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Abstract: The growing global energy demand and the pursuit of sustainability highlight
the transformative potential of artificial intelligence (AI) and machine learning (ML) in
energy systems. This thematic review explores their applications in energy generation,
transmission, and consumption, emphasizing their role in optimizing renewable integration,
enhancing operational efficiency, and enabling data-driven decision-making. By employing
a thematic approach, this study categorizes and analyzes key challenges and opportunities,
including economic considerations, technological advancements, and social implications.
While AI/ML technologies offer significant benefits, their adoption in developing nations
faces challenges, such as high upfront costs, skill shortages, and infrastructure limitations.
Addressing these barriers through capacity building, international collaboration, and
adaptive policies is critical to realizing the equitable and sustainable integration of AI/ML
in energy systems.

Keywords: artificial intelligence (Al); machine learning (ML); energy systems; renewable
energy integration; sustainable energy policies; developing nations; energy transition

1. Introduction

The global energy landscape is undergoing a significant transformation as nations
confront growing energy demands, escalating environmental concerns, and the imperative
for sustainable development. Challenges, such as climate change, resource depletion, and
disparities in energy access, persist as critical barriers to achieving energy security and
sustainability goals [1]. To address these issues, a global shift towards renewable energy
sources has been initiated. However, this transition introduces complexities, including
the intermittent nature of renewables and the need for intelligent management of increas-
ingly dynamic energy systems. Recent advancements in artificial intelligence (Al) and
machine learning (ML) have positioned these technologies as transformative tools, capable
of enhancing the efficiency, reliability, and sustainability of energy systems [2,3].

Developing nations, which grapple with energy poverty, grid inefficiencies, and
uneven access to reliable power, hold significant potential for benefiting from AI/ML inte-
gration. Despite being rich in renewable energy resources, these nations face formidable
barriers, such as outdated infrastructure, limited technical expertise, and financial con-
straints [4,5]. Al and ML offer promising solutions to these challenges, providing capabili-
ties for predictive analytics, real-time optimization, and seamless integration of renewable
energy systems. This potential underscores the need for sustainable energy policies that
leverage AI/ML technologies to address the unique energy needs of developing regions,
foster economic development, and promote equitable access to energy [6].

The motivation for this research stems from the urgent need to explore innovative
solutions for sustainable energy systems in developing nations, where the intersection of
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economic constraints and technological opportunities creates a fertile ground for transfor-
mative change. The application of Al and ML represents a paradigm shift in addressing
these challenges. This thematic review aims to provide a comprehensive understanding
of how Al and ML technologies are being applied to develop and implement sustainable
energy policies tailored to the needs of developing nations [6].

The primary objective of this review is to analyze the transformative role of Al and
ML in sustainable energy systems, with a particular focus on their applications in energy
generation, transmission, and consumption. Specifically, this study highlights the potential
of these technologies to integrate renewable resources, enhance energy efficiency, and
provide innovative solutions to energy access challenges. The unique contributions of this
review include:

e Categorizing and synthesizing key challenges and opportunities associated with
AI/ML in energy systems, particularly in the context of developing nations.

e Offering insights into the technological, economic, and social implications of
AI/ML integration.

e  Proposing actionable strategies for policymakers, researchers, and industry leaders to
scale the adoption of these technologies.

To achieve these goals, this review adopts a thematic approach, synthesizing evidence
from the academic literature, case studies, and practical examples [7]. This approach
facilitates an in-depth analysis of AI/ML applications, highlighting their potential to
transform energy systems in regions with varying levels of technological maturity. By
focusing on the unique challenges faced by developing nations, this review provides
a nuanced perspective on the barriers to AI/ML adoption and identifies strategies to
overcome them. The insights presented in this review aim to guide policymakers and
stakeholders in leveraging AI/ML technologies to build resilient, adaptive, and sustainable
energy systems. In doing so, this study contributes to the broader discourse on sustainable
development and energy equity, offering a roadmap for integrating AI/ML into the energy
policies of developing nations.

2. Review of Previous Work

This section critically examines the literature on sustainable energy planning, artificial
intelligence (Al) applications, and energy transition strategies. The reviewed studies
provide insights into the integration of renewable energy technologies, the role of Al in
achieving sustainable development goals (SDGs), and region-specific energy planning [8].
This analysis identifies significant contributions from key works while highlighting the
gaps and challenges that remain in achieving long-term sustainability objectives.

2.1. Artificial Intelligence and Sustainability

Artificial intelligence has emerged as a powerful tool for advancing sustainability
across diverse sectors. Abdeldjalil et al. [9] and Kar et al. [10] provide systematic reviews
emphasizing Al’s capacity to enhance decision-making, optimize resource allocation, and
improve efficiency in various domains. These studies highlight Al's potential in addressing
global challenges, including climate change and resource scarcity. Nguyen and Patel [11]
further explore Al's adaptability, particularly during the COVID-19 pandemic, where it
played a critical role in modeling scenarios, predicting outcomes, and managing disruptions.
However, the literature also emphasizes critical challenges, such as ethical concerns, un-
equal access to Al technologies, and the risk of exacerbating inequalities. Addressing these
issues requires a balanced approach that ensures inclusivity and fairness in AI deployment.

Zhang (2024) [12] examine Al applications within the construction industry, providing
a focused analysis of how Al aligns with SDGs. Their findings reveal Al’s capability to
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reduce waste, enhance energy efficiency, and support sustainable urban development.
Similarly, Massimo et al. [13] extend the analysis to demonstrate Al’s role in transforming
industrial practices, highlighting its potential to streamline processes and improve sustain-
ability outcomes. These studies collectively underline the importance of integrating Al
into policy frameworks to maximize its impact. Despite these advancements, the litera-
ture underscores the need for robust governance structures to mitigate risks and promote
equitable Al adoption globally.

2.2. Regional Energy Transition Pathways

The transition to 100% renewable energy systems has garnered significant attention
in both policy and academic discourse. Bogdanov et al. [14] present a comprehensive
pathway for Japan’s energy transition, offering a detailed analysis of technical feasibility,
cost implications, and environmental benefits. Their work demonstrates that achieving a
fully renewable system by 2050 is not only possible, but also economically advantageous.
The Institute for Sustainable Energy Policies [15] builds on this foundation, focusing on
Tokyo’s metropolitan area and incorporating green recovery measures to address socio-
economic challenges. Both studies highlight the necessity of robust policy support, public
engagement, and international collaboration to achieve such ambitious goals.

In Europe, Crespo del Granado et al. [16] investigated energy transition pathways
emphasizing the degree of regional cooperation and decentralization. Their findings under-
score the importance of cohesive policies that harmonize national and regional objectives
to overcome systemic inertia. Connolly et al. [17] contribute by providing a quantitative
comparison of electricity, heating, and cooling sectors, demonstrating the need for inte-
grated solutions to achieve decarbonization. These works collectively emphasize that,
while technological innovation is critical, effective governance and stakeholder alignment
are equally essential for successful energy transitions.

2.3. Case Studies: Galapagos Islands and Latin America

Localized studies on energy transition offer valuable lessons for implementing re-
newable energy solutions in unique socio-economic and environmental contexts. Clavijo
Cevallos et al. [18] and Eras-Almeida et al. [19] focus on the Galapagos Islands, demon-
strating the technical and economic feasibility of hybrid renewable energy systems. Their
studies underscore the importance of addressing regional energy needs while preserving
biodiversity and cultural heritage. Similarly, Icaza et al. [20] extend this focus to Ecuadorian
heritage cities, showcasing the potential of systematic long-term planning to achieve 100%
renewable energy targets by 2050. These localized examples highlight the need for tailored
approaches that integrate community-specific challenges and opportunities.

Latin America’s broader energy transition landscape is explored by Icaza-Alvarez
et al. [21], who emphasize smart energy planning as a critical tool for decarbonization
by 2050. Their findings reveal the significance of addressing political and technological
challenges to ensure successful implementation. UN ECLAC and GET.transform [22]
further complement these insights by outlining pathways for a just energy transition in the
region, emphasizing equity and inclusion in planning processes. Together, these studies
demonstrate the potential of regionally tailored strategies to bridge the gaps in energy
access, reduce emissions, and foster sustainable development.

2.4. Broader Implications and Challenges

While significant progress has been made in the energy transition research, several
challenges persist. The reviewed studies consistently highlight barriers, such as financial
constraints, technological feasibility, and socio-political resistance. For example, the imple-
mentation of Al-driven solutions, as discussed by Abdeldjalil et al. [9] and Nguyen and
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Patel [11], often faces resistance due to ethical concerns and limited infrastructure in de-
veloping regions. Similarly, regional energy transition studies, such as those by Bogdanov
et al. [14] and Icaza-Alvarez et al. [21], reveal the critical need for robust policy frameworks
and stakeholder alignment.

Moreover, the literature identifies the need for integrated approaches that combine
technological innovation with inclusive policymaking and community engagement. The
case studies from the Galapagos Islands and Latin America highlight the importance of
localized planning to address unique challenges while leveraging regional strengths [23,24].
However, there remains a significant gap in understanding how to effectively scale local-
ized solutions to meet global sustainability goals. Achieving these goals requires enhanced
international cooperation, improved knowledge sharing, and the development of frame-
works that integrate diverse disciplinary perspectives. This review study aims to contribute
by addressing the gaps in interdisciplinary understanding, exploring strategies to foster
equitable technological access, and analyzing socio-political barriers that hinder a just
energy transition. Future research must further build on these insights to advance holistic
and inclusive energy solutions globally.

3. Methodology

This study employed a thematic review methodology to systematically investigate the
applications of artificial intelligence (AI) and machine learning (ML) in sustainable energy
policies, particularly in the context of developing nations. This approach allows for the
identification and synthesis of key themes and patterns across diverse literature, offering
a structured understanding of the multifaceted role AI/ML plays in addressing critical
energy challenges [7,25]. To enhance transparency and methodological rigor, this study
incorporated relevant principles from the PRISMA framework [26], ensuring a systematic
and comprehensive review process.

3.1. Literature Search Strategy

The literature search was conducted across multiple databases, including Scopus,
Web of Science, IEEE Xplore, SpringerLink, and Google Scholar, ensuring comprehensive
coverage of peer-reviewed research. Search terms were iteratively developed, focusing on

combinations of keywords, such as “artificial intelligence”, “machine learning”, “sustain-
able energy”, and “developing nations”.

3.2. Inclusion and Exclusion Criteria
To maintain focus and rigor, the following criteria guided the selection of studies:
(@) Inclusion Criteria:

Peer-reviewed journal articles, conference proceedings, and book chapters.
Publications from 2010 to 2025 to capture contemporary developments.
Studies explicitly addressing AI/ML applications in energy systems or policies.

Focus on developing nations or comparative analyses involving these regions.
(b) Exclusion Criteria:

e  Non-peer-reviewed materials, such as editorials, opinions, and commentaries.
e  Studies unrelated to energy systems or AI/ML applications.

3.3. Literature Selection Process

The selection process involved multiple steps, ensuring high-quality studies relevant
to the research objectives:

1.  Database Search: An initial search yielded 301 articles.
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2. Duplicate Removal: After removing duplicates, 183 unique articles remained.

3.  Title and Abstract Screening: A preliminary review identified 63 articles meeting the
inclusion criteria.

4. Full-Text Review: Comprehensive evaluation of these articles resulted in 51 studies
selected for quality assessment.

5. Quality Assessment: Using established criteria [25], studies were rated for relevance,
rigor, and contribution. Only medium- and high-quality studies (42 in total) were
included in the thematic analysis [27].

This rigorous process ensured that the final set of studies provided reliable and com-
prehensive insights into AI/ML applications in sustainable energy policies. By maintaining
a systematic and transparent selection approach, this methodology minimized bias and
ensured the inclusion of diverse perspectives. This comprehensive approach not only high-
lighted the breadth of the existing applications, but also revealed the gaps and opportunities
for future research and policy innovation.

3.4. Thematic Analysis

The thematic analysis followed an inductive-deductive approach, allowing themes to
emerge naturally from the data while aligning with this study’s objectives [27]. A coding
framework was iteratively developed and refined through a systematic engagement with
the literature. This dual approach ensured a balanced integration of emergent insights and
pre-existing knowledge, enhancing this study’s relevance and rigor. The iterative process
also facilitated the identification of nuanced patterns and relationships, providing a robust
foundation for thematic categorization. Key themes identified are:

1.  Energy Generation: Optimization of renewable energy production through AI/ML, en-
hancing energy forecasting and integration of renewables, like solar and wind [28,29].

2. Energy Transmission and Distribution: Al-enabled advancements in smart grids,
improving reliability and operational efficiency [30,31].

3.  Energy Consumption and Demand Management: Integration of AI/ML with
IoT to improve energy efficiency and reduce wastage in residential and industrial
sectors [32,33].

4. Economic Implications: Financial impacts and economic benefits, including cost
savings and job creation, particularly in developing nations [34,35].

5. Policy Development: Role of Al in formulating and evaluating sustainable energy
policies, enabling data-driven insights and real-time policy adjustments [36].

The themes were validated through iterative analysis and cross-referencing with sec-
ondary sources, providing a robust foundation for understanding the diverse applications
of AI/ML in sustainable energy policies.

3.5. Methodological Flowchart

Figure 1 presents the methodological flowchart, illustrating the thematic review pro-
cess from the database search to the synthesis of themes. This visual representation clarifies
the structured and rigorous approach employed in this study. This thematic review method-
ology ensured a systematic, comprehensive, and transparent investigation of AI/ML appli-
cations in sustainable energy systems. The findings underscore the transformative potential
of AI/ML in optimizing energy systems, driving economic growth, and supporting sus-
tainable energy transitions in developing nations. This robust methodological foundation
provides critical insights for decision-makers aiming to integrate AI/ML into energy poli-
cies effectively. Moreover, it highlights the importance of tailoring AI/ML solutions to
address region-specific challenges and opportunities in developing contexts. By bridging
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technological advancements with policy frameworks, this study paves the way for more
inclusive and impactful energy strategies.

1. Literature Search

Initial search yielding 301 articles

2. Duplicate Removal

183 unique articles remained

3. Title and Abstract Screening

63 articles met inclusion criteria

4. Full-Text Review

51 articles selected for review

5. Quality Assessment

51 articles assessed for quality

6. Thematic Analysis

43 articles finalized for synthesis and
analysis

Figure 1. Methodological flowchart.
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4. Transformative AI and ML Applications Across the Energy Spectrum

Artificial intelligence (AI) and machine learning (ML) are revolutionizing energy
systems, enhancing efficiency, reliability, and sustainability across the entire energy spec-
trum. From optimizing renewable energy generation to improving energy transmission,
distribution, and consumption management, these technologies are reshaping global en-
ergy landscapes. Their implementation in developed and developing nations alike has
demonstrated significant cost savings, improved grid stability, and more sustainable en-
ergy practices. By leveraging predictive analytics, optimization algorithms, and real-time
decision-making capabilities, AI and ML are key enablers in the transition to smarter,
resilient, and sustainable energy systems. Table 1 illustrates key implementations of these
technologies across various domains, countries, and their measurable impacts.

Table 1. Al and ML applications in sustainable energy in developing nations.

Domain Country AI/ML Application Impact Reference
Renewable India, Wind turbine Annual savings of USD 10M (India) and USD [28,29]
Energy South Africa optimization 5M (South Africa) !
Hybrid energy Near 100% renewable reliance in the
Solar Energy  Ecuador system integration Galapagos Islands [19]
Energy Brazil, Predictive grid Saved USD 2M annually (Brazil) and [29,37]
Transmission ~ Kenya maintenance improved grid efficiency by USD 3M (Kenya) ’
Ener Mexico Al-powered smart 15% reduction in energy consumption
&Y : meters and (Mexico); USD 1.2M savings in pilot [21,32]
Consumption = Malaysia .
demand-response programs (Malaysia)

4.1. Energy Generation

Al and ML are transforming energy generation by enabling accurate forecasting,
dynamic optimization, and efficient management of resources across renewable and non-
renewable domains. In renewable energy, machine learning algorithms enhance wind
and solar power generation by predicting weather patterns, solar radiation, and wind
speeds with high accuracy. For example, Al models optimize wind turbine placement
and operations, reducing curtailments and increasing efficiency, as demonstrated in India
and South Africa, where such interventions resulted in annual savings of USD 10 million
and USD 5 million, respectively [28,29,38]. These examples highlight the capacity of Al
technologies to address critical efficiency challenges in renewable energy systems, even in
regions with resource constraints.

Similarly, solar energy systems benefit from Al applications, like adaptive solar panel
tracking systems and real-time weather data integration. These advancements have im-
proved solar farm outputs by up to 20%, significantly boosting renewable energy contri-
butions [9]. Al has also enabled advancements in hydropower, where predictive models
balance energy generation with ecological needs by optimizing reservoir management
and ensuring sustainability. Notably, in Ecuador’s Galapagos Islands, Al-enabled hybrid
systems integrate solar, wind, and bioenergy to achieve near 100% renewable reliance,
minimizing the reliance on fossil fuels and reducing greenhouse gas emissions [19,39].

In addition to renewables, Al and ML improve the operational efficiency of con-
ventional energy systems by optimizing fuel use and reducing emissions. For instance,
hybrid systems combining renewable and non-renewable sources leverage Al algorithms
to dynamically balance energy outputs, aligning production with fluctuating demand.
These capabilities are particularly valuable in developing regions, where efficient resource
allocation is critical for addressing energy access challenges and ensuring sustainability.
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Such advancements underscore the versatility of AI/ML technologies in reshaping global
energy generation landscapes.

4.2. Energy Transmission and Distribution

Al and ML are revolutionizing energy transmission and distribution systems by en-
hancing grid stability, reliability, and operational efficiency. Predictive maintenance systems
powered by Al-driven analytics detect potential faults in grid networks, enabling utilities
to take pre-emptive measures. For instance, real-time monitoring tools identify stress
points and predict equipment failures, significantly reducing downtime and repair costs.
Brazil’s adoption of Al-powered grid management saved approximately USD 2 million an-
nually through predictive maintenance, while Kenya’s Al-driven load balancing improved
operational efficiency by USD 3 million per year [29,37].

Reinforcement learning algorithms further optimize energy flow during peak loads,
reducing transmission losses and enhancing overall grid performance. A notable example
from Japan demonstrates how Al-enabled systems reduced transmission losses by 12%,
improving grid efficiency under fluctuating demand conditions [14,39]. These innovations
ensure the operational resilience of modern grids, enabling them to accommodate increasing
shares of renewable energy while minimizing disruptions. Moreover, Al technologies
support the integration of decentralized energy resources, such as microgrids, which
expand energy access to underserved and remote areas.

The integration of Al into transmission and distribution systems fosters the develop-
ment of smarter, more resilient grids capable of meeting the demands of a rapidly changing
energy landscape. By reducing costs and improving operational efficiencies, these sys-
tems exemplify the scalability and transformative potential of Al technologies in energy
networks. Success stories from developing nations highlight the feasibility of adopting
Al-driven solutions to enhance grid reliability and energy accessibility on a global scale.

4.3. Energy Consumption and Demand Management

Al and ML technologies are driving transformative changes in energy consumption
and demand management by empowering utilities and consumers to optimize usage pat-
terns. Smart grids, combining IoT devices with ML algorithms, enable real-time monitoring,
predictive load balancing, and efficient energy distribution [40]. In Mexico, the implementa-
tion of Al-powered smart meters led to a 15% reduction in energy consumption, illustrating
the effectiveness of these systems in promoting energy efficiency [21]. By integrating Al-
driven tools, energy providers can predict usage trends and adjust supply schedules to
prevent inefficiencies and outages.

Al-driven demand-response systems analyze usage trends to optimize schedules for
energy-intensive activities, improving grid reliability and enabling consumers to make
informed energy decisions. In Malaysia, IoT-enabled smart homes with Al for demand-
response reduced household energy bills by 15%, amounting to USD 1.2 million in savings
during pilot programs [32]. Personalized Al tools further encourage behavioral changes by
providing tailored recommendations, helping users adopt energy-saving habits [11]. These
advancements align consumer behavior with broader sustainability goals, showcasing the
societal benefits of Al-driven energy innovations.

By addressing rising energy demands through Al-empowered solutions, utilities
achieve substantial energy savings and reduce operational costs. These innovations not
only promote environmental sustainability but also improve energy access and afford-
ability, particularly in developing nations. The growing adoption of Al technologies in
demand management exemplifies their potential to drive large-scale energy transitions
while enhancing consumer engagement.
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4.4. Integrated Case Studies

Case Study 1: Kenya’s Solar Energy Optimization: A pilot project in Kenya high-
lighted Al's/ML’s transformative potential in renewable energy systems. By leveraging
machine learning models to predict solar power generation, the project aligned energy
production with demand schedules, significantly reducing shortages and enhancing grid
reliability. This approach was particularly impactful in rural and underserved areas, where
infrastructure gaps posed significant challenges. The scalability of Al-driven solar optimiza-
tion underscores its value in achieving sustainable energy outcomes in diverse regional
contexts [10].

Case Study 2: The Galapagos Islands’ Renewable Energy Transformation: In the
Galapagos Islands, Al-optimized hybrid energy systems integrate solar, wind, and bioen-
ergy technologies to achieve near 100% renewable reliance. This system reduced greenhouse
gas emissions and minimized diesel dependence, serving as a model for other island com-
munities aiming to transition to renewable energy systems. These advancements illustrate
Al's/ML’s capacity to drive sustainable energy transitions in ecologically sensitive regions.
The success of this project highlights the importance of integrating innovative technologies
into conservation-focused energy strategies [19,20,41].

In summary, the integration of Al and ML technologies across the energy spectrum
presents unprecedented opportunities to enhance efficiency, sustainability, and resilience.
From optimizing renewable energy generation to improving transmission, distribution,
and consumption management, these technologies are transforming energy landscapes
globally. As demonstrated by examples from Kenya, the Galapagos Islands, and other re-
gions, Al and ML bridge critical infrastructure gaps, accelerate renewable energy adoption,
and empower stakeholders to achieve sustainable energy outcomes. Their widespread
implementation holds immense promise for advancing energy equity and environmental
sustainability worldwide.

5. Economic and Policy Implications of AI and ML

The application of artificial intelligence (Al) and machine learning (ML) in energy
systems has emerged as a critical driver of innovation. These technologies offer signifi-
cant economic benefits, including improved energy efficiency, optimized integration of
renewables, and more effective demand-side management. Such advancements have the
potential to lower operational costs, enhance system reliability, and facilitate a transition to
more sustainable energy systems.

However, the adoption of AI/ML in developing countries poses unique economic
and policy challenges. Limited access to funding, infrastructure deficits, and gaps in
technical expertise often hinder the realization of these benefits. Furthermore, disparities in
digital readiness across regions necessitate tailored policy approaches that consider local
conditions, resource availability, and workforce readiness.

This section explores these economic and policy implications, framing the discussion
within the context of cost-benefit analysis, financial constraints, and technology assessment.

5.1. Economic Considerations

Economic considerations play a pivotal role in the adoption and scaling of AI/ML
technologies within energy systems, particularly in developing nations. These fac-
tors influence decisions around technology investment, workforce development, and
long-term sustainability.
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5.1.1. Cost-Benefit Analysis of AI/ML Deployment in Energy Systems

The implementation of Al and ML in energy systems provides the potential for
significant economic benefits, including cost savings, improved operational efficiency, and
enhanced reliability of energy infrastructure. A key factor in the widespread adoption
of AI/ML technologies is the cost-benefit analysis, which involves comparing the initial
investment costs with the long-term financial gains. For instance, Al-driven predictive
maintenance systems in power grids have been shown to reduce operational costs by
minimizing downtime and preventing equipment failures [29]. Similarly, Al-enhanced
energy forecasting can optimize the integration of renewable energy into grids, reducing
curtailment costs and improving grid stability.

In developing countries, the economic advantages of AI/ML are substantial but must
be carefully weighed against upfront costs. In India, the deployment of Al for wind
and solar forecasting has reportedly reduced curtailment losses, saving approximately
USD 10 million annually [29]. However, the high initial investment in Al technologies,
coupled with the need for skilled labor and robust infrastructure, poses challenges. Fur-
thermore, the scalability of AI/ML solutions depends on the ability of countries to manage
the financial burden of technology adoption while maintaining cost-effectiveness in energy
generation, distribution, and consumption [28]. Balancing these upfront costs with the
long-term benefits is critical to ensuring the sustainable adoption of AI/ML in developing
nations’ energy systems. Al also fosters economic inclusivity by reducing energy access
costs and supporting entrepreneurship. By empowering small businesses in underprivi-
leged communities, Al can help bridge economic disparities, promoting equitable growth
and sustainable development. For example, Al-facilitated energy access in rural areas has
enhanced socio-economic outcomes, such as improved education and healthcare, further
incentivizing technological adoption.

5.1.2. Addressing Financial and Workforce Challenges in Developing Nations

While the economic benefits of AI/ML in energy systems are clear, the financial and
workforce challenges in developing nations remain a significant barrier to widespread
adoption. Many developing countries face budget constraints that make it difficult to
invest in AI/ML technologies, which often require substantial upfront capital for the
research, development, and infrastructure [37]. In addition, these technologies require a
highly skilled workforce, which may not be readily available in low- and middle-income
countries. Training programs and capacity-building initiatives are crucial for overcoming
this challenge, ensuring that local communities can effectively manage and maintain Al-
powered energy systems. Addressing these issues requires innovative financial strategies
and tailored workforce development initiatives.

AI/ML technologies are reshaping energy economics by reducing operational costs,
driving investments, and addressing energy inequalities [42]. Predictive analytics, for
instance, have cut costs in solar and wind energy production by up to 20%, enabling
broader adoption in resource-constrained settings [43]. However, despite these economic
efficiencies, financial barriers persist. High upfront costs for infrastructure and limited
access to international funding remain critical challenges [2,44]. For example, countries like
South Africa and Kenya face challenges in scaling Al systems due to financial constraints
and workforce shortages. Moreover, addressing the financial challenges in these countries
involves tapping into international funding sources, public—private partnerships, and
collaborative initiatives to share the financial burden. For example, global climate funds,
development banks, and international organizations can provide financial support for the
deployment of AI/ML systems in energy sectors, thus helping to bridge the financing

gap [31].
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Workforce challenges are another critical barrier. While automation raises concerns
about job displacement, the integration of Al in renewable energy has created opportunities
in data analysis, algorithm development, and system maintenance, offsetting potential
job losses [4]. However, a lack of skilled professionals in developing countries limits the
full-scale deployment of these technologies. Training programs and capacity-building ini-
tiatives are crucial to empowering local communities to manage and maintain Al-powered
energy systems effectively [4,23,24]. Table 2 provides a detailed overview of the economic
challenges faced by developing nations in deploying AI/ML technologies in energy sys-
tems. These initiatives are crucial to overcoming barriers and unlocking the full potential
of AI/ML for energy development in these regions.

Table 2. Economic challenges of AI/ML in developing nations’ energy systems.

Country Economic Considerations

India High upfront costs in technology and infrastructure; workforce development needed [29]
South Africa Financial challenges in scaling Al across regions; investment in skilled workforce [28]
Brazil Upfront capital investment required for Al technologies and sensors [45]

Kenya Financial constraints in adopting Al-driven grid systems [37]

Bangladesh Financial and workforce challenges; need for capacity building [31]

Malaysia Need for training local technicians and developing infrastructure [32]

Chile High initial costs; challenges with scaling Al solutions to rural areas [33]

Nigeria Infrastructure challenges; reliance on international funding and partnerships [37]

5.2. Policy Development and Implementation

Policy frameworks are critical to fostering the integration of AI/ML in energy systems,
balancing innovation with equitable access and sustainability. AI/ML technologies are
revolutionizing energy policy by enabling data-driven decision-making and enhancing
policy evaluation mechanisms. Natural language processing (NLP) tools, for instance,
analyze policy documents to align them with climate goals, identifying execution gaps and
enhancing transparency [7,46]. Such tools have been instrumental in Kenya and Bangladesh,
where Al-driven systems have optimized energy consumption in rural areas, supported
microgrid development, and improved resource allocation [37,47].

Al also facilitates scenario planning and real-time monitoring, enabling adaptive poli-
cymaking that responds to dynamic challenges. Reinforcement learning models optimize
energy distribution under fluctuating conditions, ensuring policies remain robust and
effective [48]. Costa Rica’s use of Al-enabled simulations for energy planning exemplifies
how such tools can identify optimal pathways for renewable energy transitions [1,39,49].
Nevertheless, these advancements require robust regulatory frameworks to address ethical
concerns such as data privacy, equitable access, and technology deployment. Policymakers
must engage diverse stakeholders to ensure Al-driven policies reflect societal needs and
foster trust. The dynamic nature of Al-driven systems demands policies that are both
data-informed and adaptive.

5.2.1. Data-Driven Policymaking for Energy Equity and Access

Al and ML offer governments the ability to make data-driven decisions that can
improve energy access and equity, particularly in developing countries where energy
inequality remains a major challenge [50]. Through Al, policymakers can analyze vast
amounts of data related to energy demand, resource availability, and socioeconomic factors
to identify energy gaps and devise targeted policies [33]. By utilizing machine learning
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algorithms, policymakers can design more accurate energy models, forecast future energy
demands, and plan energy infrastructure accordingly, ensuring that energy resources are
distributed equitably across different regions and communities.

In countries like Kenya and Bangladesh, Al-driven tools have been used to optimize
energy consumption in rural areas, enabling better resource allocation and supporting the
development of microgrids. Such policies, informed by the real-time data, are essential to
addressing energy poverty and fostering inclusivity in energy access [37]. Furthermore, Al
can support the formulation of energy policies that align with sustainability goals, as it can
assess the environmental and economic impact of different energy technologies, ensuring
that policy decisions are backed by robust data.

5.2.2. Monitoring, Evaluation, and Adaptive Policies Using Al

The integration of Al and ML in policymaking also facilitates continuous monitoring
and adaptive policy development. Traditional energy policies often face challenges in
terms of flexibility, as they can be slow to respond to changing circumstances, such as
shifts in energy demand, technological advances, or natural resource availability. Al
enables the dynamic monitoring of energy systems, allowing for the real-time evaluation
and adjustments to policy frameworks. Reinforcement learning models can optimize the
energy distribution process in response to fluctuating conditions, ensuring that policies are
continuously refined based on the actual performance data [31].

Furthermore, Al technologies can be used to evaluate the impact of energy policies on
sustainability and social equity. For example, by using machine learning models to track
energy consumption patterns and economic performance indicators, governments can
determine whether policies are effectively addressing energy challenges, such as reducing
emissions or improving energy access in underserved regions. In this context, Al acts as
both a tool for policy evaluation and a means of ensuring that policies evolve in response
to real-world outcomes [32].

The future of Al in energy policy development lies in its capacity to provide decision-
makers with precise, data-backed insights that facilitate better governance and more sus-
tainable energy management. As Al-driven solutions become more integrated into energy
systems, policymakers must ensure that the resulting frameworks are inclusive, transparent,
and adaptable to the rapidly changing landscape of global energy challenges.

5.3. Technology Assessment of AI/ML Applications in Energy Systems

The adoption of artificial intelligence (AI) and machine learning (ML) in energy
systems requires a thorough evaluation of technical, economic, and contextual feasibility.
A structured technology assessment can help ensure that these advanced solutions are
suited to the unique challenges and opportunities of developing countries. This section
conducts a technology assessment, incorporating a SWOT analysis to identify the key
factors influencing AI/ML deployment in energy systems.

5.3.1. Technical Feasibility

The technical feasibility of AI/ML solutions is influenced by several critical factors.
One such factor is algorithmic complexity. Advanced AI/ML techniques, such as rein-
forcement learning for grid optimization or convolutional neural networks for energy
demand forecasting, require substantial computational resources. These demands can be a
significant barrier for developing countries where digital infrastructure is still in its early
stages [28]. The limited availability of computing power can hinder the effective implemen-
tation of these techniques, which require a robust digital ecosystem to function optimally.

In addition, AI/ML models rely on large datasets for training and validation. How-
ever, in many developing nations, challenges related to data collection, quality, and storage
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arise due to underdeveloped digital ecosystems [44]. Without proper data infrastructure,
the training of AI/ML models becomes more difficult, which limits their effectiveness and
application in these regions. Moreover, many existing energy systems in developing coun-
tries are not compatible with modern digital technologies. To integrate AI/ML solutions
seamlessly, significant upgrades to legacy systems are often required, which can be costly
and time-consuming, further complicating their adoption [44].

5.3.2. SWOT Analysis

A SWOT analysis is a valuable tool for evaluating the feasibility of AI/ML applications
in developing countries. Table 3 below highlights the key factors influencing AI/ML
deployment in energy systems, as identified through this analysis.

Table 3. SWOT analysis of technology assessment.

Strengths Weaknesses Opportunities Threats
High potential for Dependence on Growing international Eatlh lgz{cﬁmieélifs
efficiency improvements  high-quality data collaborations & g

discriminatory outcomes)

Scalability for
large-scale applications

Global initiatives (e.g.,
IRENA) promoting Cybersecurity risks
sustainable practices

Complexity of integrating Al
with legacy systems

Improves energy
management systems

Data availability issues,
especially in
developing countries

Knowledge sharing
opportunities

Optimizes grid
operations and enhances
demand prediction

Delayed deployment in regions
with poor infrastructure

5.3.3. Implications for Policymakers

The technology assessment highlights several key policy recommendations for pro-
moting the effective use of AI/ML in energy systems. One important recommendation is
to begin with incremental implementation. By starting with simpler AI/ML applications,
such as demand forecasting, grid load balancing, or energy consumption optimization
in specific sectors (e.g., residential or industrial), countries can build local capacity and
demonstrate the value of these technologies in a manageable way [28]. These pilot projects
can help policymakers identify practical challenges and tailor their implementation strate-
gies accordingly, thus reducing resistance to change and allowing time for the necessary
infrastructure to be put in place.

Another critical recommendation is to invest in data infrastructure tailored to the
local context. Developing robust data ecosystems can enhance Al readiness by ensuring
that sufficient and high-quality data are available for training and validation of AI mod-
els [44]. This can be achieved through government-supported initiatives, public—private
partnerships, and international collaborations to improve data collection and management
in energy sectors.

Furthermore, fostering public—private partnerships can provide a mechanism for shar-
ing resources and expertise, facilitating the adoption of AI/ML technologies in developing
countries [28]. Such collaborations can leverage the technical expertise of private sector
firms while ensuring that the local context and needs of developing countries are met.

Finally, ensuring resilience and equity is crucial. Policymakers should establish cy-
bersecurity frameworks and ethical guidelines to protect Al systems from threats and
ensure that the benefits of Al are distributed equitably across society. Ethical consid-
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Energy
Benefits
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erations, such as preventing algorithmic bias and promoting transparency, should be
integrated into Al deployment to mitigate potential risks of discrimination or unfair out-
comes [51]. By addressing these considerations, policymakers can support the successful
deployment of AI/ML technologies in energy systems, maximizing their potential for
sustainable development.

5.4. A Dynamic Feedback-Based Energy Policy Framework

The evolving nature of global energy systems requires a dynamic approach to policy
development, where Al and ML are integral components of decision-making. Policies
must evolve continuously, driven by predictive analytics, scenario modeling, and real-time
feedback, ensuring they remain responsive to challenges like climate change, fluctuating
energy demands, and technological disruptions [52].

Al-enabled policy tools, such as digital twins and multi-objective optimization models,
empower policymakers to simulate various scenarios and forecast the impact of proposed
policies before implementation. This reduces risks, supports better resource allocation,
and enhances resilience in energy systems [53,54]. By incorporating a dynamic frame-
work, governments can respond swiftly to unforeseen changes while achieving long-term
sustainability and equity goals.

System dynamics models provide a valuable framework for analyzing the feedback
loops and complexities introduced by AI/ML in energy systems. These models illustrate
how Al-driven efficiency gains can create reinforcing loops, stimulating investments in
renewable technologies and generating socio-economic benefits. For instance, Al-enabled
rural electrification has improved education and healthcare outcomes, further incentivizing
technological adoption [55]. Figure 2 captures the interaction between Al efficiency, invest-
ment flows, and socio-economic development. At the same time, system dynamics models
emphasize the importance of recognizing delays and unintended consequences, such as
unequal benefit distribution and an over-reliance on automated systems. Integrating these
models into policymaking ensures a nuanced understanding of Al’s impacts, enabling
efficient and equitable applications aligned with long-term sustainability goals [52,56].

x Energy

Benefits

*

Rl AI/ML Adoption Rate B1

Policy
Adaptability

Energy
Equity &
Access

Figure 2. Dynamic feedback-based energy policy framework.



Energies 2025, 18, 2239

15 of 26

A Causal Loop Diagram (CLD)-based dynamic model, as shown in Figure 2, can fur-
ther aid policy development by visualizing interactions between key variables in feedback
loops [57]. These variables—such as AI/ML adoption, energy generation efficiency, renew-
able energy integration, policy adaptability, energy equity, and economic benefits—interact
in both reinforcing (positive) and balancing (negative) feedback loops, which are essential
for driving system-wide change [52].

For instance, a positive feedback loop may amplify desirable outcomes, like how
improved Al-driven forecasting enhances renewable energy adoption by increasing grid
reliability and reducing costs. Figure 2 shows how Al adoption leads to better forecasting,
thereby fostering further integration of Al into the system (Reinforcing Loop R1). This is
consistent with the dynamics discussed by [52], where reinforcing loops accelerate growth
and innovation within systems.

In contrast, negative feedback loops help stabilize the system, such as the need for
regulatory interventions to prevent the over-reliance on certain technologies or mitigate
inequality in access [53,56]. In Figure 2, the balancing loop (B1) highlights challenges
such as high initial costs, especially in resource-limited regions, which necessitate targeted
policy measures. As noted by [57], balancing loops are essential for maintaining system
equilibrium and ensuring that excessive growth or technological dependence is curtailed.

Key variables are:

e AI/ML Adoption Rate: Influenced by factors like investment, workforce readiness,
and incentives.

Energy Generation Efficiency: Enhanced through Al-driven optimization.

Renewable Energy Integration: Dependent on grid stability and technological readiness.
Policy Adaptability: Enabled by real-time analytics for continuous improvements.
Energy Equity and Access: Shaped by data-driven, inclusive policies.

Economic Benefits: Driven by efficiency gains and cost reductions.

By visualizing these feedback loops, policymakers can better anticipate system-wide
impacts, identify leverage points for intervention, and design adaptive policies that balance
innovation, equity, and long-term sustainability.

5.5. Interdisciplinary and Ethical Synergies

The intersection of Al, energy, and policy invites interdisciplinary collaboration to
address multifaceted challenges. Combining the qualitative research on socio-political
dynamics with quantitative methods, like econometric modeling, informs cost-effective
strategies and scalable solutions [48]. For example, hybrid studies integrating techno-
economic analyses with policy reviews have successfully guided renewable energy initia-
tives in Sub-Saharan Africa [2]. These approaches bridge theory and practice, fostering
evidence-based policymaking that balances innovation with inclusivity.

Moreover, interdisciplinary collaboration ensures that ethical AI frameworks prioritize
fairness, transparency, and cultural sensitivity. Ethical considerations in Al deployment are
paramount, particularly in energy systems, where decisions can disproportionately impact
marginalized communities. For example, fairness in Al algorithms must ensure equitable
access to energy resources and avoid reinforcing existing social inequalities [58]. Trans-
parency in Al processes, including clear documentation and open source models where
feasible, builds trust among stakeholders and encourages accountability [59]. These princi-
ples are critical in the energy sector, where ethical Al can address energy justice by ensuring
equitable distribution and avoiding biases that can harm underserved populations [51].

Engaging diverse perspectives enhances the design and implementation of policies
that address societal needs. Including stakeholders from various disciplines, such as social
scientists, ethicists, engineers, and policymakers, helps to develop Al systems that are
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culturally sensitive and aligned with local values [60]. For instance, integrating local
knowledge can improve the acceptance of Al-driven energy projects in indigenous and
rural communities, ensuring solutions are both effective and respectful of cultural traditions.
A lifecycle approach to Al ethics further ensures that ethical considerations are embedded
throughout the development and deployment stages, addressing issues like transparency,
fairness, and inclusivity [61]. Ethical Al frameworks also emphasize the importance of
avoiding algorithmic biases, which can result in discriminatory outcomes [62]. By adopting
fairness metrics and regular audits of Al systems, developers can mitigate the risk of
systemic biases that might otherwise exclude certain groups from the benefits of renewable
energy advancements.

Such interdisciplinary and inclusive approaches are essential for achieving sustainable
energy transitions that benefit all communities [49]. By embedding ethical principles into
Al systems, developers can ensure that these technologies enhance social equity and reduce
disparities. Ethical Al systems also foster long-term trust among stakeholders by promoting
transparency and accountability. This trust is crucial for the widespread adoption and
successful integration of Al-driven energy solutions. Additionally, incorporating ethical
frameworks strengthens the sustainability of energy systems, making them more resilient
and impactful [62,63].

6. Comparative Analysis with Developed Nations

The adoption of artificial intelligence (AI) and machine learning (ML) in the energy
sector exhibits notable differences between developed and developing nations. These
differences stem from variations in technological infrastructure, economic capacity, policy
frameworks, and societal needs. This section provides an in-depth comparative analysis,
highlighting the key technological, economic, and policy dimensions that distinguish
these regions.

6.1. Technological Advancements and Applications

Developed nations, with advanced infrastructure and robust research ecosystems, have
leveraged AI/ML to optimize energy systems comprehensively. For example, countries
like Germany and the United States employ Al-powered smart grids to manage fluctuating
renewable energy sources effectively, ensuring grid stability and reducing transmission
losses [33,40]. Similarly, Al-driven demand-response systems are prevalent in these nations,
enabling utilities to balance loads dynamically while fostering energy conservation in
residential and industrial sectors [29].

In contrast, developing nations, such as India, Kenya, and Bangladesh, focus on cost-
effective implementations of AI/ML technologies. These include predictive maintenance
for energy grids and Al-enhanced microgrid systems, which are more suited to their
resource-constrained environments [37]. While the technological capabilities in these
nations are expanding, the focus remains on addressing basic energy access challenges,
reducing costs, and ensuring reliability.

Despite these differences, there is significant potential for knowledge exchange be-
tween regions. For instance, the localized Al models used in developing nations to optimize
renewable energy in remote areas could inspire scalable solutions for rural regions in de-
veloped countries. Conversely, advanced smart grid technologies and high-capacity data
centers in developed nations could be adapted to enhance efficiency in urban centers of
developing countries.

Technological advancements in developed and developing nations reveal a comple-
mentary dynamic, where localized solutions and global innovations can mutually inform
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future strategies. The key lies in tailoring these technologies to address region-specific
energy challenges while fostering global collaboration.

6.2. Economic and Policy Dimensions

Economic factors play a pivotal role in shaping the adoption of AI/ML in the energy
sectors of developed and developing nations. Developed countries benefit from greater
financial resources, enabling large-scale investments in Al technologies, workforce training,
and policy support. For example, the European Union’s Green Deal provides substantial
funding for Al-driven energy projects, fostering innovation while meeting the sustainability
goals [28,64].

In developing nations, financial constraints often limit the scale of AI/ML deploy-
ments. However, international funding sources, such as the Green Climate Fund and
partnerships with global organizations, have facilitated notable advancements in coun-
tries like Brazil and South Africa [31]. Policy frameworks in these nations often prioritize
accessibility and cost-effectiveness, focusing on bridging the energy gap in underserved
communities while fostering gradual integration of AI/ML technologies.

From a policy perspective, developed nations emphasize long-term sustainability and
innovation. For instance, the United States has implemented tax incentives for companies
adopting Al in renewable energy systems [29]. On the other hand, developing nations are
adopting adaptive policies that align with their socio-economic realities, such as subsidiz-
ing Al-enabled renewable projects in rural areas to encourage adoption and community
engagement [37].

Economic and policy considerations underscore the necessity of tailored approaches
to AI/ML adoption in energy systems. By addressing financial disparities and fos-
tering inclusive policy development, nations can collectively advance towards global
energy sustainability.

Overall, this comparative analysis highlights the multifaceted role of AI/ML in energy
systems across diverse regional contexts. While developed nations lead in innovation and
large-scale deployment, developing nations are making strides through resourceful, local-
ized applications. Bridging the gap between these regions requires fostering international
collaboration, knowledge sharing, and equitable access to technology and funding. By
leveraging the unique strengths of each region, AI/ML can become a universal driver of
sustainable energy transformation.

7. Challenges and Barriers

While Al and ML hold transformative potential for sustainable energy policies, several
challenges and barriers impede their implementation. These challenges span technological
limitations, infrastructure inadequacies, regulatory gaps, and social acceptance issues, each
of which requires careful consideration to ensure equitable and effective policy deployment.
Addressing these barriers is crucial for harnessing the full potential of Al and ML in energy
systems and ensuring that these technologies contribute to global sustainability goals in a
fair and effective manner.

7.1. Technological and Infrastructure Barriers

The integration of Al and ML in energy systems is often hindered by poor data quality,
insufficient computational resources, and infrastructure constraints. High-quality, real-time
data are crucial for predictive modeling and decision-making; however, data availability is
often fragmented, inconsistent, or siloed, especially in developing regions [65]. The lack
of comprehensive datasets is a significant obstacle, as it restricts Al algorithms’ ability to
make accurate predictions regarding energy generation, consumption, and distribution.
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Additionally, data often come from diverse and incompatible sources, further complicating
efforts to establish a unified system for Al-driven energy management.

In addition to the data challenges, the computational resources required for training
advanced Al models—such as neural networks and reinforcement learning algorithms—are
substantial. These resources, including high-performance computing clusters and energy-
efficient processors, may not be accessible to all governments or institutions, especially in
resource-limited settings [3]. Even where such resources exist, they are often inefficiently
distributed, with a concentration of computational power in urban centers and research in-
stitutions, leaving rural areas and smaller energy utilities underserved. As a result, AI/ML
adoption remains skewed towards a few well-resourced areas, exacerbating inequality in
energy access and policy implementation.

Moreover, the existing energy grids often lack the digital infrastructure necessary to
implement Al-based solutions, such as advanced sensors, IoT devices, and edge computing
systems. Traditional energy grids are typically built for linear, predictable energy flow,
and their limited capacity to incorporate decentralized and variable renewable energy
sources requires a major overhaul to accommodate the complex requirements of Al systems.
In particular, integrating real-time data feeds into Al-powered solutions demands more
sophisticated grid infrastructure capable of high-speed data transmission and secure data
storage. These infrastructure upgrades may require considerable investments, which many
developing nations may not be able to afford without international support.

Addressing these technological and infrastructure challenges requires coordinated
efforts at multiple levels. Governments should prioritize investments in digital infrastruc-
ture, such as the installation of smart meters, IoT-enabled sensors, and data storage systems.
At the same time, standardized frameworks for data collection, sharing, and governance
should be developed to ensure that AI models have access to reliable, high-quality data
across different energy sectors. International collaboration and public—private partner-
ships will also be essential in overcoming infrastructure limitations, providing funding,
and facilitating technology transfer [66]. By building resilient, future-proof infrastructure
and fostering data interoperability, the barriers to AI/ML deployment can be mitigated,
enabling the equitable benefits of these technologies across regions.

7.2. Regulatory and Social Challenges

The adoption of Al and ML in energy policy is also constrained by the absence of
comprehensive regulatory frameworks and the need to address ethical considerations.
Many jurisdictions, particularly in developing nations, lack clear guidelines for using Al in
decision-making processes, creating uncertainties about accountability, data privacy, and
transparency [67]. Without well-defined regulatory structures, governments and energy
providers may hesitate to implement AI/ML solutions for fear of legal challenges or compli-
ance issues. This regulatory vacuum can delay the deployment of innovative technologies
and limit their scalability, especially in regions where regulatory clarity is required for
cross-border energy transactions or the implementation of large-scale energy projects.

Moreover, the application of Al in energy policymaking raises a host of ethical chal-
lenges. One major concern is the potential for biases in Al algorithms, which could lead to
unfair outcomes, such as inequitable access to energy or the exacerbation of existing social
inequalities [62]. For instance, algorithms trained on historical data might unintentionally
favor certain geographic areas or demographic groups, leaving marginalized communities
at a disadvantage. Additionally, Al systems are sometimes seen as “black boxes” with
decision-making processes that are not easily interpretable. This opacity raises concerns
about accountability and the ability of affected populations to challenge decisions made by
Al systems.
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Public resistance to Al technologies further complicates the regulatory landscape.
Concerns about privacy, surveillance, and job displacement are common, particularly
in regions where the workforce may be adversely impacted by automation [62]. For
example, Al-based energy management systems may reduce the need for human labor in
certain energy sectors, prompting fears about unemployment and the social implications of
widespread automation. This resistance is especially pronounced in developing countries,
where technology adoption often encounters cultural and societal barriers. A lack of
public understanding of Al’s potential benefits also leads to skepticism about its role in
energy policy.

Overcoming these regulatory and social challenges requires a multi-faceted approach.
Governments must establish robust regulatory frameworks that prioritize transparency,
fairness, and accountability in the use of AI/ML technologies. These frameworks should
address key concerns, including data privacy, algorithmic transparency, and the equitable
distribution of benefits. In addition, ethical Al development must be encouraged through
collaboration between governments, private companies, and civil society organizations.
Public engagement campaigns and educational initiatives are essential to foster under-
standing and trust in Al-driven energy solutions, emphasizing their potential to improve
quality of life and support sustainable development.

Furthermore, incorporating a stakeholder-driven approach to Al deployment can help
mitigate social resistance. Engaging local communities in the planning and implementation
of Al technologies can reduce fears and ensure that the needs and values of affected
populations are taken into account. Policymakers should also consider providing training
and reskilling programs to prepare the workforce for the changes brought by Al ensuring
that workers can transition into new roles in the Al-powered energy sector.

7.3. Cultural and Institutional Barriers to AI/ML Adoption

The successful adoption of Al and ML technologies in energy systems in developing
countries is often hindered by various cultural and institutional barriers. These challenges
need to be addressed to ensure the effective implementation of Al-driven solutions.

e  Cultural Resistance: Cultural factors, such as the mistrust of technology, fear of social
disruption, and resistance to change, are common in many developing countries.
The reluctance to embrace Al technologies can stem from a lack of understanding
or misconceptions about their benefits. In particular, there is often an attachment
to traditional ways of managing energy systems, which can create resistance to new
technological approaches.

Concerns about job displacement due to automation, as well as fears that Al might
exacerbate existing inequalities, can lead to public opposition. Additionally, skepticism
towards foreign technology or interventions—especially when Al solutions are driven
by external corporations—can further fuel resistance. Therefore, public engagement and
education campaigns are crucial to building trust and understanding, highlighting the
potential of Al in improving energy systems by increasing efficiency and reducing costs [68].

e Institutional Challenges: Weak institutional frameworks and governance structures
present significant barriers to the adoption of Al in developing countries. Many
governments in these regions face difficulties in establishing clear policies for the
integration of Al technologies in energy systems, which results in regulatory uncertain-
ties and delays. Without well-defined legal and regulatory frameworks, Al projects
may be delayed or abandoned due to concerns over data privacy, accountability,
and compliance.
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In addition to the regulatory challenges, there is often a lack of skilled personnel to
manage the implementation of Al technologies. Many developing countries suffer from
a shortage of local experts in fields such as data science, energy policy, and Al systems
management. This limits the ability of local institutions to oversee Al-driven energy
solutions and necessitates reliance on foreign expertise, which can be expensive and slow
down the process of adoption.

Bureaucratic inefficiencies, such as slow decision-making processes and a lack of
coordination between stakeholders, further exacerbate the challenges of implementing
Al in energy systems. These institutional barriers can significantly hinder the timely and
effective deployment of AI/ML solutions [69].

e  Strategies for Overcoming Barriers: To overcome these cultural and institutional
barriers, policymakers need to focus on both local capacity building and fostering
collaboration among key stakeholders. Public—private partnerships (PPPs) can be
particularly effective in bridging the gap between technology providers and local
institutions. These partnerships allow for the alignment of Al solutions with the needs
of the local context, ensuring that they are culturally appropriate and institutionally
feasible [66,69,70].

Strengthening governance structures is another critical step in overcoming institutional
barriers. Governments should work on creating clear, transparent regulatory frameworks
that provide guidance on Al integration while addressing concerns related to data privacy,
security, and ethical considerations. Additionally, investing in human capital development
through training programs and educational initiatives will help build a local workforce
capable of managing Al technologies [71].

Engaging communities and local stakeholders in the planning and decision-making
processes can also help reduce cultural resistance. By incorporating local input and en-
suring that Al systems are designed with cultural sensitivities in mind, governments and
organizations can build trust and facilitate greater acceptance of Al technologies. Public
awareness campaigns that emphasize the long-term benefits of Al for energy efficiency,
cost reduction, and environmental sustainability will also play a key role in shifting public
perception [68,71].

In conclusion, while cultural and institutional barriers pose significant challenges to
Al adoption in developing countries, a concerted effort to address these issues through
capacity building, effective governance, and stakeholder engagement can lead to successful
Al integration into energy systems.

8. Future Research Directions and Recommendations

The integration of artificial intelligence (AI) and machine learning (ML) in energy sys-
tems holds immense potential to reshape the global energy landscape. However, unlocking
this potential requires addressing critical implementation challenges, sustained innovation,
strategic capacity building, and robust international collaboration. This section outlines key
future directions and actionable recommendations for advancing AI/ML-driven energy
sustainability while tackling barriers to adoption.

8.1. Advancing AI/ML for Energy Sustainability

Al and ML innovations are crucial for addressing energy sustainability challenges, par-
ticularly in resource-constrained environments. Open source Al tools, such as TensorFlow
(version: 2.19.0) and PyTorch (version: 2.7.0), enable local innovators to develop tailored
solutions for renewable energy forecasting, microgrid optimization, and demand-side
management. However, widespread adoption faces significant obstacles.
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Political Resistance: Political resistance remains a critical barrier to the integration of
advanced AI/ML technologies. Entrenched interests, alongside the inertia of existing
energy policies, often slow down the adoption of innovative solutions. Addressing this
resistance requires sustained advocacy and the demonstration of the socioeconomic
benefits of Al-driven approaches.

Data Governance and Infrastructure: A lack of access to high-quality, region-specific
datasets and inadequate infrastructure limits the capacity to implement AI/ML tech-
nologies effectively. Improving data governance through regional initiatives and
fostering open data-sharing agreements can mitigate these challenges. Additionally,
investing in robust, scalable infrastructure is critical to supporting the deployment of
Al models in both urban and rural areas.

Technical Innovations: To enhance scalability and accessibility, the researchers should
focus on developing lightweight, energy-efficient AI models that can operate effec-
tively on low-power devices. This innovation is particularly vital for remote regions
with limited computational resources. Furthermore, integrating Al with blockchain
technologies can foster transparency and accountability in energy trading and carbon
credit systems. By creating centralized platforms for sharing datasets, algorithms, and
case studies, stakeholders can accelerate innovation and ensure equitable access to
AI/ML solutions across economic regions. Advancing AI/ML for energy sustainabil-
ity requires innovation that addresses these barriers while ensuring adaptability to
diverse regional contexts. The ongoing commitment to these priorities will play a
pivotal role in global energy transitions.

8.2. Capacity Building, Collaboration, and Future Work

Building local capacity and fostering international collaboration are essential for the

successful integration of AI/ML in energy systems. Skill gaps, particularly in developing

nations, limit the ability to design, deploy, and sustain advanced energy technologies.

While initiatives such as the African Al Energy Training Network have demonstrated

success in reducing these gaps, more work is needed:

Training and Capacity Building: Universities, research institutions, and industry
leaders should collaborate to design curricula and certification programs that focus on
AI/ML applications in energy. These programs must emphasize hands-on training,
practical projects, and interdisciplinary learning to equip individuals with the skills
necessary to address real-world energy challenges. Developing specialized training
initiatives tailored to local energy needs can empower communities to adopt and
sustain Al-driven solutions.

International Collaboration: International partnerships enhance capacity-building
efforts by facilitating knowledge exchange and resource sharing. Developed nations,
with their advanced technological ecosystems, can provide mentorship, funding, and
technical expertise to support AI/ML adoption in developing regions. Collaborative
platforms that bring together governments, academia, private industry, and non-
governmental organizations play a vital role in enabling joint research projects, pilot
programs, and policy development.

Future Work: Future research should explore the integration of AI/ML with emerging
technologies, such as the Internet of Things (IoT) and distributed energy systems, par-
ticularly in rural and underserved regions. Investigating the interplay between social,
cultural, and institutional factors and AI/ML adoption will provide valuable insights
for overcoming resistance and fostering inclusive energy transitions. Additionally,
pilot programs that test scalable Al-driven solutions in diverse contexts will be critical
for demonstrating their adaptability and effectiveness.
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The future of AI/ML in energy systems depends on a collective effort to foster in-
novation, build capacity, and establish robust international partnerships. By addressing
existing disparities and promoting equitable access to advanced technologies, stakeholders
can advance energy sustainability and create resilient global energy systems. Such efforts
require not only technological advancements, but also a commitment to inclusive policies
that bridge gaps between developed and developing nations. Emphasizing sustainability
and equity in these initiatives will ensure that the benefits of AI/ML integration extend
across all socioeconomic and geographic boundaries.

9. Conclusions

This thematic review highlights the transformative potential of Al and ML technolo-
gies in fostering sustainable energy systems globally. By improving efficiency in energy
generation, optimizing grid operations, enhancing demand management, and facilitating
renewable energy integration, Al and ML are pivotal to addressing the pressing challenges
of energy sustainability. This review underscores the tangible impact of Al-driven solutions,
including cost reductions seen in renewable energy forecasting and improvements in grid
reliability. Furthermore, it highlights the differences in Al adoption between developed and
developing nations, showing that while developed nations have made substantial progress,
there are valuable lessons and scalable models that can be applied to the unique challenges
faced by developing countries, promoting broader and more equitable global adoption.

However, significant barriers to the widespread adoption of AI/ML in energy systems
remain, particularly regarding upfront costs, skilled workforce shortages, and inadequate
infrastructure in developing nations. These challenges call for a strategic approach that
blends technological innovation with policy initiatives, capacity building, and financial
mechanisms to enable equitable access to AI/ML solutions across regions.

The integration of AI/ML into sustainable energy policies is now more of a necessity
than an option. Decision-makers must prioritize these technologies to drive long-term
energy transformation. The key is not only fostering technological adoption but also
creating supportive ecosystems through public—private partnerships, innovative financing
models, and international collaboration. Based on this comprehensive thematic review,
here are some unique insights for decision-makers:

e  Al-driven solutions can significantly reduce operational costs and improve the effi-
ciency of energy systems. For example, predictive maintenance and energy forecasting
have been shown to save millions in repair costs and reduce energy curtailment [29].
Governments should incentivize Al adoption by creating subsidies or tax incentives
for energy companies to integrate such technologies.

e Investing in open source Al tools can lower the barriers for developing nations, en-
abling them to access advanced energy solutions without substantial upfront invest-
ment. Promoting open source platforms should be a key priority for policymakers to
democratize access to Al technologies.

e  Scalable models and adaptive Al systems should be developed to account for the vary-
ing energy needs of both developed and developing nations. Al technologies should
be tailored to local contexts, such as climate, energy infrastructure, and socioeconomic
factors, to ensure a successful and sustainable implementation in diverse regions.

e  Cross-border collaborations and international partnerships are critical for knowledge-
sharing and resource mobilization. Decision-makers should create frameworks that
encourage international cooperation to foster innovation in Al-driven energy solutions
and expand access to capital for technology adoption.

e  Capacity building is essential for the long-term success of AI/ML integration. Govern-
ments should invest in training programs to upskill local workforces in developing
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nations, equipping them with the expertise to manage, maintain, and optimize Al-
powered energy systems effectively.

e  Policy frameworks must evolve to support the dynamic nature of Al technologies. The
rapid pace of AI/ML advancements necessitates adaptive and flexible energy policies
that can quickly integrate new technological developments while ensuring they align
with sustainability goals and equity principles.

e  Public—private partnerships (PPPs) should be leveraged to reduce the financial burden
on developing countries. Governments should seek international funding, develop-
ment bank support, and private sector investment to scale AI/ML applications in
energy systems, particularly in rural and underserved areas.

Future work should focus on extending AI/ML applications to sectors such as wa-
ter management and climate adaptation, exploring their synergies with energy systems.
It is also essential to examine the long-term policy implications of AI/ML integration,
ensuring that social equity and environmental sustainability remain at the forefront of
technological advancement.

Decision-makers must act decisively to prioritize Al-driven energy solutions, foster
global collaborations, and create adaptive policies. By addressing barriers, investing in
open source development, and promoting capacity building, stakeholders can drive a
global transition to sustainable, resilient, and equitable energy systems. The future of
AI/ML in energy systems depends on a collective effort to foster innovation, build capacity,
and establish robust international partnerships. By addressing the existing disparities and
promoting equitable access to advanced technologies, stakeholders can advance energy
sustainability and create resilient global energy systems.
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