663 0.6674 0.4085 0.6528 0.2177 0.6697

Table 11. Closeness coefficients.

AI Techniques d+ d− CC

T1 2.275 2.8812 0.5588

T2 2.967 2.1044 0.415

T3 3.6744 1.3927 0.2748

T4 1.8657 3.3402 0.6416

T5 1.6873 3.519 0.6759

T6 2.1435 3.0493 0.5872

T7 1.9733 3.2273 0.6206

T8 2.2912 2.8946 0.5582

T9 2.706 2.478 0.478

T10 1.7433 3.4954 0.6672

T11 2.2318 2.9656 0.5706

T12 1.8255 3.3945 0.6503

T13 2.1187 3.109 0.5947

T14 1.8468 3.3708 0.646

T15 1.8255 3.3945 0.6503

T16 2.0015 3.229 0.6173

T17 1.837 3.3823 0.648

# Step 9: This study conducted a sensitivity analysis (SA) by varying major criteria
weights to evaluate the performance of AI techniques for SRMSs. In this regard, 62 exper-
iments were conducted, each representing a different condition, to evaluate the various
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combinations of the six criteria/characteristics. For each experiment, a new set of CC
values for all AI techniques using Equation (18) through the AI-enabled methodology was
programmatically calculated. Figure 3 shows the SA of the current study, revealing the
performance of AI techniques across 62 experiments. Consequently, AI techniques “T5”
and “T10” consistently exhibit higher closeness coefficients across most experiments, indi-
cating their robust applicability and effectiveness in enhancing multiple core characteristics
of SRMSs.
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5. Discussion on Findings and Implications

This study provides valuable insights into essential AI techniques for SRMSs, aiding
policymakers and decision-makers in understanding and adopting these technologies. It
proposes an AI-enabled methodology, outlined in Section 3, that effectively addresses the
uncertainties in decision-making processes. More significantly, it showcases the use of
AI in decision-making through the application of large language models (Section 4), i.e.,
ChatGPT-4, ChatGPT-40, and ChatGPT-40mini, which have proven to be powerful tools in
the realm of artificial intelligence. Marking a first in decision science, this research leverages
these large language models to provide expert-like assessments, introducing an innovative
approach that incorporates unbiased expert judgment despite the limited availability of
knowledge and specialists in the field. This aligns with the observations of Choi et al. [23]
and Belhadi et al. [12], who noted a gap in the literature for such intelligent approaches,
with only a few scholars consistently advocating for the enhancement of decision-making
processes through these AI techniques.

Table 1 outlines the six core characteristics (criteria), serving as a foundation for the
thorough investigation. According to Koren et al. [10], to manufacture sustainable products
through sustainable processes, production systems must have capabilities that enhance
economic, environmental, and societal sustainability—these criteria not only facilitate rapid
system responsiveness at a low cost but also play an important role in promoting overall
system sustainability. As noted by Huang et al. [9], the characteristics impacting emission
metrics include modularity, customization, and convertibility, which are crucial for control-
ling hazardous gasses and total GHG generation. Modularity and customization are key to
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managing waste generation and recovery, including liquid, solid, and hazardous waste.
Customization and convertibility contribute significantly to reducing water consumption
and increasing reuse/recycling. Several characteristics, particularly customization, convert-
ibility, and scalability, are linked to improving energy usage and efficiency, including the
reduction in idle energy losses. Nearly all characteristics impact operational metrics like the
lead time, productivity, labor utilization, and percentage of on-time delivery. Labor costs,
material costs, transportation, and maintenance costs are heavily influenced by customiza-
tion, convertibility, and scalability. Diagnosability also plays a role, mainly in minimizing
equipment-related and maintenance costs. This indicates how these characteristics play a
critical role in enhancing sustainability on various fronts—environmental (emission, waste,
water/energy efficiency) and economic (operational performance, manufacturing costs).
Customization, modularity, and convertibility seem to be the most influential characteristics
affecting multiple sustainability metrics.

To this end, this study developed an AI-enabled methodological approach to appraise
the performance of AI techniques based on these characteristics (criteria) using Python
programming that integrates fuzzy logic to effectively navigate uncertainties inherent in
the investigation. The choice of Python as the computational backbone ensures access to an
extensive ecosystem of libraries and tools that facilitate sophisticated data manipulation,
optimization, and analysis, thus enhancing the model’s computational capabilities. The
findings revealed that machine learning and big data analytics (T5) as well as fuzzy logic
and programming (T10) stand out as the most promising AI techniques for SRMSs. The
AI techniques ranked from most to least preferable based on the closeness coefficient
were T5, T10, T12, and T15 (tied), T14, T17, T7, T16, T6, T13, T11, T4, T1, T8, T9, T2, and
T3. This demonstrates that human acting and rational thinking techniques are the most
important categories for SRMSs, with T5 and T10 standing out as the top performers.
The application also confirmed that using fuzzy logic programming in Python as the
computational foundation significantly enhances precision, efficiency, and execution time,
offering critical insights that enable more timely and informed decision-making in the field.

The incorporation of sensitivity analysis further enabled a thorough evaluation of
how input variations impact decision-making outcomes. This examination is instrumental
in understanding the robustness of decisions against uncertainties, offering stakeholders
a deeper insight into the implications of their decisions. As shown in Figure 3, T5 is
consistently one of the top-performing techniques across all experiments, e.g., in E#1
(C1), it has a CC of 0.6952, and in E#9 (C1, C4), it scores 0.695. This suggests that T5
is highly suitable for addressing the dynamic requirements of SRMSs. T10 is another
high-ranking technique, performing particularly well in contexts involving uncertainty.
In E#5 (C5), it has a CC of 0.6515, while in E#12 (C2, C3), it scores 0.6631. This indicates
that fuzzy logic is effective when dealing with variability and imprecision in SRMSs. T12
and T15 both perform well across several experiments, e.g., in E#12 (C2, C3), T12 has a
CC of 0.6426, and T15 also performs consistently with values like 0.6523 in E#24 (C1, C2,
C5). These techniques are critical for optimization and control in uncertain and complex
SRMSs environments. T14 and T17 show varying performance but are still among the
more effective AI techniques for SRMSs, e.g., in E#16 (C3, C4), T14 has a CC of 0.6327,
and T17 achieves 0.6424 in the same experiment. Both techniques offer adaptability and
automation, making them useful in specific contexts, such as simulation and automated
decision-making. T2 and T3 consistently rank lower across most experiments, e.g., T2 has
a CC of 0.4333 in E#1 (C1) and T3 scores 0.2654 in the same experiment. This suggests
that these techniques are less suitable for SRMSs, which may be due to their limitations in
handling dynamic, real-time manufacturing environments.

Going through the criteria analysis indicates that C1 has high alignment with tech-
niques like T5 (0.6952 in E#1) and T10 (0.6807 in E#1). Modularity requires flexibility [2,8,38],
and AI techniques that support data-driven decision-making and adaptability seem to be
the most effective. Regarding C2, T5 and T10 perform well under this characteristic, as
seen in E#2, with CCs of 0.6767 and 0.6694, respectively. Integrability requires effective
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communication between different systems [2,8,38], making AI techniques that enhance
system integration highly relevant. Techniques like T5 and T10 also perform well under
C3, e.g., in E#3, T5 scores 0.6639 and T10 achieves 0.6602. Diagnosability benefits from AI
techniques that can handle complex diagnostics and provide predictive capabilities. T5
and T10 continue to rank highly under C4, with T5 scoring 0.6787 and T10 scoring 0.6713
in E#4. Convertibility requires adaptability [2,8,9], for which machine learning and fuzzy
logic provide effective support. In E#5, T5 and T10 maintain strong performance under
C5, with CCs of 0.6576 and 0.6515, respectively. Customization in SRMSs benefits from
AI techniques that can handle variability and offer tailored solutions for specific product
families. Techniques like T5, T10, and T15 perform well in experiments focusing on C6,
e.g., in E#6, T5 scores 0.6816, and T10 scores 0.6689. Scalability demands AI techniques
that can manage increasing or decreasing production capacities while maintaining system
efficiency. In general, the analyses demonstrated that T5 and T10 are the most effective AI
techniques for SRMSs, providing robust solutions across different characteristics such as
modularity, integrability, and scalability. Techniques like T12 and T15 also rank highly, of-
fering strong support for optimization and control in dynamic and uncertain environments.
Lower-ranking techniques, such as T2 and T3 found to be less suitable for SRMSs. The
purpose of considering all combinations of criteria in this analysis has important practical
implications for understanding the effects and interactions among criteria under different
scenarios, especially in the context of SRMSs. By running experiments with various combi-
nations of the criteria, ranging from single-criterion experiments to experiments involving
all six criteria together, the analysis becomes comprehensive and highly informative. This
approach yields insights into how different criteria interact with each other and how these
interactions impact decision-making. By analyzing the full spectrum of criteria combina-
tions, such analyses ensure that no critical interaction is overlooked, offering data that
highlight both macro and micro-level impacts of decisions.

6. Conclusions and Recommendations

Despite substantial research efforts advancing the fields of artificial intelligence (AI)
and sustainable reconfigurable manufacturing systems (SRMSs), a notable gap remains in
the current landscape: no comprehensive study has been conducted to explore and evaluate
AI techniques toward SRMSs. This gap highlights critical research opportunities; as such,
this study aimed to present a deliberation on the subject matter, with a particular focus on
assessing AI techniques for the sake of SRMSs.

To achieve the aim, an AI-enabled methodological approach was developed to ap-
praise the performance of techniques using Python programming, which integrates fuzzy
logic to effectively navigate uncertainties inherent in the assessment. More significantly, this
study demonstrated the use of AI in assessing and decision-making through the application
of large language models, i.e., ChatGPT-4, ChatGPT-40, and ChatGPT-40mini, which have
proven to be powerful tools in the context of artificial intelligence. Thus, this research
represents a breakthrough in decision science by utilizing large language models to deliver
expert-level assessments, offering an innovative approach that brings unbiased expert judg-
ment to fields where knowledge and specialist availability are limited. This approach aligns
with earlier studies that identified a significant gap in the literature regarding intelligent
decision-making methods, with only a handful of scholars consistently promoting the use
of AI techniques to improve these processes. Additionally, the integration of sensitivity
analysis allowed for a comprehensive evaluation of how variations in input affect decision-
making outcomes. Consequently, the findings revealed that machine learning and big data
analytics, as well as fuzzy logic and programming, stand out as the most promising AI
techniques for SRMSs. The application further demonstrated that employing fuzzy logic
programming in Python as the computational backbone significantly improves precision,
efficiency, and execution speed, providing key insights that facilitate more timely and in-
formed decision-making. As a result, this study not only fills a crucial gap in the literature
but also presents an intelligent approach to support complex decision-making processes.
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This is especially beneficial in situations requiring careful analysis and assortment among
multiple characteristics, criteria, and stakeholders in uncertain environments.

Future research could explore the application of the proposed approach across various
industries and domains to assess its versatility and effectiveness in different contexts;
the method’s scalability and its ability to handle increasingly complex decision-making
scenarios, including those with multiple stakeholders and uncertainties; the usability of
the method, focusing on how intuitive and accessible it can be for decision-makers with
varying levels of expertise; and the performance of the proposed model via comparative
analyses with existing decision-making frameworks to identify areas of improvement and
potential synergies.
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Appendix A

To validate the proposed methodological approach, i.e., FuTOPy, this section applied
the dataset from the seminal work by Govindan et al. [102], which was deemed appropriate
for this analysis due to its emphasis on complex decision-making scenarios and associated
uncertainties. The initial study determined that alternative 3 (S3) was the most effective in
terms of its performance, based on evaluations by three decision-makers. The results using
the proposed method corroborate this finding, confirming its accuracy and reliability in
effectively capturing the performance of alternatives. In doing so, the proposed method-
ological approach was executed following the steps described in Section 3, utilizing their
dataset as detailed in Figure A1.

# Step 1: An examination of the inputs shown in Figure A1 reveals 12 specified criteria
(Ec1-So4), where Ec1 is classified as a “cost” criterion and the rest as “benefit” criteria.

# Step 2: Figure A2 displays the designed triangular fuzzy numbers (TFNs) based on
a five-point Likert scale.

# Step 3: The criteria weights and performance ratings of the alternatives were estab-
lished and combined by three decision-makers using TFNs. Figure A3a,b present detailed
representations of the aggregated criteria weights and the performance ratings of the al-
ternatives, respectively, including screenshots of the results, as shown in the terminal in
Figure A1. It is crucial to acknowledge that the methodological approach uncovered slight
inconsistencies in Tables 8 and 9 on page 349 of Govindan et al.’s [102] study. For example,
Table 8 erroneously listed “M” instead of the correct “F” in the cell for En1-S4. Furthermore,
Table 9 incorrectly noted the weight for En4 as (0.3, 0.57, “0.7”) instead of the accurate
(0.3, 0.57, “0.9”), which aligns with the data in cell C8 of Figure A3b. This error stemmed
from the Min–Max–Mean aggregation method used by Govindan et al., as detailed in
Equation (8). These corrections underscore the reliability of the proposed approach and
confirm its efficacy and precision.
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# Step 4: The normalized fuzzy decision matrix, presented in Figure A4, exhibits
minor deviations from its original form. These differences stem from the methodological
enhanced precision in managing decimal points, which leads to more accurate calculations.

# Step 5: The application of the weighted normalized fuzzy decision matrix is docu-
mented in Figure A5.

# Step 6: The fuzzy positive optimal outcome (FPO) and fuzzy negative optimal out-
come (FNO) for all alternatives are described in detail in Figure A6, based on Equations (13)
and (14). This additional information, which is absent in Govindan et al.’s study, introduces
complexities in analysis and comparison in later stages. The provision of these details in
the methodological framework increases the transparency of each step in the process.

# Step 7: Figure A7a,b detail the distances computed from the FPO and FNO.
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# Step 8: The calculation of the closeness coefficient (CC), detailed in Figure A8, aids
in ranking the performance of alternatives. Govindan et al.’s approach shows peak perfor-
mance at S3 with a score of 0.525, indicating that this alternative was the best performer
among the four. The performance then drops for S4, which is the worst-performing alterna-
tive with a score of 0.436. The scores for S1 and S2 are relatively close, at 0.485 and 0.496,
respectively. The proposed approach registers higher performance scores across all alterna-
tives. Similarly to Govindan et al.’s approach, S3 is the top performer, with a significantly
higher score of 0.5802, which not only confirms its superiority but also highlights a more
pronounced advantage in the approach. The lowest score here is for S4 at 0.4449, slightly
higher than its counterpart in the previous approach. The scores for S1 and S2 are 0.547 and
0.5413, respectively, indicating more effective performance in these alternatives compared
to Govindan et al.’s. Thus, both approaches agree on the ranking of alternatives, with S3 as
the top performer and S4 as the least effective. Nonetheless, the proposed approach not
only rates all alternatives higher but also amplifies the performance gap, particularly for
S3, suggesting a possible improvement in sensitivity or precision in evaluating alternatives.
The upward shift in scores across all alternatives in the proposed approach indicates an
enhanced evaluation mechanism, which might be more effective when it comes to cap-
turing shades in performance metrics. This suggests that the proposed approach could
provide more discerning and detailed assessments of alternative performances, which can
be particularly beneficial in decision-making scenarios where finer distinctions between
choices are critical.
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# Step 9: Despite the noted variations and precise computational methods, the sen-
sitivity analysis, as outlined in Figure A9, was somewhat affected. Notably, alternative
3 (S3) consistently emerges as the top choice, echoing the findings of Govindan et al.’s
study, which also accentuated S3’s dominance under various conditions through multiple
decision-makers. However, the proposed approach allows for a decimal-precise assessment,
providing a more refined analysis that captures the shades of alternative performance with
enhanced accuracy and detail. This evaluation shows that alternative 3 (S3) is nearest to the
optimal outcome, while alternative 4 (S4) is the most distant, aligning with the conclusions
of Govindan et al. [102]. This alignment with the original study validates the proposed
approach and confirms the accuracy of the methodological calculations. However, slight
variations in the rankings of alternatives 1 (S1) and 2 (S2) underline the impact of ad-
vanced computational techniques and detailed decimal management on decision-making
results. These findings emphasize the critical role of precise data handling in multicriteria
decision-making, particularly in contexts fraught with uncertainties.
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