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Abstract

Hurricanes can cause massive power outages and pose significant disruptions to society.
Accurately monitoring hurricane power outages will improve predictive models and
guide disaster emergency management. However, many challenges exist in obtaining
high-quality data on hurricane power outages. We systematically evaluated machine
learning (ML) approaches to reconstruct historical hurricane power outages based on high-
resolution (1 km) satellite night light observations from the Defense Meteorological Satellite
Program (DMSP) and other ancillary information. We found that the two-step hybrid model
significantly improved model prediction performance by capturing a substantial portion
of the uncertainty in the zero-inflated data. In general, the classification and regression
tree-based machine learning models (XGBoost and random forest) demonstrated better
performance than the logistic and CNN models in both binary classification and regression
models. For example, the xgb+xgb model has 14% less RMSE than the log+cnn model,
and the R-squared value is 25 times larger. The Interpretable ML (SHAP value) identified
geographic locations, population, and stable and hurricane night light values as important
variables in the XGBoost power outage model. These variables also exhibit meaningful
physical relationships with power outages. Our study lays the groundwork for monitoring
power outages caused by natural disasters using satellite data and machine learning (ML)
approaches. Future work should aim to improve the accuracy of power outage estimations
and incorporate more hurricanes from the recently available Visible Infrared Imaging
Radiometer Suite (VIIRS) Day/Night Band (DNB) data.
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1. Introduction

Hurricanes can cause billions of dollars in major damage to infrastructure, including
massive power outages near or after their landfall [1-3]. Climate change is also likely to
exacerbate power outage disaster from hurricanes by intensifying future hurricanes [4-8].
For example, Hurricane Sandy in 2012 caused over 8 million power outages in the United
States [9]. Typhoon (a hurricane’s equivalent in the Western Pacific Basin) Usagi (2013) and
Typhoon Rammasun (2014) both caused more than 2 million power outages in China [10].
Therefore, accurately predicting power outages before hurricane landfall is important for
community preparedness and the efficient distribution of power restoration crews and
resources [10-12].
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Many power outage prediction models are data-driven and need detailed information
on past outage events for model training and validation [13-15]. Electrical utility companies
have traditionally collected and maintained power outage data [10,16,17], including their
number, location, and duration. Electrical utilities typically do not share historical power
outage information with the public. In addition, many developing countries lack power
outage monitoring systems, making it challenging to monitor and model weather-related
power outages in these regions [13,18].

Satellites provide high-resolution global observations of night lights [19]. For exam-
ple, the US Air Force launched the Defense Meteorological Satellite Program (DMSP) in
the 1970s. The DMSP features an Operational Linescan System (OLS) with a night band,
which covers a wide spatial extent (3000 km) and detects the visible and near-infrared
portions of the spectrum. Applications of the DMSP OLS data include mapping urban
growth, urban light intensity, electricity consumption, estimating population growth, and
quantifying regional economic activity [20-22]. For example, several studies have utilized
the DMSP OLS data to detect regional electrical power losses in conflicts, such as the Iraqi
Civil War [23], and following natural disasters, including earthquakes [24]. These studies
demonstrated that the DMSP OLS can accurately estimate power outages. More recently,
the National Aeronautics and Space Administration (NASA) and the National Oceanic and
Atmospheric Administration (NOAA) jointly launched the SUOMI satellite in 2012, which
features the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB)
sensor. The VIIRS DNB offers better data quality than the DMSP and has been applied
to power outage estimates in multiple studies [25-27]. The growing satellite night light
database has demonstrated great global potential for monitoring power outages. Recent
works on power outage prediction models have utilized the VIIRS DNB data directly as
one of the parameters, observing a substantial improvement in model performance [13-15].
This improvement suggests that night light images contain crucial information for identify-
ing power outages. However, these models have limitations in forecasting future power
outages because they rely on past or present night light information as a predictor.

Previous studies also utilized satellite night light data to estimate hurricane power
outages [23-25,27,28] in the past. First, most have only estimated power outages for
one or two hurricanes. Secondly, most rely on the loss of radiance as the only predictor
of power outages, and they do not leverage other information sources to enhance their
estimation accuracy. Finally, past studies have not systematically evaluated multiple
machine learning methods and assessed the sources of uncertainty associated with power
outage estimation. Studies have noted that clouds pose the most significant challenge
in estimating power outages using satellite data [25,27], underscoring the need to better
understand this important source of uncertainty. Therefore, this paper introduces a new
approach for estimating hurricane power outages that integrates satellite night light data
from DMSP and other ancillary information. This new approach is rigorously validated
using high-quality power outage data from six hurricanes obtained from electrical utilities.
Specifically, we will (1) develop different types (binary, regression, and two-step hybrid)
of machine learning (ML) models that estimate hurricane-related power outages using
satellite-derived night light data and other relevant information; (2) evaluate different
ML models and select the optimal model with the best performance from rigorous out-of-
sample cross-validation tests; and (3) identify the physical significance of features in the
ML model based on the SHapley Additive exPlanations (SHAP) value interpretable ML
approach. Section 2 details the data collection and pre-processing, as well as a description
of the ML methods. Section 3 presents the cross-validation results for different models,
along with details on model selection and interpretation. Discussions and conclusions are
in Section 4. The new model will provide valuable insights for developing a generic model
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that can reconstruct historical power outage events from satellite night light data. The
reconstruction will help understand changes in social impacts from extreme weather events,
particularly for developing countries where the damage estimates are not easily accessible.

2. Material and Methods
2.1. Datasets and Processing

The power outage data used to develop our models was provided by Southern Com-
pany, which serves the central Gulf Coast region in the United States. The original data
includes 6681 grid cells with a dimension of about 3.66 km by 2.44 km (12,000 feet by
8000 feet in the original documentation; large gray boxes in Figure 1). The dataset includes
the number of customers without power at each grid cell with the starting and end times re-
ported during each hurricane event. The power outage data are available for six hurricanes:
Opal in 1995, Danny in 1997, Georges in 1998, Ivan in 2004, Dennis in 2005, and Katrina in
2005. We collected population data (smaller red grids in Figure 1) from the Gridded Popu-
lation of the World (GPW) v4 (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4,
accessed on 4 July 2024) with a 1 km spatial resolution [29]. We also obtained DMSP-OLS
images from the World Bank’s Light Every Night dataset (https:/ /registry.opendata.aws/
wb-light-every-night/, accessed on 4 July 2024) for six hurricanes with available utility
power outage reports. The DMSP-OLS is the primary source for night light data, as all
our utility hurricane power outage reports date back to before 2005. The DMSP satellite
overpasses the study area once per night, providing a daily temporal resolution. We first
matched the time between the utility power outage records and the DMSP satellite images’
capture times, then collected all matching images for each of the six hurricane nights,
resulting in 25 images.
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Figure 1. (a) Map of the power grids from the utility company (large grids with grayed outlines)
and the original 1 km grids (population and night light, shown as population density in red) used
for model development in this study. (b) An example of accumulated power outages (customers
without power) during Hurricane Katrina within the utility company grids. (c) Population density in
2005 within the 1 km grids.

There are spatial mismatches between the resolution of the utility power outage data
and the 1 km population/DMSP data. Therefore, we upscaled the 1 km DMSP light data
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and the GPWv4 population data to the utility grid (boxes with grayed outlines in Figure 1).
We calculated the population (POP in Table 1) for each utility grid by summing all 1 km
population grids fully or partially contained (weighed by area) within it. We calculated
the mean of the infrared radiation (MTIR), the visible light observation (MVIS), the lunar
illuminance (MLI), and the standard deviations of the visible light observation (SVIS)
for all cloud-free pixels within each utility grid. We applied the original cloud masks
from the DMSP-OLS data to identify cloud-free pixels and used them exclusively in our
power outage modeling. We also acquired the annual stabilized night light (FNL) and the
detection ratio (PNL) for each pixel from the Earth Observation Group at the Colorado
School of Mines (https://eogdata.mines.edu/products/dmsp/, accessed on 4 July 2024).
The hurricane night visible light ratio in the annual stabilized night (VSR) is defined as
MVIS/FNL, and the difference (VSD) is defined as FNL—MVIS for each pixel. Finally, we
also determined the latitude (LAT) and longitude (LON) of the centroid of each utility grid
and included them in the ML models. Details about the response and feature variables for
our machine learning models are listed in Table 1.

Table 1. Variables used in machine learning models.

SN

Acronym

Explanation Type

PO

Power outage estimates from the utility Dependent

pPOP

Population from the GPW V4 population Feature

MTIR

The mean value of the infrared radiation monitored by the

DMSP-OLS, calculated for each utility grid Feature

MVIS

The mean value of the visible light observation monitored by

the DMSP-OLS, calculated for each utility grid Feature

SVIS

The standard deviation of the visible light observation

monitored by the DMSP-OLS, calculated for each utility grid Feature

MLI

The mean value of the lunar illuminance monitored by the

DMSP-OLS, calculated for each utility grid Feature

PNL

The percent frequency of light detection for the entire year in
which the hurricane occurred, calculated as the number of
cloud-free nights divided by the total number of available Feature
nights for each DMSP-OLS pixel over the whole year, then
averaged for each utility grid

FNL

Full night light (FNL) for the entire year the hurricane occurred,

derived from the average visible band digital number (DN) of

cloud-free light detections multiplied by the percent frequency

of light detection in a year for each pixel, with the background

noise then identified and replaced with values of zero, and the
mean FNL calculated for each utility grid

Feature

VSR

The ratio between the cloud-free visible light observations (VIS)
and the annual average full night light (FNL) at each pixel, then Feature
averaged for each utility grid

10

VSD

The difference between FNL and the cloud-free VIS, calculated

as FNL—VIS, then averaged within each utility grid Feature

11

LAT

Latitude of the utility grid centroid Feature

12

LON

Longitude of the utility grid centroid Feature
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Cloud Covered: 136,007/82%

2.2. Cloud and Data Availability

Clouds prevent the visible light signal from being detected by satellite sensors. There-
fore, dealing with cloud cover is the most challenging part of using satellite night light data
to detect power outages. Here, we used the primary cloud mask (a more stringent cloud
mask defined by the original DMSP data) to filter out all pixels covered by clouds before
averaging their values into the utility power grid. We only retained power grids with cov-
erage of more than 90% cloud-free DMSP-OLS pixels, resulting in a total of 29,793 records
(Figure 2a) for training and testing the machine learning (ML) model. Those cloud-free
locations match 18% of power outage observations from 6 hurricanes. Different hurri-
canes vary in the shares of available observations (Figure 2b). There are 5258 power grids
(21.2%) with non-zero power outages (Figure S1), and three hurricanes—Ivan, Katrina, and
Opal—account for ~98% of them. The availability of cloud-free observations from each
hurricane is controlled by its physical characteristics, such as size and translation speed.
For example, hurricanes with larger sizes and slower translation speeds are likely to block
night light detection for a location for longer due to the thick clouds associated with their
deep convection.

a b

OPAL: 3182/10.7%
Cloud Free: 29,853/18% -

GEORGES: 950/3.2%
DENNIS: 860/2.9%
)\ DANNY: 42/0.1%

IVAN: 16,883/56.6%
KATRINA: 7936/26.6%

Figure 2. (a) Number/percentage of cloud-covered and cloud-free power grids on all nights with
satellite observations. (b) Number/percentage of cloud-free power grids from each hurricane used
for model training/testing.

2.3. Model Querview

After data pre-processing, as shown in Figure 3, we trained and compared different
machine learning (ML) models using the refined power outage data and feature variables.
We evaluated four machine learning (ML) models, individually and in combination: convo-
lutional neural networks (CNNs), a logistic model (LOG), random forest (RF), and extreme
gradient boosting trees (XGBoost: XGB). Deep Learning is a widely used Al technique in
remote sensing [30,31], which is constructed from the CNN algorithm based on multiple
layers of a feedforward network for prediction. We leveraged the R packages “keras” [32]
and “tensor” [33] to train our CNN models and make predictions. The logistic algorithm
uses the generalized linear regression framework for binary classification tasks. It has been
widely used to detect changes in remotely sensed imagery. RF and XGB are regression and
classification tree-based algorithms. The regression/classification tree splits the data based
on a feature and a threshold to reduce the variance created by each split in the subset. This
recursive binary splitting continues until a minimum number of observations is reached in
a leaf or a minimum reduction in variance, and new predictions involve navigating down
the tree based on the feature values of the new instance until reaching a leaf node [34].
These decision tree-based models are non-parametric ML algorithms with less stringent
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requirements for data types and distributions. They demonstrated strong performance
in predicting power outages [20]. While the RF trains many trees by bagging them into
randomly selected ensembles, the XGB model builds trees one at a time and continuously
builds new trees to correct bias in previously trained trees [35,36]. We used the R packages
(v4.3.3) “caret” [37], “ggplot2” [38], “ISLR” [39], “randomForest” [40], and “xgboost” [41]
to streamline the model training and testing processes for LOG, RF, and XGB models.

DMSP night light

data - @
during hurricanes

Power outage GPW Cloud free night Normal night
data from utility population light data light in a year
company ~ } l

Ratio between light
loss and normal light

Rescale
process

Multiple machine learning algorithms, including

. Insights and physical
CNN, Logistic, Random F t, and XGBoost. .
og1she, Ran (/)m/ Or,ef an 008 interpretable of the ML model

Possible solutions to improve
the model in the future
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(classification & regression) —

T An optimal
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e interpretable
ML approach
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Figure 3. Flowchart of the technical process for this study.

2.4. Model Training, Cross-Validation, and Evaluation

We developed and evaluated one-step models and hybrid models. The one-step
model employs a single model to predict whether (binary) or how many (regression)
power outages will occur in each power grid. LOG is the only binary model; CNN,
RF, and XGB were trained for both binary and regression models. The hybrid models
combine two models (which can be the same or different types) to handle separate tasks in
two steps. The first step is determining whether power outages will occur at each power
grid. Locations with power outages will be assigned a value of “1”, and locations without
power outages will be assigned a “0”. We test the two-step hybrid model because previous
hurricane power outage prediction models [42,43] have shown that the binary model at
the first step can significantly reduce the uncertainty introduced by the zero-inflated data,
which is commonly encountered in power outage observations. All non-zero locations
will proceed to the second step, which utilizes a regression model to predict the number
of power outages that are expected to occur. We have 4 binary classification models and
3 regression models, so there are 4 x 3 = 12 possible combinations for hybrid models.

We repeated the training process five times for each model, using 80% of the data as
the training sample and 20% as the testing sample for evaluating out-of-sample prediction
performance. We assessed the accuracy of all binary classification models as the ratio of the
number of correctly predicted records in the testing sample data. Metrics for regression
models and hybrid models include the mean absolute error (MAE), root mean squared
error (RMSE), and the coefficient of determination (R?). We compared these performance
metrics across all the models we trained and different hurricanes.

2.5. Model Interpretations

One of the major challenges for machine learning (ML) algorithms is model interpreta-
tion. We applied the SHapley Additive exPlanations (SHAP) value method to interpret the
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optimal model [44]. The SHAP method is based on the concept of Shapley values in game
theory, which can be mathematically defined as:

[SI(p —pI!SI “ Do (SUGY) = 0x(9)) Y

9i() = Ysc i, pn i)
Here, S represents a subset of the p features the model utilizes, and x is the feature
value vector of the instance under study. v,(S) denotes the prediction for feature values in
set S, marginalized over features outside of set S. In general, the SHAP value quantifies
the contribution of each feature to the prediction of a specific instance relative to the
average prediction across all cases. The exact SHAP value calculation is computationally
demanding, so Strumbelj et al. [45] introduced the Monte-Carlo Sampling approach to
approximate the exact SHAP value with much less computational demand. We calculated
the SHAP values using the “shapviz” R package to evaluate feature importance and identify
how individual features influence power outages in our ML models.

3. Results
3.1. Binary Models

We first tested four types of binary models that are used to predict whether any power
outage will occur (1) or not (0) using 29,793 cloud-free records. Most ML models show
reasonable out-of-sample performance (Table 2). XGB consistently demonstrates the best
performance in the 5-fold cross-validation, with the highest accuracy, F1 Score, and AUC-
ROC. XGB exhibits the best stability among all models, with the lowest standard deviations
in all error metrics in all four binary models we have tested. The recall and precision
analysis reveals similar results as other error statistic metrics. The confusion matrix statistics
demonstrate that the LOG model has significantly lower True Positive and False Positive
cases, indicating its conservative manner in predicting power outages, with a slightly
larger True Negative number too. But the LOG model also has a relatively larger False
Negative number when compared with other models. XGB correctly predicts most cases
of power outages and the third-largest number of zero power outages, with a reasonably
small number of False Positive cases and the lowest number of False Negative cases.

Table 2. Summary of error statistics for the binary model in 5-fold cross-validation.

CNN LOG RF XGB
Mean Accuracy 0.8359 0.8256 0.8711 0.8801
Mean F1 Score 0.8889 0.8814 0.9092 0.9152
Mean AUC-ROC 0.5603 0.5144 0.6298 0.6399
Mean Recall 0.9758 0.9908 0.9649 0.9706
Mean Precision 0.8163 0.7939 0.8597 0.8657
True Positive 35 9 70 73
False Positive 113 43 165 138
True Negative 4582 4653 4531 4558
False Negative 202 228 167 164
SD Accuracy 0.0032 0.0034 0.0027 0.0022
SD F1 Score 0.0024 0.0028 0.0025 0.0024
SD AUC-ROC 0.0213 0.0013 0.009 0.0055
SD Recall 0.011 0.0009 0.0047 0.0046

SD Precision 0.0069 0.004 0.0012 0.0032
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3.2. One-Step Regression Models

We then compared three regression models, fitting 29,793 cloud-free records directly,
using the same five-fold cross-validation setup. There are large variations in prediction
error metrics between different models (Figure 4 and Table S1). XGB has the lowest MAE
(22.78), RMSE (92.68), and relative MAE (138%, calculated as MAE/Sample Mean), as
well as the highest R? (0.22), indicating the best and most stable performance among all
three models. RF has the second-best performance, with error metrics comparable to those
of XGB. Surprisingly, CNN’s R? (0.02) is much lower than that of the other two models
(by ~90%). This low performance is likely because power outage data are zero-inflated,
meaning that many power grids recorded zero power outages. CNN struggles to capture
this and, therefore, explains very little of the variance in the data (low R?), even though
the MAE and RMSE (Figure 4a,b) are not dramatically lower than those of XGB and RF. To
benchmark the performance of all models, we created two additional “no skill” models:
1. The MEAN model predicts all records as the observed sample mean power outage
(16.43). 2. The ZERO model predicts that all grids will have zero power outages. The
MEAN model has the highest MAE (28.54) among all models. The ZERO model has the
lowest MAE (16.43) but the highest RMSE (105.81), indicating that our data is zero-inflated.
The CNN model exhibits good MAE performance but does not necessarily demonstrate
strong prediction performance. Our best one-step XGB model achieves 27.74% lower MAE
than the MEAN model and 12.4% lower RMSE than the ZERO model.

28.54

10195 104.52 10581

93125 92T68
2281 [T 2278 o J l 0.p2

20 02

16.43

Mean Absolute Error
RMSE
R2

30

0.02

0.00 0.00
0 0 0.0

cnn rf xgb mean zero cnn rf xgb mean zero cnn rf xgb mean zero

Figure 4. Metrics of out-of-sample prediction performance for three regression models (convolutional
neural networks (CNNs), random forest (RF), and extreme gradient boosting (XGB)), the mean
model (MEAN, predicting all observations as sample mean), the zero model (ZERO, predicting
all observations as zero). (a) Mean absolute error (MAE), (b) root mean square error (RMSE), and
(c) R2. The bar length represents the mean value calculated from five hold-out tests (with the value
labeled on top of each bar), and the error bar represents the standard deviation of estimations across
five hold-out tests.

3.3. Two-Step Models

The performance of one-step regression models in Section 3.3 is heavily influenced
by the large number of zero observations, which are defined as outages < 1 here and
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account for ~82.3% of the total cloud-free sample (Figure S1). This zero-inflation effect is
most evident for CNN. However, it also influences the performance of XGB and RF. To
mitigate this zero-inflation issue, we developed a series of hybrid models. The hybrid
model involves two steps: (1) a binary model (developed in Section 3.2) that predicts
whether power outages will occur in each grid, and (2) a regression model that predicts
how many power outages will occur in locations with non-zero power outages identified
from the first step. We developed three regression models (CNN, RF, and XGB) only using
records with non-zero power outages. Figure 5 shows the model prediction performance
for the five cross-validation folds, using non-zero power outage records selected from the
same folds as in the previous analysis. There are 5258 non-zero power outage records.
We can observe significant improvements in R? in RF (by 0.13 and 62%; Figure 5b) and in
XGB (by 0.25 and 114%; Figure 5c) as compared with the one-step RF and XGB models
trained with all locations (Figure 4c). So the regression models perform better when only
considering locations with power outages. The XGB model still exhibits the best prediction
performance among all three non-zero models, with an MAE of 81 and a relative MAE of
87%. The MAE in the non-zero XGB models increased by 255% compared to the XGB model
using all records (Figure 4a), which can be attributed to the larger mean of power outages
from the non-zero sample (93) compared to the whole sample (16). More importantly, the
relative MAE in the non-zero XGB model is 87%, which is 40% lower than that of the XGB
model trained from all records, indicating an improvement in performance in the non-zero
model. Compared with RF and XGB, CNN still suffers from low out-of-sample prediction
accuracy due to underestimation for locations with higher power outages (Figure 5a).
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Figure 5. Comparison of performance for different models ((a) CNN, (b) RE and (c) XGB), trained with
the data with >1 power outage in each power grid. The data are randomly divided into five hold-out
testing samples and five training samples, and predictions are based solely on the testing sample
data. Observations and predictions are combined from five testing samples and compared as scatter
density plots with 100 equal bins. MAE and R? are calculated based on all five testing samples.

We created twelve hybrid models by iterating all possible combinations of four binary
models for the first step and three regression models for the second. The results showed
substantial variation in out-of-sample performance (Figure 6 and Table S2). The model with
the best performance is XGB+XGB, based on all three error metrics. The XGB+XGB model
exhibits further improvements over the single-step XGB model (Figure 6 vs. Figure 4),
with a 76.6% reduction in mean absolute error (MAE), a 99.3% reduction in root mean
square error (RMSE), and a 13.6% increase in R?. The other hybrid models also perform
well, including RF+XGB, XGB+RF, and RF+RF. The better-performing models are all based
on a combination of regression/classification tree algorithms. The CNN+CNN, CNN+RE,
CNN+XGB, LOG+RF, LOG+XGB, and RF+CNN models have reasonable MAE (ranging
from 5.15 to 5.67) and RMSE (ranging from 53.43 to 58.7), but their R? values are very low
(ranging from 0 to 0.03). The lower R? is largely due to the low performance of binary CNN
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and LOG models (Table 2), where power grids with many power outages were incorrectly
predicted as having no power outages. Those zero predictions reduce the MAE and RMSE
metrics of the hybrid models containing CNN and LOG (Figure 6a,b), but they do not
contribute to accurately predicting power outages, as reflected by their extremely low
predicted explained variance (R?; Figure 6¢).
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Figure 6. Metrics of out-of-sample prediction performance for twelve hybrid models: (a) mean
absolute error (MAE), (b) root mean square error (RMSE), and (c) R2. The bar length represents the
mean value calculated from five hold-out tests (with the value labeled on top of each bar), and the
error bar represents the standard deviation of estimations across five hold-out tests.

Hurricanes can vary in size, track, wind speed, and precipitation. Therefore, the
spatial patterns and magnitudes of power outages may demonstrate significant variations
from one hurricane to another. Here, we applied our best hybrid model (XGB+XGB) to
predict the event of power outages in each hurricane by summing predictions for all nights
and comparing them to the observation at each location. We compared the predictions
and observations for all six hurricanes, including major hurricanes Katrina and Ivan
(Figure 7), as well as the remaining four hurricanes in Figures 52 and S3. Hurricanes
Katrina and Ivan demonstrate large differences in their spatial patterns of observed power
outages (Figure 7b,e) and the model prediction error. For example, large overestimates are
observed in the southwest corner of the study area for Hurricane Katrina (Figure 7a). In
contrast, errors for Hurricane Ivan are more randomly distributed across space (Figure 7b).
Overestimates are predominantly located in the lower outage range (observed power
outage < 100) for both storms. Katrina and Ivan demonstrate a reasonable agreement
between predictions and observations for the entire event, with R? values of 0.41 and 0.66,
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respectively (Figure 7c,f). Ivan has a slightly better model performance, with a higher
R? (0.66), although its RMSE (~240) is larger due to the higher mean value of observed
power outages (~65) compared to Katrina (~36). Figures S2 and S3 illustrate the model’s
performance for the other four events. Hurricane Opal has both R?> and RMSE values
similar to those of Ivan’s, due to its abundance of cloud-free observations. Danny, Dennis,
and Georges all show very low MAE and R?, largely due to the lower availability of
cloud-free non-zero observations (Figures S2 and S3b). For example, Hurricane Dennis
had 860 cloud-free observations, but only 83 had non-zero power outages. The number is
a very small and unstable sample compared to Hurricane Opal (Figure S3e), which had
3182 cloud-free observations and 920 non-zero power outages. Another reason for poor
model performance is that some hurricanes experienced outages that mostly occurred
during the daytime, and the night light data could not capture these daytime outages,
particularly if they had shorter durations. For example, Hurricane Danny had 628 non-zero
outages in our original record. Only 60 occurred at night when the DMSP satellite passed
through with no cloud cover.
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Figure 7. Model performance for Hurricane Katrina (a-c) and Hurricane Ivan (d—f). The model
errors (Observation—Prediction) are calculated for the summed power outages in each hurricane
and mapped in the study area (a,d). Maps are also created for the summed power outages in each
hurricane (b,e) and scatter plots between the observed and predicted summed power outages (c,f).

3.4. Model Interpretation

This section uses the SHAP value framework to interpret the XGB model for non-
zero values. The SHAP value provides a systematic method for assigning importance
or contribution values to individual features in a model, measuring the impact of each
feature on the prediction. A positive SHAP value indicates that the feature contributes
to the predicted power outages above their average. In contrast, a negative SHAP value
suggests that it contributes to the predicted power outages being below their average. The
absolute size of each SHAP value reflects how sensitive the predicted power outage is
to that feature, revealing which features have the greatest impact. Figure 8a shows the
variable importance of all 11 features used in the XGB model, calculated as the absolute
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mean of the SHAP value. The latitude (LAT) ranks as the most important variable in
the model, and the longitude (LON) ranks as the third most important. Both location
coordinate variables serve as proxies for the local information related to population, land
use/land cover, vegetation, and proximity to the coast. However, it is challenging to discern
the physical significance of these variables because multiple environmental and infras-
tructure factors are intertwined. Therefore, here we only discuss the SHAP variability for
three top-ranked features that can be interpreted: the full night light (FNL, ranked fourth),
the ratio of the hurricane night visible light in FNL (PNL, ranked sixth), and the population
at each grid (POP, ranked second). A positive relationship exists between the SHAP value
(number of power outages) and FNL (Figure 8b). Higher FNL values correspond to denser
population distributions and greater numbers of electrical utility customers. Regions with
more customers will have a higher probability of experiencing larger outage events when
intense hurricanes occur and damage utility infrastructure. We can also identify a clear
threshold when FNL is ~50. Large positive SHAP values are predominantly observed
when FNL exceeds 50 and correspond to larger populations. Meanwhile, the SHAP value
demonstrates a clear positive relationship with population (Figure S4b), and power grids
with more than 300 people have much higher power outages. PNL reflects the amount of
night light in a hurricane night compared with the stable night light from the same year [8].
Here, we can observe a clear threshold at 1 (Figure 8c), meaning that the hurricane and
stable night light are equal. When PNL is less than 1, more positive SHAP values indicate
that hurricane power outages are associated with losing night light. Negative SHAP values
are related to PNL values larger than 1, meaning that fewer power outages are associated
with less night light loss. The uncertainties in detecting hurricane night light at pixels
from the DMSP cause some locations to have larger values than the annual full night light
(PNL > 1). However, most of these uncertainties occur in locations with lower populations
(darker blue dots on the right side of Figure 8c) and have a lesser impact on the detection
accuracy of large power outage events. We can also observe a similar pattern in the SHAP
plot for the VSD (Figure S4f), which indicates that positive differences (Stable—Hurricane)
correspond to more positive SHAP contributions, suggesting larger outages. In summary,
the DMSP night light variables play a crucial role in our ML model, and the SHAP frame-
work can also elucidate their physical significance. The SHAP value variations for the other
nine features in the XGB model are shown in Figure 54.
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Figure 8. The XGBoost model’s feature importance and individual relationships with power outage
predictions based on the SHAP values. (a) Feature importance calculated as the SHAP value for
all eleven features; (b) relationship between the full night light (FNL) and the power outage SHAP
value; (c) relationship between the hurricane night visible light/FNL ratio and the power outage
SHAP value.
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4. Discussion

Hurricanes can cause many power outages in coastal areas. Accurate power outage
predictions help emergency management organizations, NGOs, electrical utilities, and
the private sector to assess power outage risks and optimize pre-storm response and
preparation based on these risks. Therefore, we need accurate estimates of power outages
from past storms to develop and validate TC power outage prediction models. However,
power outage data are not readily available at the necessary spatial and temporal resolutions
in the United States, and these data limitations are even more acute in developing countries.
Therefore, we developed and evaluated algorithms to reconstruct hurricane power outage
records using publicly available high-quality satellite observations of night light data and
other assisting information.

We selected four classification algorithms and three regression algorithms to model
power outages. Then, we rigorously tested and evaluated the performance in hold-out
validations for both single-step models and hybrid models. The results show that ML
models exhibit high variability in capturing power outages over the study area. The
primary discovery is that the power outage data are heavily zero-inflated. The hybrid
model can first predict whether power outages will occur and then estimate the number
of power outages in the second step. The XGB-XGB hybrid model effectively reduced
the error in predictions inflated by zero outage observations, substantially reduced the
model prediction errors (RMSE) by ~100%, and increased the explained variance (R?) by
13%. The classification/regression tree-based algorithms (RF and XGB) demonstrated
superior performance over the logistic and CNN models in the binary classification, and
they particularly helped improve the performance of the hybrid models.

Our optimal hybrid model (XGB-XGB) also provides the best estimates of event power
outages for different hurricanes. However, it tends to overestimate power outages in
locations that have relatively few outages. The model also slightly underestimates the
frequency of power outages at locations with a higher incidence of outages. The spatial
distribution of the model predictions is random but highly correlated with the locations
and magnitudes of power outage observations.

Based on the SHAP value, the interpretable ML approach provides valuable insights
into ML algorithms. We found that the locations of the power grid, population, and
the DMSP night light observations play crucial roles in the XGB regression model. We
discovered that power outages are proportional to the population and the annual stable
night light value. Power outages are sensitive to the fraction of hurricane night lights in
the annual stable night light (PNL), with a larger number of power outages related to PNL
values of less than 1. These results help us explain the underlying physical relationships in
the ML models, which adds confidence to the predictions.

One major challenge of this approach is that hurricanes are associated with increased
cloud cover. Clouds can entirely or partially block the night light from the surface [25,46].
Here, we only predicted power outages in cloud-free locations based on the cloud mask
defined in the original DMSP data. Only 18% of the available locations can be used for
training and validating the models because of our stringent 90% cloud-free threshold.
Therefore, future research needs to test the possibility of including areas partially covered
by clouds, assessing uncertainties and reliability. This could increase our ability to detect
a larger proportion of power outages in the future. Another challenge to extending our
current approach to global power outage estimation comes from the availability of high-
quality power outage observations for model training and validation. In the United
States, these observations typically originate from various sources, primarily private power
companies or third-party data portals such as PowerOutage.us, and they encompass
different spatial scales (or spatial aggregation units). Observations from other countries
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are more challenging to obtain, and the spatial scale can differ significantly from that in
the United States. Therefore, future efforts should focus on developing a more general
power outage estimation model that can be applied to various countries and spatial scales.
One additional limitation in using the night light satellite to monitor power outages is that
this technique cannot be applied to power outages with shorter durations (e.g., <12 h),
particularly if they occur during the daytime. Two hurricanes in our analysis exhibited
poor prediction performance in the cross-validation due to under-sampling resulting from
cloud blockage or short duration.

We chose the DMSP night light data for our feature variables because the utility power
outage reference data is limited to hurricanes before 2010, and the DMSP night light data
is the only available source for that period. The uncertainties in the DMSP, combined
with cloud cover and spatial rescaling uncertainties, could negatively impact our power
outage estimation model. The VIIRS DNB data are an excellent candidate for new data,
having been available since 2013. VIIRS DNB provides higher-quality data to monitor
power outages caused by hurricanes and other disasters [28]. The latest data can be used
to train more advanced ML models using additional hurricane cases. Larger and more
reliable training data will likely enhance the model’s reliability, stability, and potential
for generalization. In this study, we have tested different single-step and hybrid models
using eleven potential predictors. More ML algorithms, such as the ensemble prediction
approach like Bayesian model averaging (BMA), could be tested in future work to improve
model performance. A more extensive set of features, such as land use, elevation, and soil
characteristics, can be included in the model because those local physical characteristics
can influence the probability of power outages [12,47].

5. Conclusions

To our knowledge, this is the first study to systematically evaluate the feasibility of
using satellite data and ML approaches to reconstruct historical hurricane power outages
based on a series of hurricanes. The findings provide a foundation for developing more
generic power outage reconstruction models that cover a broader geographic area without
requiring detailed information about power grid infrastructure. Those models help provide
a more comprehensive dataset on the impacts of power outages from hurricanes or other
natural hazards. The reconstructed dataset will provide a solid foundation for developing
operational, data-driven power outage prediction models and understanding historical
changes in hurricane hazard impacts. They provide essential support for global disaster
mitigation and response efforts.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390 /1517142347 /s1, Figure S1: a. the number/fraction of power
grids with (blue) and without (yellow) power outages (>1/<1) from all cloud-free power grids;
b. the number/fraction of cloud-free power grids with power outages in 6 different hurricanes;
Figure 52: Model performance for individual hurricanes, Danny (a, b, c) and Dennis (d, e, f). The
model errors (Observation — Prediction) are calculated for the summed power outages in each hurri-
cane and mapped in the study area (Figures a and d). Maps are also created for the summed power
outages in each hurricane (b & e), and scatter plot between the observed and predicted summed
power outages (c & f); Figure S3: Model performance for individual hurricanes, Georges (a, b, ¢) and
Opal (d, e, f). The model errors (Observation — Prediction) are calculated for the summed power
outages in each hurricane and mapped in the study area (Figures a and d). Maps are also created
for the summed power outages in each hurricane (b & e), and scatter plot between the observed
and predicted summed power outages (c & f); Figure S4: Relationships between each feature and
the SHAP value for power outages. Table S1: Metrics of out-of-sample prediction performance for


https://www.mdpi.com/article/10.3390/rs17142347/s1

Remote Sens. 2025, 17, 2347 150f17

three single-step regression models. Table S2: Metrics of out-of-sample prediction performance for
12 hybrid models. Table S3: Introduction of different R packages used in this study.
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